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Abstract. This paper characterizes the quasilocal fields lying in the class of
Henselian valued fields with totally indivisible value groups, which possess finite
separable extensions of nontrivial defect. We show that, for any prime number
q, a divisible subgroup T in the multiplicative group of complex roots of unity is
realizable as the Brauer group of such a quasilocal field of residual characteristic q
unless q = 2 and the 2-component of T is trivial.
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1. Introduction

This paper is a continuation of [2]. Let K be a field, K∗ its multiplicative group,
Ksep a separable closure of K, GK = G(Ksep/K) the absolute Galois group of K,
and for any prime number p, let cdp(GK) be the cohomological p-dimension of GK ,
K(p) the maximal p-extension of K in Ksep, and r(p)K the rank of the Galois group
G(K(p)/K) as a pro-p-group (r(p)K = 0 in case K(p) = K). We say that K is
primarily quasilocal (abbr, PQL), if every cyclic extension F of K is embeddable as
a subalgebra in each central division K-algebra D of Schur index ind(D) divisible
by the degree [F : K]; K is called quasilocal, if its finite extensions are PQL-fields.
The class of quasilocal fields includes the one of local fields and contains p-adically
closed fields and Henselian discrete valued fields with quasifinite residue fields (cf.
[25], Ch. XIII, Sect. 3, [23], Theorem 3.1 and Lemma 2.9, and [4], Proposition 6.4).
The quasilocal property has been fully characterized by [2], Theorem 2.1, in the
class of Henselian (valued) fields with totally indivisible value groups, whose finite
separable extensions are defectless. Other examples of quasilocal fields, mostly, of
nonarithmetic nature (from the perspective of [4], (1.2), (1.3) and Corollary 5.3),
can be found in [6].
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The present paper proves the existence of quasilocal Henselian fields with to-
tally indivisible value groups, that admit defectful finite separable extensions. It
describes, up-to an isomorphism, the abelian torsion groups that can be realized as
Brauer groups of such fields.

2. Statement of the main result

A nontrivial (Krull) valuation v of a field K is called Henselian, if it is uniquely,
up-to an equivalence, extendable to a valuation vL on each algebraic field extension
L/K. This is the case if and only if the valuation ring Ov(K) = {a ∈ K : v(a) ≥ 0}
is Henselian with respect to its (unique) maximal ideal Mv(K) = {a ∈ K : v(a) > 0}
(see (3.1)). Denote by v(K) the value group and by K̂ the residue field of (K, v).
We say that v(K) is totally indivisible, if it is p-indivisible, i.e. v(K) 6= pv(K), for
every p ∈ P. As a beginning of our considerations, we introduce the notions of a
norm-inertial extension and of a quasiinertial extension, as follows:

Definitions. Let (K, v) be a Henselian field with char(K̂) = p > 0, M a finite
extension of K in K(p), and vM a valuation of M extending v. The extension M/K
is said to be norm-inertial, if the norm group N(M/K) contains all θ ∈ K∗ with
v(θ − 1) > 0. We say that M/K is quasiinertial, if the ring OvM (M) consists of
those δ ∈M∗, for which the trace TrMK (δµ) has value ≥ 0, for each µ ∈ Ov(M).

Our next result and [2], Theorem 2.1, give a formally complete characterization of
quasilocal Henselian fields with totally indivisible value groups, and attract interest
in the algebraic nature of immediate norm-inertial extensions:

Proposition 1. Let (K, v) be a Henselian field admitting a finite extension in Ksep

of nontrivial defect, and for each prime p, let Gp be a Sylow pro-p-subgroup of GK
and Kp the fixed field of Gp. Suppose that char(K̂) = q and v(K) 6= pv(K) whenever
Gp 6= {1}. Then K is quasilocal if and only if it satisfies the following:

(a) The quotient group v(K)/qv(K) is of order q, K̂ is perfect, cdq(GK̂) = 0,
and Kq has an immediate Zq-extension Y in Ksep, such that every finite extension
Lq of Kq in Ksep with Lq ∩Y = Kq is totally ramified; in addition, finite extensions
of Kq in Y are norm-inertial;

(b) r(p)Kp ≤ 2, for each prime p 6= q.

Proposition 1 has been proved as [4], Proposition 6.1. The main result of the
present paper (stated without proof in [4], Sect. 6) provides series of examples of
quasilocal Henselian real-valued fields satisfying the conditions of this proposition.
Before stating it, note that the assumptions of Proposition 1 ensure that K is a
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nonreal field [17], Theorem 3.16, which implies that the Brauer group Br(K) is di-
visible whenever K is quasilocal (cf. [3], I, Theorem 3.1). At the same time, in
the quasilocal case, by [4], Theorem 1.1, Br(K) is embeddable as a subgroup in the
quotient group Q/Z of the additive group of rational numbers by the subgroup of
integers. Conversely, divisible subgroups of Q/Z are realizable as Brauer groups of
quasilocal Henselian fields of the type studied in [2] (see (3.6) and [28], Proposi-
tion 2.2). These observations attract interest in the description of the isomorphism
classes of Brauer groups of the quasilocal Henselian fields admissible by Proposition
1. Our main result in this direction is contained in the following theorem:

Theorem 1. Let (Φ, ω) be a Henselian discrete valued field with Φ̂ quasifinite and
char(Φ̂) = q 6= 0, and let T be a divisible subgroup of Q/Z with a nontrivial q-
component Tq. Then there is a quasilocal Henselian field (K, v) such that:

(a) Br(K) is isomorphic to T , K/Φ is a field extension of transcendency degree
1 and v is a prolongation of ω;

(b) v(K) is a totally indivisible Archimedean group, K̂/Φ̂ is an algebraic exten-
sion, and K possesses an immediate quasiinertial Zq-extension I∞.

Theorem 1 is proved in Section 4. Its proof relies on the characterization of
quasiinertial Galois extensions given in Section 2, and on their relations with norm-
inertial Galois extensions (these results, in a special case, also play a role in the
proof of Proposition 1, see (3.8), Lemma 2 and [4], (3.4)). In addition, we use the
quasilocal property of Φ and an easily applicable criterion for the fulfillment of the
quasiinertial condition, presented in Section 3. In Section 5 we obtain similarly that
if q > 2, then divisible subgroups T ≤ Q/Z with Tq = {0} are also realizable as
Brauer groups of quasilocal fields admissible by Proposition 1. The case of q = 2 is
exceptional - then Br(K)2 is a quasicyclic 2-group whenever K is a quasilocal field
satisfying the conditions of Proposition 1 (see Proposition 2).

Note that Brauer groups of quasilocal fields E have influence on a wide spectrum
of their algebraic properties. This includes the structure of the continuous character
groups of G(E(p)/E), p ∈ P [3], II, Lemmas 2.3 and 3.3, cohomological properties of
G(E(p)/E) and the Sylow pro-p-subgroups of GE [3], I, Theorem 8.1, and [5], Sect.
5, finite abelian extensions of E and their norm groups [5] (concerning nonabelian
Galois extensions of E, see [6]). Therefore, the description of Br(E) is a major
objective of the study of E, and the present research can be viewed as the final step
towards a really complete characterization of quasilocal Henselian fields with totally
indivisible value groups.

