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Abstract. In this article, we establish the exact solutions for nonlinear Drinfeld-
Sokolov (DS) and generalized Drinfeld-Sokolov (gDS) equations. Generalized (G

′

G )-
expansion method is proposed to seek exact solutions of nonlinear evolution equa-
tions. This method is used to construct solitary and soliton solutions of nonlinear
evolution equations. Also, for finding exact solutions are expressed three types of
solutions that include hyperbolic function solution, trigonometric function solution
and rational solution. The exact solutions with solitons and periodic structures are
obtained. These solutions might play important role in engineering and physics
fields. It is shown that this method, with the help of symbolic computation, pro-
vide a straightforward and powerful mathematical tool for solving problems in fluids
science.
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1. Introduction

The investigation of the travelling wave solutions plays an important role in non-
linear sciences. In the recent decade, the study of nonlinear partial differential
equations in modelling physical phenomena, has become an important tool. A va-
riety of powerful methods has been presented, such as Hirota’s bilinear method [1],
the inverse scattering transform [2], sine-cosine method [3], homotopy perturbation
method [20], homotopy analysis method [5, 6], variational iteration method [7, 8, 9],
the (G

′

G )-expansion method [10, 11], tanh-function method [12], tanh-coth method
[13, 14], Bäcklund transformation [15, 16], Exp-function method [17, 18, 19, 20, 21]
and so on. Wang [22] introduced a new method called the (G

′

G )-expansion method
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to look for travelling wave solutions of NLEEs. Zhang et al. [23] examined the gen-
eralized (G

′

G )-expansion method and its applications. Authors of [24] used to mKdV

equation with variable coefficients using the (G
′

G )-expansion method. Also, Bekir [25]

used to application of the (G
′

G )-expansion method for nonlinear evolution equations.

In this article we explain method which is called the (G
′

G )-expansion method to look
for travelling wave solutions of nonlinear evolution equations. Here, we consider
Drinfeld-Sokolov (DS) system and generalized Drinfeld-Sokolov (gDS) equations, as
follow [27]

ut + (v2)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (1)

where a, b and k are constants. Drinfeld-Sokolov system was introduced by Drinfeld
and Sokolov as an example of a system of nonlinear equations possessing Lax pairs
of a special form [26]. Next we consider family of generalizations of the Drinfeld-
Sokolov (DS) equation following

ut + (vn)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (2)

where a, b, n and k are constants. Here our aim is the determination of travelling
wave solutions with compact and noncompact structures for the DS system, a gen-
eralized form of the DS system, and one type different of the DS system. Our aim
of this paper is to obtain analytical solutions of nonlinear Drinfeld-Sokolov (DS)
and generalized Drinfeld-Sokolov (gDS) equations and to determine the accuracy
of the (G’/G)-expansion method in solving these kind of problems. The paper is
organized as follows: In Section 2, we describe the (G’/G)-expansion method. In
sections 3 and 4, we examine the application of aforementioned method for solving
two nonlinear evolution equations. Also conclusion is given in Section 5. Finally
some references are given at the end of this paper.

2. Basic idea of the (G’/G)-expansion method

We give a detailed description of method which was first presented by Wang [22].

Step 1. For a given NLPDE with independent variables X = (x, t) and depen-
dent variable u:

P(u, ut, ux, uxx, utt, utx, ...) = 0, (3)

can be converted to an ODE

M(u,−cu′, u′, u′′, c2u′′,−cu′′, ...) = 0, (4)
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the transformation ξ = x− ct is wave variable. Also, c is constant to be determined
later.
Step 2. We seek its solutions in the more general polynomial form as follows:

u(ξ) = a0 +
m∑
k=1

ak

(
G′(ξ)

G(ξ)

