Acta Universitatis Apulensis No. 42/2015
ISSN: 1582-5329 pp. 67-78
http://www.uab.ro/auajournal / doi: 10.17114/j.aua.2015.42.05

COLLECTIONS AS COMBINATIONS OF FEATURES

D. Lupsa, V. NicuLEscu, R.LupsA

ABSTRACT. We investigate in this paper an approach to collection design in
which a set of features makes the distinctions between collections. Collections are
defined based on combination of these features. We show how we can build new
collections by decorating a storage support (a basic collection) with features. The
implementation is based on decorator pattern.

2010 Mathematics Subject Classification: 68P05.

Keywords: data structures, collection frameworks, representation.

1. INTRODUCTION

Data structures are fundamental building blocks of algorithms and programs. They
benefit by the concept of abstract data type, being defined in an accurate and formal
way, while hiding implementation details. By using object oriented programming,
we may define not only generic data structures by using polymorphism or tem-
plates, but also to separate definitions from implementations of data structures by
using interfaces. Design patterns may move the things forward, and introduce more
flexibility and reusability for data structures.

Instead of having rigid class structure, feature oriented programming allows to
compose objects from individual features in a flexible way [10]. Following this new
direction, we investigate the way a set features can be composed when creating
objects. Its main advantage is that objects can be created just by selecting the
desired features.

This paper is structured as follows: Section Collection provides an overview of
theoretical concepts related to collection framework design. Section 3 characterizes
collections by their features. Based on a decorator pattern, collection framework
can be implemented on combination of these features (Section 4). This paper ends
with some conclusions and suggestions for further work.

67

http://www.uab.ro/auajournal/

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

2. COLLECTIONS

Collections are used to store, retrieve, manipulate, and communicate aggregate data.

There are different classifications and definitions for types corresponding to dif-
ferent collections. The existing implemented solutions - frameworks - are also very
different. We are going to consider the next definition:

113

Definition 1. A collection “ sometimes called a container” is an object that
groups multiple elements into a single unit.

Implemented frameworks usually provide basic containers: list (vector, linked
lists), bags and sets, maps, and, for some of them, the corresponding sorted collection
is also available. From the design point of view, there are a number of differences,
some of them stem from the language features and philosophy, some are simply
design choices.

Java Collection Framework (JCF) defines a clean separation between interfaces
and implementations. Interfaces are the heart and soul of the Java Collections
Framework; every class implement at least one of them. Java Collections Framework
major interfaces and relations between them are depicted in fig.1.

Collection

Sortedset

Figure 1: Java Collections Framework major interfaces

Implementations are grouped into some categories designed for different pur-
poses. For example, general-purpose implementations are the most commonly used
implementations, designed for everyday use. Special-purpose implementations are
designed for use in special situations and display nonstandard performance char-
acteristics, usage restrictions, or behavior. Abstract implementations are skeletal
implementations that facilitate the construction of custom implementations. If we
want to write our own implementation, reusability that comes along with abstract
implementations provided by the Java platform makes it fairly easy to do this.

The Standard Template Library, or STL, is a set of C++ template classes that
provides the basic algorithms and data structures of computer sciences. The STL
is a generic library, meaning that its components are heavily parameterized: almost
every component in the STL is a template.

68

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

In C++ STL, basic containers are grouped in:

1. Sequences: vector, deque, list

\V)

. Associative Containers: set , multiset, map, multimap
3. Container adapters: stack, queue, priority_queue

4. and some others: string, rope, bitset

STL uses the notion of concept. Container classes are organized into a hierar-
chy of concepts. All containers are models of the concept Container; more refined
concepts, such as Sequence and Associative Container, describe specific types of
containers.

According to STL, a type conforms to a concept, or it is a model of a concept,
if it satisfies all of those requirements

Types either meet a set of requirements conform to a concept, or are models
of a concept. Concepts are not a part of the C++ language; there is no way to
declare a concept in a program, or to declare that a particular type is a model of a
concept. Nevertheless, concepts are an extremely important part of the STL. Using
concepts makes it possible to write programs that cleanly separate interface from
implementation. Programming in terms of concepts, rather than in terms of specific
types, makes it possible to reuse software components and to combine components
together.

Another way to model existing collections, is to reconsider the way they are
defined. A collections framework based on set theory is Yet Another Collections
Library (YACL) [11]. The project YACL consider a model in which Function extends
Relation extends Set. Bags and Sequences extend Function. Hence a Function
(equivalent to Sun’s Map class/interface) is a type of Set. They build a theoretically
sound collections library on the top of JCF Set: Set implements java.util.Set. All
classes can be constructed from java.util collections and maps (where applicable).