The basic notation, terminology and conventions kept in this paper are standard
and essentially the same as in [3], I, [4] and [5]. Preliminaries on Henselian valuations
used in the sequel are included in Section 2. Throughout, Brauer and value groups
are additively presented, Galois groups are viewed as profinite with respect to the
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Krull topology, and by a profinite group homomorphism, we mean a continuous
one. We write P for the set of prime numbers, and for each p ∈ P, Zp denotes
the additive group of p-adic integers and Z(p∞) is the quasicyclic p-group. For any
profinite group G, cd(G) is the cohomological dimension of G, and cdp(G), p ∈ P,
are its cohomological p-dimensions. Given a field E, Br(E)p is the p-component
of the Brauer group Br(E), and pBr(E) = {δ ∈ Br(E) : pδ = 0}, where p ∈ P,
P (E) = {p ∈ P : E(p) 6= E}, and Π(E) = {p ∈ P : cdp(GE) > 0}. We write
s(E) for the class of finite-dimensional central simple E-algebras, d(E) stands for
the class of division algebras D ∈ s(E), and for each A ∈ s(E), [A] is the similarity
class of A in Br(E). For any field extension E′/E, I(E′/E) denotes the set of its
intermediate fields. By a Zp-extension of E, for some p ∈ P, we mean a Galois
extension E∞/E with a Galois group G(E∞/E) ∼= Zp. The field E is called p-
quasilocal, if Br(E)p = {0}, or p /∈ P (E), or every degree p extension of E in E(p)
embeds as an E-subalgebra in each ∆p ∈ d(E) of index p. Note that E is PQL if
and only if it is p-quasilocal, for each p ∈ P (E) (cf. [21], Sects. 13.4, 14.4 and 15.3).

3. Preliminaries on Henselian valuations and characterizations of
quasiinertial Galois extensions

Let (K, v) be a (nontrivially) valued field, Kv a completion of K relative to the
topology induced by v, v(K)0 = {γ ∈ v(K) : γ > 0}, ∇0 = {α ∈ K : v(α− 1) > 0}
and ∇γ(K) = {α ∈ K : v(α − 1) ≥ γ}, for each γ ∈ v(K)0. It is known that v is
Henselian if and only if the following condition holds (cf. [12], Sect. 18.1):

(3.1) Given a polynomial f(X) ∈ Ov(K)[X], and an element a ∈ Ov(K), such
that 2v(f ′(a)) < v(f(a)), where f ′ is the (formal) derivative of f , there is a zero
c ∈ Ov(K) of f satisfying the equality v(c− a) = v(f(a)/f ′(a)).

The fulfillment of (3.1) ensures that the polynomial fb(X) = f(X)+ b has a zero
in K whenever b ∈ K∗ and v(b) > 2v(f ′(a)). Also, the Henselity of v is inherited by
vM , for every algebraic field extension M/K. When [M : K] is finite and M ⊆ Ksep,
these observations, applied to the minimal polynomial fβ(X) over K of a primitive
element β ∈ OvM (M) of M/K, prove the following:

(3.2) The norm group N(M/K) contains every α ∈ Ov(K), for which v(α−1) >
2vM (f ′β(β)).

When v is Henselian and L/K is algebraic, vL is Henselian and extends uniquely
to a valuation vD on each D ∈ d(L). Denote by D̂ the residue field of (D, vD) and
put v(D) = vD(D). By the Ostrowski-Draxl theorem [9], [D : K], [D̂ : K̂] and the
ramification index e(D/K) are related as follows:

(3.3) [D : K] is divisible by [D̂ : K̂]e(D/K) and the defect
d(D/K) = [D : K]/([D̂ : K̂]e(D/K)) is not divisible by any p ∈ P, p 6= char(K̂).

110



I.D. Chipchakov – Quasilocal fields with indivisible value groups . . .

The K-algebra D is said to be defectless, if d(D/K) = 1, i.e. [D : K] =
[D̂ : K̂]e(D/K); it is called immediate, if D̂ = K̂ and e(D/K) = 1. We say that
D/K is totally ramified, if e(D/K) = [D : K]. When v(K) 6= pv(K), for a given
p ∈ P, (K, v) is subject to the following alternative (see [7], Corollary 6.5):

(3.4) (i) K has a totally ramified proper extension in K(p);
(ii) char(K) = 0, K does not contain a primitive p-th root of unity and the

minimal isolated subgroup of v(K) containing v(p) is p-divisible.
A finite extension R of K is said to be inertial, if [R : K] = [R̂ : K̂] and R̂ is

separable over K̂; R/K is called tamely ramified, if R̂/K̂ is separable and e(R/K)
is not divisible by char(K̂). It is well-known that the compositum Kur of inertial
extensions of K in Ksep is a Galois extension of K, and so is the compositum Ktr

of tamely ramified extensions of K in Ksep. Note also that Kur and Ktr have the
following properties (see [14], page 135):

(3.5) (i) v(Kur) = v(K) and finite extensions of K in Kur are inertial;
(ii) Ktr contains a primitive m-th root of unity, for each m ∈ N not divisible by

char(K̂), finite extensions of K in Ktr are tamely ramified, and v(Ktr) = pv(Ktr),
for every p ∈ P different from char(K̂);

(iii) K̂ur is K̂-isomorphic to K̂sep, G(Kur/K) ∼= GK̂ , and the natural mapping of

I(Kur/K) into I(K̂sep/K̂) is bijective.
When (K, v) is a local field, T is a divisible subgroup of Q/Z, and S(T ) = {p ∈

P : Tp 6= {0}}, there exists KT ∈ I(Kur/K), such that G(Kur/KT ) is isomorphic to
the topological group product

∏
p∈S(T ) Zp. In other words, T is isomorphic to the

continuous character group of G(Kur/KT ). Since v(KT ) = v(K) and Br(K̂T ) = {0},
this enables one to deduce from Witt’s theorem (cf. [29], (3.10)) that Br(KT ) ∼= T .
It is therefore clear from [4], Corollary 5.3, that

(3.6) An abelian torsion group is realizable as the Brauer group of a quasilocal
Henselian field with a totally indivisible value group and defectless finite separable
extensions if and only if it is divisible and embeddable in Q/Z.

Let now (K, v) be a Henselian field with char(K̂) = p > 0, and let M ∈
I(K(p)/K) be a finite extension of K. Then:

(3.7) ∇0(M) equals the pre-image of ∇0(K), under the norm map NM
K , provided

that M̂ = K̂; in this case, ϕ(µ)µ−1 ∈ ∇0(M) whenever µ ∈ M∗ and ϕ is a K-
automorphism of M .

With notation being as above, put δM/K(µ) = vM (f ′µ(µ)), for each primitive
element µ of M/K, where f ′µ is the derivative of the minimal (monic) polynomial
fµ of µ over K. Clearly, [M : K]δM/K(µ) = v(dµ), dµ being the discriminant of fµ.
This fact, (3.7) and the the following lemma will be used in the sequel.

Lemma 2. Let (K, v) be a Henselian field with char(K̂) = p > 0, M a finite Galois
extension of K in K(p), and for each primitive element µ of M/K lying in Ov(M),
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let fµ(X) be the minimal polynomial of µ over K, and δM/K(µ) = vM (f ′µ(µ)). Then
M/K is quasiinertial if and only if any of the following three equivalent conditions
is fulfilled:

(a) For each γ ∈ v(K)0, there exists λγ ∈ Ov(M) with v(TrMK (λγ)) < γ;
(b) For each γ′ ∈ v(M)0, Ov(M) contains a primitive element µγ′ of M/K

satisfying the inequality δM/K(µγ′) < γ′;
(c) There exists L ∈ I(M/K), such that L/K and M/L are quasiinertial;
(d) For any γ ∈ v(K)0, there is βγ ∈ Ov(M), such that vM (ϕ(βγ)−βγ) < γ, for

every ϕ ∈ G(M/K) different from 1.
When M/K is quasiinertial, so are M/M0 and M0/K, for every M0 ∈ I(M/K).