)k
, (5)

where G(ξ) satisfies the second-order LODE in the form

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (6)

where a0, ak(k = 1, 2, ...,m), λ and µ are constants to be determined later, am = 0,
but the degree of which is generally equal to or less than m−1. The positive integer
m can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms appearing in Eq. (4).
Step 3. Substituting (5) and (6) into Eq. (4) with the value of m obtained in

Step 1. Collecting the coefficients of
(
G′(ξ)
G(ξ)

)k
(k = 0, 171, 172, ...), then setting each

coefficient to zero, we can get a set of over-determined partial differential equations
for a0, ai(i = 1, 2, ..., n), λ, c and µ with the aid of symbolic computation Maple.
Step 4. Solving the algebraic equations in Step 3, then substituting ai, ..., am, c and
general solutions of Eq. (6) into (5) we can obtain a series of fundamental solutions
of Eq. (3) depending of the solution G(ξ) of Eq. (6).

3. The Drinfeld-Sokolov Equation

We first consider the Drinfeld-Sokolov equation with the (G
′

G )-expansion method to
the following time-dependent one dimensional DS equation

ut + (v2)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (7)

where a, b and k are constants. And the wave variable η = x− ct PDE transforms
to an ODE

− cu′ + (v2)′ = 0, cv′ + av′′′ − 3bu′v − 3kuv′ = 0, (8)

where by integrating the first equation in the Eq. (8) and neglecting the constant
of integration we get

cu = v2. (9)
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Substituting (9) into the second equation of the system (8) and integrating we find

c2v + acv′′ − (2b+ k)v3 = 0. (10)

In order to determine value of m, we balance the linear term of the highest order v′′

with the highest order nonlinear term v3 in Eq. (10) we get

v3(ξ) = a3m

(
G′(ξ)

G(ξ)

)3m

+ ..., (11)

vξ(ξ) = −mam
(
G′(ξ)

G(ξ)

)m+1

+ ...,

vξξ(ξ) = m(m+ 1)am

(
G′(ξ)

G(ξ)

)m+2

+ ....

In order to determine value of m, we balance v′′ with v3 in Eq. (10) we have

m+ 2 = 3m, (12)

we find m = 1. We can suppose that the solution of Eq. (10) is of the form

v(ξ) = a0 + a1

(
G′(ξ)

G(ξ)

)
, a1 6= 0, (13)

and therefore

v3(ξ) = a31

(
G′(ξ)

G(ξ)

)3

+ 3a0a
2
1

(
G′(ξ)

G(ξ)

)2

+ 3a20a1

(
G′(ξ)

G(ξ)

)
+ a30, (14)

and

vξξ(ξ) = 2a1

(
G′(ξ)

G(ξ)

)3

+ 3a1λ

(
G′(ξ)

G(ξ)

)2

+ (a1λ
2 + 2a1µ)

(
G′(ξ)

G(ξ)

)
+ a1λµ. (15)

Substituting (13)–(15), and by using the well-known Maple software, we obtain the
following results

a0 =
λ

2

√
2ac

2b+ k
, a1 =

√
2ac

2b+ k
, c =

a(λ2 − 4µ)

2
, µ = µ, λ = λ. (16)

Substituting (16) into expression (13), we get

v(ξ) =
λ

2

√
2ac

2b+ k
+

√
2ac

2b+ k

(
G′(ξ)

G(ξ)

)
, ξ = x− a(λ2 − 4µ)

2
t. (17)
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Substituting the general solutions of Eq. (6) into (17) we have three types of exact
solutions of (7) as follows:
(1) When λ2 − 4µ > 0, we obtain hyperbolic function solution

v1(x, t) =
a(λ2 − 4µ)√

2b+ k

C1 sinh

(√
λ2−4µξ
2

)
+ C2 cosh

(√
λ2−4µξ
2

)
C1 cosh

(√
λ2−4µξ
2

)
+ C2 sinh

(√
λ2−4µξ
2

)
 (18)

+
λ

2

√
2ac

2b+ k
, ξ = x− a(λ2 − 4µ)

2
t,

u1(x, t) =
a

2(2b+ k)

√λ2 − 4µ

C1 sinh

(√
λ2−4µξ

2

)
+ C2 cosh

(√
λ2−4µξ

2

)
C1 cosh

(√
λ2−4µξ

2

)
+ C2 sinh

(√
λ2−4µξ

2

)
+ λ


2

,

where ξ = x− a(λ2−4µ)
2 t.