Proof. The concluding assertion of the lemma follows from the claimed equivalence
of condition (a) and the one that M/K is quasiinertial, together with the inequalities
vM (y) ≤ v(TrMK (y)), y ∈ Ov(M), and the transitivity of traces in towers of finite
separable extensions (cf. [19], Ch. VIII, Sect. 5). When condition (c) of Lemma 2
holds, the assertion that M/K is quasiinertial is standardly proved by assuming the
opposite, using again trace transitivity (specifically, the equality TrMK = TrLK ◦TrML )
and the L-linearity of TrML . Thus (c) turns out to be equivalent to the assumption
that M/K is quasiinertial. Let r ∈ Ov(M) be a primitive element of M/K. It
is easily obtained (by applying basic linear algebra, including Cramer’s rule and
Vandermonde’s determinant) that if r′ ∈ Ov(M) \ {0} and TrMK (r′−1rj−1) ∈ Ov(K),
j = 1, . . . , [M : K], then 2vM (r′) ≤ v(dr). Hence, the validity of condition (b) of
Lemma 2 ensures that M/K is quasiinertial. As to condition (a), it is satisfied
in case M/K is quasiinertial (because if a ∈ Mv(K) \ {0} and a′ ∈ Ov(M), then
TrMK (a−1a′) ∈ Ov(K) if and only if v(a) ≤ v(TrMK (a′))). These observations can
be summarized by saying that (b)→(c)→(a). We prove that (a)→(d)→(b). Note
here that if v(K)0 contains a minimal element, then M/K is inertial if and only
if some of conditions (a), (b), (c), (d) is satisfied. Therefore, it suffices to prove
that (a)→(d)→(b) in case v(K)0 does not contain a minimal element. We first
prove that (a)→(d). Assume that condition (a) holds, [M : K] = pn and α is an
element of Ov(M), such that v(TrMK (α)) < v(p). It is easily verified that α is a
primitive element of M/K. Let αu, u = 1, . . . , [M : K], be the roots in M of the
minimal polynomial fα of α over K. We prove the validity of condition (d) by
showing that vM ′(αu′ −αu′′) ≤ v(TrMK (α)), for 1 ≤ u′ < u′′ ≤ pn. Suppose first that
[M : K] = p and ϕ is a generator of G(M/K). Then vM (ϕν(α)−α) = vM (ϕ(α)−α),
for ν = 1, . . . , p − 1. As α ∈ Ov(M) and v(TrMK (α)) < v(p), this implies the
stated inequality. The proof in general is carried out by induction on n, under the
inductive hypothesis that n ≥ 2, and for some K ′ ∈ I(M/K) of degree [K ′ : K] = p,
TrMK′ is subject to analogous inequalities. Since TrMK (α) = TrK

′
K (TrMK′(α)), whence

vK′(TrMK′(α)) ≤ v(TrMK (α)) < v(p), this yields vM ′(αu′ − αu′′) ≤ vK′(TrMK′(α)),
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provided that u′ 6= u′′ and αu′ , αu′′ are conjugate over K ′. Now take indices u′

and u′′ so that αu′ and αu′′ be non-conjugate over K ′. Then αu′′ = ψ(αu′), for
some ψ ∈ G(M/K) inducing on K ′ a generator, say, ψ′ of G(K ′/K). Denote by
Su′ and Su′′ the sets of roots in M of the minimal polynomials over K ′ of αu′

and αu′′ , respectively. Using the normality of G(M/K ′) in G(M/K), one obtains
that if vM (αu′ − αu′′) > v(TrMK (α)), then there is a bijection ε : Su′ → Su′′ , such
that vM (αu − ε(αu)) > v(TrMK (α)) whenever αu ∈ Su′ . Our conclusion, however,
contradicts the inequality vK′(ψ′(TrMK′(α)) − TrMK′(α)) ≤ v(TrMK (α)) and thereby
proves that vM (αu′ − αu′′) ≤ v(TrMK (α)). Thus the implication (a)→(d) becomes
obvious, and since (b)→(c)→(a), it remains to be seen that (d)→(b). The assertion
is evident, if the intersection V of the nontrivial isolated subgroups of v(K) is trivial.
Suppose now that V 6= {0}. This means that V is a minimal isolated subgroup of
v(K). Hence, V is Archimedean, and by Höelder’s theorem (cf. [12], Theorem 2.5.2),
it is isomorphic to an ordered subgroup of the additive group R of real numbers.
Identifying V with its isomorphic copy in R, and taking into account that v(K)0

does not contain a minimal element, one concludes that, for each h ∈ V ∩ v(K)0,
there exist hm ∈ V ∩ v(K)0, m ∈ N, such that mhm < h, for each index m. This
observation completes the proof of implication (d)→(b), and of Lemma 2.

Assuming again that (K, v) is a Henselian field with char(K̂) = p 6= 0, we say
that a field I∞ ∈ I(K(p)/K) is said to be a norm-inertial extension of K, if finite
extensions of K in I∞ are norm-inertial. The extension I∞/K is called quasiinertial,
if so are finite extensions of K in I∞. When I∞/K is Galois, we show that the two
notions are related as follows (see [4], (3.4), for a very concise proof in the special
case where I∞/K is a Zp-extension):

(3.8) (i) I∞/K is norm-inertial, provided that it is quasiinertial;
(ii) If I∞/K is an immediate norm-inertial extension and H 6= pH whenever

H 6= {0} and H is an isolated subgroup of v(K), then I∞/K is quasiinertial; when
this holds, I∞/I is quasiinertial, for every I ∈ I(I∞/K).

Inertial extensions of K in K(p) are obviously norm-inertial, so it is sufficient
to prove (3.8) under the extra hypothesis that v(K)0 does not contain a minimal
element. Since quasiinertial finite Galois extensions of K satisfy condition (b) of
Lemma 2, this enables one to deduce (3.8) (i) from (3.2) (by the method of proving
implication (d)→(b) of the lemma). The latter assertion of (3.8) (ii) is implied by
the former one and Lemma 2. We turn to the proof of the former part of (3.8) (ii).
We first show that, for each γ ∈ v(K)0, there exists γ′ ∈ v(K)0 less than γ and
not lying in pv(K). The assertion is obvious, if the subgroup V ≤ v(K) defined
in the proof of Lemma 2 is trivial, so we assume that V 6= {0}. This ensures that
V embeds in R as an ordered subgroup, and it follows from our extra hypothesis
on v(K)0 that V ∩ v(K)0 does not contain a minimal element. Identifying V with
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its isomorphic copy in R, one also sees that pV is dense in R. These observations
imply the existence of γ′ ∈ V with the required properties. Let I be a finite Galois
extension of K in I∞, and let θ be an element of ∇0(I), such that N I

K(θ) = 1 + θ0,
v(θ0) < v(p) and v(θ0) /∈ pv(K). It is easily verified that 1+θ0 /∈ K∗p, and therefore,
θ is a primitive element of I/K. Denote by fθ the minimal polynomial of θ over
K. We show that vI(θ − θ′) ≤ v(θ0), provided that θ′ ∈ I, θ′ 6= θ and fθ(θ

′) = 0.
Assuming the opposite, one concludes that there exist a nontrivial cyclic subgroup
G ≤ G(I/K) and some γ̄ ∈ v(K), such that v(θ0) < γ̄ < v(p) and vI(θ − ψ(θ)) ≥ γ̄,

for every ψ ∈ G. This implies vI(N
I
J (θ)−1−(θ−1)p

h
) ≥ γ̄, where J is the fixed field

of G and ph is the order of G. Thus it turns out that vI(N
I
K(θ)− 1− (θ̃− 1)p) ≥ γ̄,

for a suitably chosen θ̃ ∈ ∇0(I). As N I
K(θ) = 1 + θ0 and v(θ0) < γ̄, our conclusion

requires that vI((θ̃ − 1)p) = v(θ0). This, however, contradicts the assumptions that
v(I) = v(K) and v(θ0) /∈ pv(K), and so proves that the roots of fθ satisfy the
claimed inequality. In view of (3.7), Lemma 2 and the noted property of the set
v(K)0 \ pv(K), the obtained result implies the former assertion of (3.8) (ii).

4. Preparation for the proof of Theorem 1

The proof of Theorem 1 relies on the following two lemmas.

Lemma 3. Let (E, v) be a Henselian field with char(Ê) = p 6= 0 and v(E) = pv(E).
Assume that p ∈ P (E), r(p)E ∈ N, and in case char(E) = 0, E contains a primitive
p-th root of unity ε. Then:

(a) Ê is perfect and Br(E)p = {0};
(b) G(E(p)/E) is a free pro-p-group; in particular, every cyclic extension L of

E in E(p) lies in I(L∞/E), for some Zp-extension L∞/E, L ⊆ E(p);
(c) If E is perfect and v(E) ≤ R, then finite extensions of E in E(p) are quasi-

inertial, whence every Zp-extension of E is quasiinertial.

Proof. The assumption on r(p)E and [7], Lemma 4.1, imply that Ê is perfect. We
show that Br(E)p = {0} and G(E(p)/E) is a free pro-p-group. When char(E) = p,
this is a special case of [15], Proposition 4.4.8, and [24], Ch. II, Proposition 2,
respectively. If ε ∈ E, the two assertions are equivalent (by Galois cohomology, see
[26], page 265, [24], Ch. I, 4.2, and [30], page 725), so they are contained in [10],
Proposition 3.4 (or [7], Proposition 5.1). This indicates that G(E(p)/E) ∼= GY , for
some field Y of characteristic p [18], (4.8) (see also [2], Remark 2.6). The obtained
result, combined with Galois theory and Witt’s lemma (see [8], Sect. 15), completes
the proof of Lemma 3 (a) and (b). Since the class of free pro-p-groups is closed
under taking open subgroups (cf. [24], Ch. I, 4.2 and Proposition 14), it becomes
clear from Lemma 2 that it suffices for the proof of Lemma 3 (c) to show that every
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degree p extension F of E in E(p) is quasiinertial. If F/E is inertial, there is nothing
to prove, so we assume that this is not the case. As v(E) = pv(E) and [F : E] = p,
this means that F/E is immediate. Let ψ be a generator of G(F/E). Clearly, the
claimed property of F/E can be deduced from the following assertion:

(4.1) F contains elements λn, n ∈ N, such that 0 < vF (λn) < vF (ψ(λn)− λn) <
1/n, for each index n.

Our objective is to prove (4.1). Suppose first that char(E) = p and E is perfect.
Then the Artin-Schreier theorem implies the existence of a sequence t = {tn ∈
Mv(E) : n ∈ N}, such that tpn+1 = tn 6= 0 and the polynomial Xp − X − t−1

n is
irreducible over E with a root ξn ∈ F , for each index n. Observing that ξ−1

n =
tn

∏p−1
j=1(ξn + j) and vF (ξn) = p−1v(t−1

n ), one obtains by direct calculations that

vF (ξ−1
n ) = p−1v(tn) and vF (ψ(ξ−1

n ) − ξ−1
n ) = 2vF (ξ−1

n ). Therefore, ∇0(F ) contains
the elements λn = ξnψ(ξ−1

n ), n ∈ N, and vF (λn − 1) = p−1v(tn), for every index n.
The obtained result proves (4.1) in the case where char(E) = p and E is perfect.
Assume now that ε ∈ E. In view of Kummer theory and the equality ∇0(K)K∗p =
K∗ (cf. [10], Lemma 3.3), F is generated over K by a p-th root of the sum 1 +π, for
some π ∈Mv(K). We prove Lemma 3 (c) together with the following statement:

(4.2) There exists a sequence πn ∈Mv(K), n ∈ N, such that (1+(ε−1)pπ−1
n )K∗p =

(1 + π)K∗p and 1/n > v(πn) > v(πn+1), for each n ∈ N.
As r(p)K ∈ N, Kummer theory ensures the existence of a number d ∈ R, d > 0,

such that the cosets λK∗p, λ ∈ K∗, have representatives in ∇d; in particular, one
may assume without loss of generality that v(π) ≥ d. In addition, it is not difficult
to see that, for each n ∈ N, Mv(K) contains elements an,j : j = 1, . . . , n, such
that v(apn,1) = v(π), v(π −

∑n
j=1 a

p
n,j) > pv(an,n) and v(an,j) ≥ (d/p) + v(an,(j−1)),

provided that j ≥ 2. Also, it is known that ∇p̄(K) ⊂ K∗p, where p̄ = (p/(p−1))v(p),
which implies the elements an,j : n, j ∈ N, j ≤ n, can be chosen so that (1+π)K∗p =
(1 +

∑n
j=1 a

p
n,j)K

∗p, for every sufficiently large n. Note also that ∇v(p)(K) contains
the element (1 +

∑n
j=1 a

p
n,j)(1 −

∑n
j=1 an,j)

p. Thus it turns out that there exist
bn ∈ Mv(K), n ∈ N, such that (1 + pbn)K∗p = (1 + π)K∗p and v(bpn+1) = v(pbn),
for each index n. As F/K is immediate and v(p) = (p − 1)v(ε − 1), this implies
v(bn) < v(ε − 1), for each n ∈ N, which enables one to prove that the sequence
v(bn), n ∈ N, increases and converges to v(ε − 1). Hence, bn, n ∈ N, possesses
a subsequence b′n, n ∈ N, such that v(b′n) > v(ε − 1) − (1/n), for each index n.
It is therefore clear that the sequence πn = (ε − 1)p/(pb′n), n ∈ N, satisfies (4.2).
Consider now the polynomials fn(X), gn(X), hn(X), tn(X) ∈ K[X], n ∈ N, defined
by the rule fn(X) = Xp −X − π−1

n , gn(X) = πpnfn(X/πn) = Xp − πp−1
n X − πp−1

n ,
hn(X) = (ε − 1)−p[((ε − 1)X + 1)p − 1 − (ε − 1)pπ−1

n ] and tn(X) = πpnhn(X/πn),
for each n. It is easily verified that tn(X) ∈ Ov(K)[X], tn(X) is monic and the
coefficients of the difference tn(X)− gn(X) are divisible by ε− 1 (in Ov(K)). These
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observations enable one to deduce from (3.1) that there exists N0 ∈ N, such that
fn(X), gn(X), hn(X) and tn(X) are irreducible over K and have roots in F , for each
n > N0. They also show that N0 can be chosen so that vF (η−1

n ) = (1/p)v(πn) and
vF (ψ(η−1

n )− η−1
n ) = (2/p)v(πn) < 2/(pn) whenever n > N0, ηn ∈ F and fn(ηn) = 0.

When both conditions hold, the sequence λn = η−1
n+N0

, n ∈ N, satisfies (4.1), which
proves Lemma 3 (c).