(2) When λ2 − 4µ < 0, we have trigonometric function solution

v2(x, t) =
a(4µ− λ2)√

2b+ k

−C1 sin

(√
4µ−λ2ξ
2

)
+ C2 cos

(√
4µ−λ2ξ
2

)
C1 cos

(√
4µ−λ2ξ
2

)
+ C2 sin

(√
4µ−λ2ξ
2

)
 (19)

+
λ

2

√
2ac

2b+ k
, ξ = x− a(λ2 − 4µ)

2
t,

u2(x, y) =
a

2(2b+ k)

√4µ− λ2

−C1 sin

(√
4µ−λ2ξ

2

)
+ C2 cos

(√
4µ−λ2ξ

2

)
C1 cos

(√
4µ−λ2ξ

2

)
+ C2 sin

(√
4µ−λ2ξ

2

)
+ λ


2

,

where ξ = x− a(λ2−4µ)
2 t.

(3) When λ2 − 4µ = 0, we get rational solution

v3(x, t) =

√
2ac

2b+ k

C2

(C1 + C2ξ)
+
λ

2

√
2ac

2b+ k
, ξ = x− a(λ2 − 4µ)

2
t, (20)

u3(x, t) =
2a

2b+ k

(
C2

C1 + C2ξ
+
λ

2

)2

.

If C1 6= 0, C2 = 0, λ > 0, µ = 0, then (18) gives

v4(x, t) =
aλ2√
2b+ k

(
1 + tanh

λ

2
ξ

)
, ξ = x− aλ2

2
t, (21)
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u4(x, t) =
aλ2

2(2b+ k)

(
1 + tanh

λ

2
ξ

)2

, ξ = x− aλ2

2
t.

In particular, if λ = 0

Case 1: µ < 0.

v5(ξ) =

√
−2acµ

2b+ k

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)
, (22)

u5(x, t) = − 2aµ

2b+ k

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2

.

Case 2: µ > 0.

v6(ξ) =

√
2acµ

2b+ k

(
C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)
, (23)

u6(x, t) =
2aµ

2b+ k

(
C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2

.

But if C1 6= 0, C2 = 0, then Eqs. (22) and (23) give respectively

v5(ξ) =

√
−2acµ

2b+ k
tanh(

√
−µξ), u5(x, t) = − 2aµ

2b+ k
tanh2(

√
−µξ), (24)

v6(ξ) =

√
2acµ

2b+ k
tan(
√
µξ), u6(x, t) =

2aµ

2b+ k
tan2(

√
µξ), (25)

which are the exact solutions of the Drinfeld-Sokolov equation. It can be seen that
some results are similar to the results in [27].

4. A generalized Drinfeld-Sokolov system

In this section we study the generalized Drinfeld-Sokolov system with the (G’/G)-
expansion method as follows

ut + (vn)x = 0, vt − avxxx + 3buxv + 3kuvx = 0, (26)

where a, b, n and k are constants. The wave variable η = x− ct PDE transforms to
an ODE

− cu′ + (vn)′ = 0, cv′ + av′′′ − 3bu′v − 3kuv′ = 0, (27)
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where by integrating the first equation in the system (8) and neglecting the constant
of integration we get

cu = vn. (28)

Substituting (28) into the second equation of the system (27) and integrating we
find

c2v + acv′′ − 3(2b+ k)

n+ 1
vn+1 = 0. (29)