Lemma 4. Let (E,w) be a Henselian field with char(Ê) = q > 0 and w(E) 6= qw(E).
Assume that w(E) is Archimedean and Br(E′)q = {0}, where E′ ∈ I(Esep/E) is the
root field over E of the binomial Xq − 1. Then:

(a) Ê is perfect, w(E)/qw(E) is of order q, q ∈ P (E) and finite extensions of E
in E(q) are totally ramified; in particular, q /∈ P (Ê);

(b) For any cyclic extension Φ of E in E(q), there exists Γ0 ∈ I(E′(q)/E), such
that E′(q)/Γ0 is a Zq-extension and Φ ∩ Γ0 = E.

Proof. The assertion that q ∈ P (E) follows from the fact that (E,w) satisfies con-
dition (3.4) (i). Since, by [17], Theorem 3.16, E is a nonreal field, this assertion
and [31], Theorem 2, indicate that E(q) contains as a subfield a Zq-extension Γ of
E; in particular, [E(q) : E] = ∞. Let L be a finite extension of E in E(q), and let
[L : E] = qk. It is clear from [3], I, Lemma 4.2, and the triviality of Br(E)q (follow-
ing from the condition on Br(E′)q) that N(L/E) = E∗. Hence, by the Henselity
of w, qkw(L) = w(E), which implies in conjunction with (3.3) and the inequal-
ity w(E) 6= qw(E) that Φ̂ = Ê and w(E)/qkw(E) is a cyclic group of order qk.
These observations, combined with (3.5) (iii), prove Lemma 4 (a). They also en-
able one to deduce from Galois theory the existence of a field E1 ∈ I(E(q)/E),
such that [E1 : E] ≤ q, E1 ∩ Φ = E and ΦE1 = ΓE1. Clearly, ΓE1/E1 is a Zq-
extension. For the rest of the proof of Lemma 4 (b), it suffices to observe that the
set Y (Φ) = {Y ∈ I(E′(q)/E1) : Y ∩Φ = E}, partially ordered by inclusion, satisfies
the conditions of Zorn’s lemma, to take as Γ0 any maximal element of Y (Φ), and
using the projectivity of Zq as a profinite group (cf. [24], Ch. I, 5.9), to prove that
Γ0Φ1 = E′(q) and G(Γ0Φ1/Γ0) ∼= Zq.

Remark 1. Retaining assumptions and notation as in Lemma 4, put Γ∗ = E(q)∩Γ0

and denote by Γn the extension of Γ0 in E′(q) of degree qn, for each n ∈ N. Observing
that E′/E is cyclic and [E′ : E] | (q − 1), one obtains that E′(q)/E is Galois and
Γ0 contains a primitive q-th root of unity unless char(E) = q. Note further that
[Γ∗ : E] = ∞. Indeed, Lemma 4 (a) ensures that Ê is an infinite perfect field (with
rq(Ê) = 0), so it it follows from [7], Remark 4.2 and Lemma 4.3, that r(q)E = ∞.
By Galois theory, this means that there are infinitely many degree q extensions of
E in Γ∗, whence [Γ∗ : E] = ∞, as claimed. In addition, it follows from (3.3) and
Lemma 4 (a) that Γ̂∗ = Ê, Ê′(q) = Ê′, w(E′Γ∗) = w(E′) + w(Γ∗), w(Γ∗) = qw(Γ∗)
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and w(E′Γ∗) = qw(E′Γ∗). Observing also that E′(q) = (E′Γ∗)(q) = Γ0(q), one
deduces from Lemma 3 that E′(q)/Γ0 is an immediate quasiinertial Zq-extension.

5. Proof of Theorem 1

Throughout this Section, we assume that (Φ, ω) and T satisfy the conditions of
Theorem 1, and Φ is an algebraic closure of Φsep. Put S(T ) = {p ∈ P : Tp 6= {0}},
Sq(T ) = S(T ) \ {q}, S′(T ) = P \ Sq(T ), and denote by U the maximal extension
of Φ in Φur whose finite subextensions have degrees not divisible by any p ∈ Sq(T ).

The assumptions on Φ, ω and Φ̂ and the definition of U indicate that U/Φ and
Φur/U are Galois extensions with G(U/Φ) and G(Φur/U) isomorphic to the topo-
logical group products

∏
π′∈S′(T ) Zπ′ and

∏
πq∈Sq(T ) Zπq , respectively; this implies

q /∈ Π(Û), whence Û is infinite. As Φ is quasilocal, the obtained result proves
(in conjunction with [3], I, Proposition 4.4, Lemma 8.2 and Corollary 8.5) that
Br(U1)π′ = {0}, for every U1 ∈ I(Φ/U) and each π′ ∈ S′(T ). At the same time, it
follows from (3.4) and the equality ω(U) = ω(Φ) that Φ(q) /∈ I(U/Φ), which ensures
that q ∈ P (U). Observing that ωU is discrete and Henselian, one obtains from [28],
Proposition 2.2, that finite extensions of U in Φsep are defectless. Since Φ̂ is perfect,
U does not possess inertial proper extensions in U(q), and we have Br(U1)q = {0},
U1 ∈ I(Φ/U), one also concludes that finite extensions of U in U(q) are totally ram-
ified and G(U(q)/U) is a free pro-q-group (cf. [24], Ch. I, 4.2, and Ch. II, 3.1). Note
further that r(q)U = ∞; since ωU is Henselian and discrete, and Û is infinite, this
follows from [22], (2.7) (as well as from Remark 1 and the fact that Br(U)q = {0}).
The rest of our proof relies on the observation that the set Σ of all Θ ∈ I(Φsep/U),
such that Θ∩Φur = U and the degrees of finite extensions of U in Θ are not divisible
by q, is nonempty and satisfies the conditions of Zorn’s lemma with respect to the
partial ordering by inclusion. Fix a maximal element Θ′ ∈ Σ and put ω′ = ωΘ′ .
Then it follows from Galois theory, statement (3.3), the projectivity of G(Φur/U) as
a profinite group, and the triviality of the groups Br(U1)q, U1 ∈ I(Φ/U), that Θ′

satisfies the following:
(5.1) (i) ΦurΘ

′ = Φtr; in particular, finite extensions of U in Θ′ are tamely totally
ramified, ω′(Θ′) 6= qω′(Θ′) and ω′(Θ′) = pω′(Θ′), for each p ∈ P \ {q}.

(ii) Finite extensions of Θ′ in Θ′(q) are totally ramified.
(iii) G(Θ′(q)/Θ′) is a free pro-q-group, r(q)Θ′ =∞ and Br(Θ′′)q = {0}, for every

Θ′′ ∈ I(Φ/Θ′).
The former assertion of (5.1) (iii) and [31], Theorem 2, imply the existence

of a Zq-extension Γ of Θ′ in Φsep. Put Γ0 = Θ′, and for each n ∈ N, let Γn
be the extension of Θ′ in Γ of degree qn. It follows from Galois theory and the
assumption on Φ̂ that the compositum U ′ = Θ′ΓΦur is a Galois extension of Θ′
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with G(U ′/Θ′) ∼=
∏
π∈S(T ) Zπ. This implies cd(G(U ′/Θ′)) = 1, which means that

G(U ′/Θ′) is a projective profinite group (cf. [24], Ch. I, 4.2 and 5.9). Note also that
the set Σ̃ = {Θ̃ ∈ I(Φ/Θ′) : Θ̃ ∩ U ′ = Θ′}, partially ordered by inclusion, satisfies
the conditions of Zorn’s lemma. Let K̃ be a maximal element of Σ̃, ṽ = ω

K̃
and

k̃ the residue field of (K̃, ṽ). It is easily verified that K̃ and k̃ are perfect fields,
and it follows from the projectivity of G(U ′/Θ′) that Φ = U ′K̃. Hence, by Galois
theory and the equality K̃ ∩U ′ = Θ′, G

K̃
∼= G(U ′/Θ′). Our argument, together with

the former part of (5.1) (iii), also proves that there exists a Zq-extension of Θ′ in

K̃. Since ω is discrete, this enables one to deduce the former part of the following
assertion from (5.1) (i), (ii) and (3.3):

(5.2) ṽ(K̃) = Q, k̃/Φ̂ is an algebraic extension and ΓK̃/K̃ is immediate. More-
over, K̃(q) = ΓK̃, ΓK̃/K̃ is a Zq-extension with [ΓnK̃ : Γn−1K̃] = qn, for each

n ∈ N, and ΦurK̃(q)/ΦurK̃ is a quasiinertial Zq-extension.