To get a closed form solution, we use the transformation

v(η) = w(η)
1
n , (30)

that will carry Eq. (29) into the ODE

c2n2(n+ 1)w2 − 3n2(k + bn)w3 + acn(n+ 1)ww′′ − ac(n2 − 1)(w′)2 = 0, (31)

we set

w(ξ) = a0 +

m∑
k=1

ak

(
G′(ξ)

G(ξ)

)k
. (32)

By the same manipulation as illustrated in the previous section, we can determine
value ofm by balancing w3 and (ww′′) or (w′)2 in Eq. (31), we find that 3m = 2m+2,
then conclude m = 2. With the aid (32) it is derived that

w(ξ) = a0 + a1

(
G′(ξ)

G(ξ)

)
+ a2

(
G′(ξ)

G(ξ)

)
, a2 6= 0, (33)

w3(ξ) =

(
a0 + a1

(
G′(ξ)

G(ξ)

)
+ a2

(
G′(ξ)

G(ξ)

))3

, (34)

and

wξξ(ξ) = 6a2

(
G′(ξ)

G(ξ)

)4

+ (2a1 + 10a2λ)

(
G′(ξ)

G(ξ)

)3

+ (35)

(8a2µ+ 3a1λ+ 4a2λ
2)

(
G′(ξ)

G(ξ)

)2

+

(6a2λµ+ 2a1µ+ a1λ
2)

(
G′(ξ)

G(ξ)

)
+ 2a2µ

2 + a1λµ.
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Substituting (33)–(35), we obtain the following results:
If λ = 0, then, by a similar derivation as illustrated in above, we obtain sets of
non-trivial solutions:
(I) The first set:

a0 = 0, a1 = 0, c = −4a

n
µ, µ = µ, a2 =

4acn(n+ 1)

3n2(k + bn)
. (36)

(II) The second set:

a1 = 0, a0 = a2µ, a2 =
2ac(n2 + 3n+ 2)

3n2(k + bn)
, c =

4aµ

n2
, µ = µ.(37)

By using (36) and (37), expression (33) can be written as

w(ξ) =
4ac(n+ 1)

3n(k + bn)

(
G′(ξ)

G(ξ)

)2

, ξ = x+
4aµ

n
t, (38)

w(ξ) =
2ac(n2 + 3n+ 2)

3n2(k + bn)
µ+

2ac(n2 + 3n+ 2)

3n2(k + bn)

(
G′(ξ)

G(ξ)

)2

, ξ = x− 4aµ

n2
t. (39)

When µ < 0, we get

w1(ξ) = −4ac(n+ 1)µ

3n(k + bn)

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2

, (40)

where ξ = x+ 4aµ
n t and

w2(ξ) =
2ac(n2 + 3n+ 2)

3n2(k + bn)
µ

[
1−

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2
]
, (41)

where ξ = x− 4aµ
n2 t. When µ > 0, we have

w3(ξ) =
4ac(n+ 1)µ

3n(k + bn)

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2

, (42)

where ξ = x+ 4aµ
n t and

w4(ξ) =
2ac(n2 + 3n+ 2)

3n2(k + bn)
µ

[
1 +

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2
]
, (43)

where ξ = x− 4aµ
n2 t. If C1 6= 0, C2 = 0, µ < 0, then (40) and (41) get

w1(ξ) = −4ac(n+ 1)µ

3n(k + bn)
tanh2(

√
−µξ), ξ = x+

4aµ

n
t, (44)
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w2(ξ) =
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sech2(

√
−µξ), ξ = x− 4aµ

n2
t. (45)

But if C1 6= 0, C2 = 0, µ > 0, then (42) and (43) can be written as

w3(ξ) =
4ac(n+ 1)µ

3n(k + bn)
tan2(

√
µξ), ξ = x+

4aµ

n
t, (46)

w4(ξ) =
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sec2(

√
µξ), ξ = x− 4aµ

n2
t.