As Γ/Θ′ is a Zq-extension, K̃ ∩ U ′ = Θ′, and Φur contains a primitive q-th
root of unity unless char(Φ) = q, the latter part of (5.2) follows at once from the
former one, Galois theory and Lemma 3 (c). Taking into account that the degrees
of finite extensions of K̃ in ΦurK̃ are not divisible by q (G(ΦurK̃/K̃) ∼= G(Φur/U) ∼=∏
πq∈Sq(T ) Zπq), and using trace transitivity in towers of finite separable extensions,

one concludes that (5.2) can be supplemented as follows:
(5.3) The Zq-extension ΓK̃/K̃ is quasiinertial.
We are now in a position to construct a quasilocal Henselian field of the type

required by Theorem 1. Fix a positive number γ ∈ R\Q and a rational function field
K̃(X) in one indeterminate over K̃. It is easily verified that ṽ is uniquely extendable
to a valuation ṽγ of K̃(X) satisfying the equality ṽγ(X) = γ, and it follows from the

choice of γ that ṽγ(K̃(X)) is an Archimedean group equal to the sum of Q and 〈γ〉.
In addition, it becomes clear that ṽγ(K̃(X)) is isomorphic (as an abstract group) to

the direct sum Q⊕〈γ〉, and the residue field of (K̃(X), ṽγ) coincides with k̃. Note also

that v̄γ(Φ(X)) = ṽγ(K̃(X)), where v̄γ is the valuation of Φ(X) naturally extending

ṽΦ and ṽγ . Now take a Henselization (K, v) of (K̃(X), ṽγ) so that K ⊂ Φ(X)sep,
and fix an algebraic closure K of K including Φ(X)sep as a subfield. It is well-

known that (K, v)/(K̃(X), ṽγ) is immediate. The obtained properties of ṽγ(K̃(X))

and the equality ṽγ(K̃(X)) = v(K) indicate that v(K)/pv(K) is of order p and
v(γ) /∈ pv(K), for any p ∈ P; in particular, v(K) is totally indivisible. We show that
K, v and I∞ = ΓK are admissible by Theorem 1. As a first step towards this, we
prove the following:

(5.4) (i) K̃ is algebraically closed in K and ΦK/K is a Galois extension with
G(ΦK/K) ∼= GK̃ ∼=

∏
p∈S(T ) Zp; in addition, v(ΦK) = v(K), ΓK/K is an immediate

Zq-extension, and [ΓnK : K] = qn, for each n ∈ N;
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(ii) ΓΩ/Ω is a quasiinertial Zq-extension, for every finite extension Ω of K in K.
Let K( q

√
X) be an extension of K in K obtained by adjunction of a q-th root

of X. It is clear from the definition of ṽγ and the immediacy of the valued ex-

tension (K, v)/(K̃(X), ṽγ) that K( q
√
X)/K is totally ramified and [K( q

√
X) : K] =

q. Since K̃ is perfect and K ∈ I(K̃(X)sep/K̃(X)), it is also clear that in case
char(Φ) = q, K( q

√
X) is the unique purely inseparable extension of K in K of de-

gree q. Note further that the inclusion of v(K) = ṽγ(K̃(X)) in R guarantees that

K̃(X)ṽγ is Henselian with respect to its valuation vγ continuously extending ṽγ .

As (K̃(X)ṽγ , vγ) is immediate over (K̃(X), ṽγ), these facts show that K is K̃(X)-

isomorphic to the (relative) algebraic closure of K̃(X) in K̃(X)ṽγ (cf. [12], Sect.
18.3). At the same time, it follows from the definition of the valuation v̄γ of Φ(X)

that an element ρ ∈ Φ lies in K̃(X)vγ if and only if ρ ∈ K̃ṽ. Taking also into ac-

count that K̃ is algebraically closed in K̃ṽ (because K̃ is perfect and ṽ is Henselian),
one concludes that K̃ is algebraically closed in K. In view of Galois theory, this
means that ΦK/K is a Galois extension with G(ΦK/K) ∼= GK̃ . These observations
prove the former part of (5.4) (i), so we turn to the proof of the latter one. Using
the equalities v̄γ(Φ(X)) = vγ(K̃(X)) = v(K), and replacing K̃ by any of its finite
extensions in Φ, one obtains further that v(ΦK) = v(K). As cdp′(Gk̃) = 0, for every
p′ ∈ P \ S(T ), this result implies in conjunction with (3.3) and (5.2) that ΓK/K is
immediate and Γ∩K = Θ′, so (5.4) (i) is proved. As to (5.4) (ii), it can be deduced
from Galois theory and Lemma 2, since ΓK̃/K̃ is quasiinertial (by (5.3)), v(K) ≤ R,
v extends ṽ upon K, v(K) is Archimedean and K̃ is algebraically closed in K.

Next we show that Br(K)p 6= {0} if and only if p ∈ S(T ). Suppose first that

p /∈ S(T ). Then p† [M̃ : K̃], for any finite extension M̃ of K̃, which implies Br(K)p∩
Br(ΦK/K) = {0} (cf. [21], Sect. 13.4). On the other hand, ΦK/Φ is a field extension
of transcendency degree 1, so it follows from Tsen’s theorem (see [21], Sect. 19.4)
that Br(ΦK) = {0}. It is therefore easy to see that Br(K) = Br(ΦK/K) and
Br(K)p = {0}. Assume now that p ∈ S(T ). Then it follows from Galois theory
and (5.4) that I(ΦK/K) contains a cyclic extension Yp of K of degree p. Moreover,
by (5.4) (i), v(Yp) = v(K), whence the uniqueness of vYp implies N(Yp/K) ⊆ {λ ∈
K∗ : v(λ) ∈ pv(K)}. Since v(K) 6= pv(K), this means that Br(Yp/K) 6= {0} 6=
Br(K)p.

It remains to be proved that K is quasilocal and Br(K) ∼= T . Assuming as
above that p ∈ S(T ), let Gp be a Sylow pro-p-subgroup of GK and Kp the fixed
field of Gp. We show that Kp is p-quasilocal with Br(Kp) ∼= Z(p∞). The equality

v(K) = vγ(K̃(X)) and the isomorphism v(Kp)/pv(Kp) ∼= v(K)/pv(K) guarantee
that v(Kp)/pv(Kp) is of order p. When p 6= q, this enables one to deduce from
(5.4) and [11], Lemma 1.2, that K∗p/K

∗p
p is a group of order p2. As Kp contains a
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primitive p-th root of unity and Br(K)p ∩ Br(Kp/K) = {0}, the obtained results
and Galois cohomology (see [30], Lemma 7, [20], (11.5), and [24], Ch. I, 4.2) prove
that Gp is a Demushkin group, r(p)Kp = 2 and Br(Kp) ∼= Z(p∞). Hence, by [3], I,
Lemma 3.8, Kp is p-quasilocal. It remains to be seen that Kq is q-quasilocal and

Br(Kq) ∼= Z(q∞). As k̃ is perfect, cdq(Gk̃) = 0 and K̂ = k̃, K̂q is an algebraic

closure of k̃, so Ẑ = K̂q, for each Z ∈ I(Ksep/Kq). In addition, it follows from
Tsen’s theorem that Br(Kq) = Br(ΓKq/Kq). Applying (5.4), (3.8) and Lemma
2, one also sees that ∇0(Γ1) ⊆ N(ΓnKq/Γ1Kq), for each n ∈ N. As Γ1Kq/Kq is
immediate, this enables one to deduce from (3.7) and Hilbert’s Theorem 90 that
an element θ ∈ K∗q lies in N(ΓνKq/Γ1Kq), for a given index ν, if and only if θq ∈
N(ΓνKq/Kq). Since Br(ΓKq/Kq) = ∪∞n=1Br(ΓnKq/Kq), these observations and the
canonical isomorphisms Br(ΓnKq/Kq) ∼= K∗q /N(ΓnKq/Kq), n ∈ N (cf. [21], Sect.
15.1, Proposition b), prove that qBr(Kq) = Br(Γ1Kq/Kq). The obtained result,

combined with the fact that K̂q is algebraically closed and v(Kq)/qv(Kq) is of order
q, proves that N(Γ1Kq/Kq) = {µ ∈ K∗q : v(µ) ∈ qv(Kq)}, qBr(Kq) is of order q and
Br(Kq) ∼= Z(q∞). Let now Λ be an extension of Kq in Ksep, such that [Λ: Kq] = q
and Λ 6= Γ1Kq, and let Vq(Λ) = {λ ∈ Λ: vΛ(λ) ∈ qv(Λ)}. Applying (5.4) and
(3.7), and arguing as in the proof of the isomorphism Br(Kq) ∼= Z(q∞), one obtains
consecutively the following results:

(5.5) (i) Vq(Λ) ⊆ N(Γ1Λ/Λ); τ(λ′)λ′−1 ∈ N(Γ1Λ/Λ), for each λ′ ∈ Λ∗ and every
generator τ of G(Λ/Kq);

(ii) Br(Γ1Λ/Λ) = qBr(Λ) 6= {0}; hence N(Γ1Λ/Λ) 6= Λ∗.

As Λ̂ is algebraically closed and v(Λ)/qv(Λ) has order q, one also proves that
(5.6) (i) N(Γ1Λ/Λ) = Vq(Λ) and Γ1Λ/Λ is immediate.
(ii) K∗ ⊆ N(Γ1Λ/Λ), provided that Λ is totally ramified over Kq; when this

holds, Br(Γ1/Kq) ⊆ Br(Λ/Kq) = qBr(Kq).
In view of (5.5) (ii) and (5.6) (ii), it suffices, for the proof of the q-quasilocality

of Kq, to show that Λ/Kq is totally ramified. Assuming the opposite, one gets

from (3.3) and the equality Λ̂ = K̂q that Λ/Kq is immediate. Fix a generator τ
of G(Λ/Kq), denote by τ ′ the Γ1-automorphism of Γ1Λ extending τ , and put Dρ =
(Λ/Kq, τ, ρ), ∆ρ = (Γ1Λ/Γ1, τ

′, ρ), for some ρ ∈ K∗q . Clearly, ∆ρ
∼= Dρ ⊗Kq Γ1 over

Γ1. Hence, the equality Br(Γ1/Kq) = qBr(Kq) requires that [∆ρ] = 0 in Br(Γ1). On
the other hand, (5.6) (i) and the assumption on Λ/Kq imply Γ1Λ/Γ1 is immediate.
This shows that if v(ρ) /∈ qv(Kq), then Dρ ∈ d(Kq) and ∆ρ ∈ d(Γ1), whence
[∆ρ] 6= 0. The observed contradiction proves that Λ/Kq is totally ramified, so Kq is
q-quasilocal (with Br(Kq) ∼= Z(q∞)).

It is now easy to complete the proof of Theorem 1. Indeed, it follows from [3],
I, Lemma 8.3, and the p-quasilocal property of the fields Kp, p ∈ Π(K), that K is
quasilocal. As K is nonreal and S(T ) = {p ∈ P : Br(K)p 6= {0}}, this result, [4],
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Lemma 3.3 (i) (see also [3], I, Theorem 3.1), and the isomorphisms Br(Kp) ∼= Z(p∞),
p ∈ S(T ), yield Br(K) ∼= T . Theorem 1 is proved.

6. Complements to Theorem 1

First we show that, in residual characteristic 2, Theorem 1 and [4], Theorem 1.1,
fully describe the isomorphism classes of Brauer groups of quasilocal Henselian fields
admissible by Proposition 1.

Proposition 2. Let (K, v) be a quasilocal Henselian field satisfying the conditions
of Proposition 1, and let char(K̂) = 2. Then there exists an immediate norm-inertial
Z2-extension Γ/K; in particular, Br(K)2

∼= Z(2∞).

Proof. Proposition 1 and our assumptions show that K̂ is perfect and cd2(G
K̂

) = 0.
In view of (3.3) and (3.5), this ensures that cd2(G(Ktr/K)) = 0, Ktr is the fixed field
of a Sylow pro-2-subgroup of GK , and Ktr has a Z2-extension Y in Ksep. In addition,
it follows from the uniqueness of Y and the normality of Ktr/K that Y/K is a Galois
extension. Note also that G(Y/Ktr) ∼= Z2 and G(Y/Ktr) is a normal Sylow pro-2-
subgroup of G(Y/K). These observations indicate that G(Y/Ktr) is included in the
centre of G(Y/K). It is therefore clear from Galois theory and Burnside’s theorem
(cf. [13], Theorem 14.3.1, and [24], Ch. I, 5.9) that G(Y/K) possesses a closed
normal subgroup N , such that G(Y/Ktr)N = G(Y/K) and G(Y/Ktr) ∩ N = {1}.
This means that G(Y/K) ∼= G(Y/Ktr)×N , the fixed field Γ of N is a Z2-extension
of K, ΓKtr = Y and Γ ∩Ktr = K. As Y/Ktr is immediate and finite extensions of
K in Ktr are of odd degrees, one deduces from (3.3) and Proposition 1 that Γ/K is
immediate and norm-inertial. Hence, by [4], Theorem 1.1, Br(K)2

∼= Z(2∞).

Theorem 1 and Proposition 2 can be complemented as follows:

Proposition 3. Let (Φ, ω) satisfy the conditions of Theorem 1, for some q > 2,
and let Tq be a divisible subgroup of Q/Z with Tq = {0}. Then there exists a valued
extension (K, v) of (Φ, ω), such that v is Henselian, v(K) is totally indivisible and
Archimedean, K̂ = Φ̂sep, K/Φ has transcendency degree 1, Br(K) ∼= T , and K
admits a defectful finite extension in Ksep.

Proof. It is clearly sufficient to consider only the special case where char(Φ) = q or
Φ contains a primitive q-th root of unity. Our argument goes along the same lines
as the proof of Theorem 1, so we omit the details and note only its main steps. Our
starting point are the following statements:

(6.1) For any integer m ≥ 2 dividing q − 1, Φsep contains as a subfield a totally
ramified Galois extension Ψm of Φ, such that [Ψm : Φ] = qm and G(Ψm/Φ) is a
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metacyclic group with a cyclic non-normal subgroup of order m. For example, if
char(Φ) = q and π is a generator of Mω(Φ), then one may take as Ψm the field Φ(ξm),
where ξm ∈ Φsep is a root of the polynomial gm(X) = (Xq − X)m − π−1. When

char(Φ) = 0, Ψm can be chosen among the subfields of the root field Ψ̃m ∈ I(Φ/Φ)
of the polynomial hm(X) = (Xq − 1)m − π, under the same hypothesis on π.