Case 1: µ < 0.
Using (28) and (30), we get

v1(ξ) = n

√
−4ac(n+ 1)µ

3n(k + bn)

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

) 2
n

, (47)

u1(ξ) = −4a(n+ 1)µ

3n(k + bn)

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2

,

where ξ = x+ 4aµ
n t and

v2(ξ) = n

√
2ac(n2 + 3n+ 2)µ

3n2(k + bn)

[
1−

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2
] 1

n

,(48)

u2(ξ) =
2a(n2 + 3n+ 2)

3n2(k + bn)
µ

[
1−

(
C1 sinh

√
−µξ + C2 cosh

√
−µξ

C1 cosh
√
−µξ + C2 sinh

√
−µξ

)2
]
,

where ξ = x− 4aµ
n2 t.

Case 2: µ > 0.
Also, using (28) and (30) we obtain

v3(ξ) = n

√
4ac(n+ 1)µ

3n(k + bn)

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

) 2
n

, (49)

u3(ξ) =
4a(n+ 1)µ

3n(k + bn)

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2

,

where ξ = x+ 4aµ
n t and

v4(ξ) = n

√
2ac(n2 + 3n+ 2)µ

3n2(k + bn)

[
1 +

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2
] 1

n

, (50)
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u4(ξ) =
2a(n2 + 3n+ 2)

3n2(k + bn)
µ

[
1 +

(
−C1 sin

√
µξ + C2 cos

√
µξ

C1 cos
√
µξ + C2 sin

√
µξ

)2
]
,

where ξ = x − 4aµ
n2 t. If particular, C1 6= 0, C2 = 0, µ < 0, µ > 0 then (47)-(50) give

respectively

v1(ξ) = n

√
−4ac(n+ 1)µ

3n(k + bn)
tanh

2
n (
√
−µξ), ξ = x+

4aµ

n
t, (51)

u1(ξ) = −4a(n+ 1)µ

3n(k + bn)
tanh2(

√
−µξ), ξ = x+

4aµ

n
t,

v2(ξ) = n

√
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sech

2
n (
√
−µξ), ξ = x− 4aµ

n2
t, (52)

u2(ξ) =
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sech2(

√
−µξ), ξ = x− 4aµ

n2
t,

v3(ξ) = n

√
4ac(n+ 1)µ

3n(k + bn)
tanh

2
n (
√
µξ), ξ = x+

4aµ

n
t, (53)

u3(ξ) =
4a(n+ 1)µ

3n(k + bn)
tanh2(

√
µξ), ξ = x+

4aµ

n
t,

v4(ξ) = n

√
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sech

2
n (
√
µξ), ξ = x− 4aµ

n2
t, (54)

u4(ξ) =
2ac(n2 + 3n+ 2)µ

3n2(k + bn)
sech2(

√
µξ), ξ = x− 4aµ

n2
t,

which are the exact solutions of the generalized Drinfeld-Sokolov equation. It can
be seen that the results are similar to the results in [27].

5. Conclusion

In this paper, we applied the generalized (G’/G)-expansion method for the Drinfeld-
Sokolov and the generalized Drinfeld-Sokolov systems for constructing exact travel-
ling wave solutions of nonlinear partial differential equations. These exact solutions
include three types hyperbolic function solution, trigonometric function solution and
rational solution. The validity of the method has been successfully applied to study
two types of nonlinear equations such as Drinfeld-Sokolov system and the gener-
alized Drinfeld-Sokolov system. We can successfully recover the previously known
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solitary wave solutions that had been found by other methods. In addition, this
method allows us to perform complicated and tedious algebraic calculation on the
computer. Some of the results are in agreement with the results reported by others
in the literature and new results were formally developed in this work. It can be
concluded that the generalized (G’/G)-expansion method is a very powerful and effi-
cient technique in finding exact solutions for wide classes of problems. The solution
procedure is very simple and the obtained solution is very concise.
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