Fix m as in (6.1), put Ψ′m = ΨmKtr and let K̃ ∈ I(Φ/Φur) be maximal with
respect to the property that K̃ ∩ Ψ′m = Φur. Observing that G(Ψ′m/Φur) is a pro-
supersolvable group and G(Ψ′mK̃/K̃) ∼= G(Ψm/Φur), and applying Galois theory
and Huppert’s theorem (cf. [13], Theorem 10.5.8), one obtains that G

K̃
is pro-

supersolvable. Therefore, by [13], Theorem 10.5.1, G(L/K̃) is supersolvable, for each
finite Galois extension L/K̃. Hence, for any p ∈ P, L possesses a subfield L[p] that is

a Galois extension of K̃ with G(L[p]/K̃) isomorphic to a Hall Π-subgroup of G(L/K̃),
where Π = {π ∈ P : π ≤ p} (cf. [13], Sect. 9.3 and Corollary 10.5.2). Let Hp be a

Sylow p-subgroup of G(L[p]/K̃). We show that Hp is cyclic. The group G(L[p]/K̃) is
supersolvable which implies that it includes Hp as a normal subgroup. The Frattini

subgroup Φ(Hp) of Hp is characteristic in Hp, so it is normal in G(L[p]/K̃), and

by Galois theory, the fixed field, say Λp, of Φ(Hp) is a Galois extension of K̃.

Let Hp be a Sylow p-subgroup of G(Λp/K̃). Then G(Λp/K̃) ∼= G(L[p]/K̃)/Φ(Hp),

Hp
∼= Hp/Φ(Hp) and Hp is an abelian normal subgroup of G(Λp/K̃) of period

p. Also, G(Λp/K̃) is supersolvable, and by [13], Corollary 10.5.2, it has a normal

subgroup of order p, the greatest prime divisor of [Λp : K̃]. Regarding Hp as an
Fp-vector space, and considering the action on Hp by conjugation of some Hall Πp-

subgroup of G(Λp/K̃), for Πp = Π \ {p}, one obtains from Maschke’s theorem that
if Hp is noncyclic, then it decomposes into the direct product of normal subgroups

of G(Λp/K̃) of order p. In view of Galois theory, this leads to the conclusion that

if Hp is noncyclic, then there exist degree p extensions Λ1 and Λ′1 of K̃ in Λp, such

that [Λ1Λ′1 : K̃] = p2. Therefore, Λ1 and Λ′1 are not K̃-isomorphic. Our conclusion,

however, contradicts the maximum condition on K̃ and so proves that Hp is cyclic.
It is now easy to see that Hp has a unique maximal subgroup, whence it is cyclic as
well. Summing-up the obtained results, one proves that:

(6.2) K̃ is perfect, K̃tr = ΦtrK̃ and G(K̃tr/K̃) ∼= G(Φtr/Φur); Φ/K̃tr is a quasiin-
ertial Zq-extension and the Sylow pro-p-subgroups of G

K̃
are isomorphic to Zp, for

each p ∈ P; the Sylow pro-q-subgroup of G
K̃

is normal and equals the closure of the
commutator subgroup of G

K̂
.

As in the proof of Theorem 1, let K̃(X) be the rational function field in an
indeterminate X with coefficients in K̃, and ṽγ the valuation of K̃(X) extending ω
so that ṽγ(X) = γ, where γ is a given element of R\Q. Fix a Henselization (K0, v0)

of (K̃(X), ṽγ), put N(T ) = {p ∈ P \ {q} : Tp = {0}}, and let K be an extension
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of K0 in K0,sep maximal with respect to the property that K ∩ Φ = K̃ and finite
extensions of K0 in K are cyclic and totally ramified of degrees not divisible by any
p′ ∈ P \N(T ). Note that (K, v) has the properties required by Proposition 3, where
v is a prolongation of v0 on K. It follows from the definition of (K, v) that K̂ = Φ̂sep,
and for each p ∈ N(T ), v(K)/pv(K) is of order p and K(p)/K is a Zp-extension;
also, v(K)/pv(K) has order p2 and rp(K) = 2 in case p ∈ P \ N(T ) and p 6= q.
Since K contains a primitive m-th root of unity, for any m ∈ N not divisible by
q, these observations show that Br(K)p = {0}, p ∈ N(T ), and Br(K)p ∼= Z(p∞),
p ∈ P \ N(T ), p 6= q. The assertion that K is quasilocal and satisfies with v the
conditions of Proposition 1 is proved similarly to Theorem 1, so what remains to
be seen is that Br(K)q = {0}. Let Θm be the extension of Φ in Ψm of degree
m. Then Θm/Φ and ΘmK/K are cyclic extensions of degree m, and ΘmK has an
immediate Zq-extension Γ in Ksep that is a Galois extension of K. This implies
Br(ΘmK)q ∼= Z(q∞). Using (6.1) and regarding qBr(ΘmK) as a module over the
group algebra Fq[G(ΘmK/K)], one obtains that if τm is a generator of G(ΘmK/K),
then τmb = fb, b ∈ qBr(ΘmK), for some f ∈ F∗q , f 6= 1. As m | q − 1, fm = 1
and m > 1, this observation shows that qBr(ΘmK) is included in the kernel of
the corestriction homomorphism Br(ΘmK) → Br(K), which enables one to deduce
from the basic restriction-corestriction formula for Brauer groups (cf. [27]) that
Br(K)q = {0}. Proposition 3 is proved.

Remark 2. Take (K̃, ṽ) and K̃(X) as in the proof of Theorem 1, and let ṽ0 be a
restricted Gauss valuation of K̃(X) extending ṽ (see [12], Example 4.3.2). Then,
by [4], Proposition 6.5, there exists a quasilocal Henselian field (K, v), such that
K ∈ I(K̃(X)sep/K̃), v extends ṽ0, K̂ = K̂sep 6= K̂q, Ksep = K(q), K possesses an
immediate quasiinertial Zq-extension, and Br(K) is a divisible hull of the (infinite)

quotient group K̂∗/K̂∗q. As shown at the end of [4], Sect. 6, for any global field Ψ
with char(Ψ) = 0 or q, this enables one to find, by the method of proving Theorem
1, field extensions Kt/Ψ, t ∈ N, such that Kt is quasilocal, GKt is a pro-q-group,
the transcendency degree of Kt/Ψ is equal to t, the class d(Kt) \ {Kt} consists of
division algebras of infinite genus, in the sense of [1], and [Kt : K

q
t ] = q in case

char(Ψ) = q. More precisely, by [3], I, Corollaries 8.5 and 8.6, the genus of any Dt ∈
d(Kt) equals both the set {[D′t] ∈ Br(Kt) : D′t ∈ d(Kt), ind(D′t) = ind(Dt)} and the
equivalence class of Dt, in the sense of [16], Definition 2.1. When char(Ψ) = 0, these
results ensure that GKt is a pro-q-group of Demushkin type with an infinite (Galois)
cohomology group H2(GKt ,Fq) (see [3], I, Lemma 3.8, and [5], Proposition 5.1).

Remark 2 attracts interest in the open problem of whether a global field Ψ
admits a transcendental finitely-generated extension Ψ′, such that GΨ′ possesses a
pro-p-subgroup P of Demushkin type for which H2(P,Fp) is a noncyclic finite group.
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