In [6], the aim is to define a collection library for Java which uses interface multi-
ple inheritance to offer a flexible framework for defining collection types rather than
providing a complex exhaustive set of particular collection classes. They identify a
small number of software engineering concepts relevant to the design of libraries of
collections. They distinguish three basic orthogonal semantic properties of collec-
tions: ordering of elements, definition and handling of duplicate elements, definition
of keys for efficient search. They use the next properties : order (ordered, sorted,
userOrdered), duplicates (duplFree, dupllgnore, duplError) and search (searchable)
that are intended to extend JCF. Particular collection types should be built by us-
ing derivation and by specifying their properties in terms of these basic types. For

69

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

example, the interface type 'Bag’ can be defined as:

interface Bag[ELEMENT] extends Collection[ELEMENT] {}
and the type 'List’ as:

interface List[ELEMENT]

extends UserOrdered[ELEMENT], Bag[ELEMENT] {}

2.1. Features

In software development, a feature is an increment in program development or func-
tionality.

Feature oriented programming [10] allows you to compose objects from individual
features in a flexible way. Its main advantage is that objects with individual services
can be created just by selecting the desired features.

In some approaches, features are modeled as program transformations [1]. Base
programs are 0-ary functions or transformations called values. Features are unary
functions/transformations that elaborate (modify, extend, refine) a program by func-
tion composition. The design of a program is a named expression, for example:

p=f oh —- program p has features f and h

In practice, this kind of approach needs an architecture for composing features
with the required interaction handling, yielding a full object. Feature oriented pro-
gramming merges the studies of feature modularity, generative programming, and
compositional programming.

2.2. QOur approach

Instead of a rigid class structure, we propose writing features which are composed
appropriately when creating objects. Following the work in [8], [9] we define collec-
tions themselves in terms of their properties. In this work, we investigate the way we
can model decorated collections over a base container that keeps pairs of elements.

A similar approach that investigates container definition and propose a new
approach can be found in [11]. The difference is that we try to valorify concepts used
in existing implementations. Building containers on the top of their properties is also
approached in [6]. They identify some orthogonal semantic properties of collections:
ordering, duplicate and search. Some of them are used as feature also in our approach
(ordering and duplicate). We designed search operation corelated with iterator; a
search returns an iterator to point on the searched element (following the definition
of operation find in C++ STL). All our collections provide sequential access to
any of their elements through iterators. Since all our collections are designed to be
iterable (like JCF), search is available for all collections and it is not designed as a
feature.

70

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

3. COLLECTIONS BY THEIR FEATURES

There are two general and important aspects related to collections:

1. storage capability — the elements that are grouped together have to be stored
into the memory in an accessible way;

2. specific behavior — the operations that are allowed for a specific type of con-
tainer have different specifications.

The first aspect is directly connected to the data structure used for storing the
elements. For example, for storage, we may use a continuous block of memory or a
set of discontinuous blocks of memory (nodes) connected one to another using links
(references).

To refer to specific behavior, we use features. Our features fundamentally char-
acterize the collection behavior. For example, a set is characterized only by the fact
there are no duplicate elements in the container. How these elements are stored, is
not a fact that characterizes the set.

With features, a feature repository replaces the rigid structure of conventional
class hierarchies. Following the general container concepts which are the base of
C++ STL, features can define a container type (fig. 2). In this way, collections
are defined by considering small number of software engineering concepts relevant
to the design of libraries of collections.

Sorted
| Stack | Queue | | Set | ‘é’éiﬁ’éﬁ‘i’e e
LIFO FIFO Unique IndexedSeq Sorted

I I O I L

Base Container

Figure 2: Features creating containers

Features can be combined in different ways, but not all of them are mutually
compatible. For example, it is expected that LIFO is not compatible with FIFO,
or with a sequence where items are inserted based on its index position, or with a
sorted sequence. But unique could be combined with any feature listed here, as we
can see in figure 3.

71

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

| Container1| | Container 2| | Sorted Set | | Container 4|
Um’queﬁ Um'queﬂ Um‘quej Unique—‘
LIFO FIFO Sorted IndexedSeq

I] I

Base Container

Figure 3: Features and some combinations

Features are symmetric, they can be composed in arbitrary orders. For example,
the result of combining unique with sorted is the same with sorted combined with
unique.

4. FEATURES AND DECORATIONS

In this approach, we view a container as being decorated with its features. The
implementation is based on decorator pattern.

4.1. Features and decorator pattern

All containers have to be stored into the memory in an accessible way. A basic
container should provide these capabilities. In our concrete implementation, we
named it StorageSupport.
For each kind of a container, we define the creation of concrete objects via
decorations. Defined decorator items are FIFO, LIFO, Sorted, IndexedSeq, Unique.
Classes that are part of this framework are depicted in figure 4.

4.1.1. Examples

Many combinations are possible. We are going to refer to some of them.
A set is a container in which a value can be there only once. It is obtained by
decorating base container with Unique:
new Unique<...>(new StorageSupport<...>())

72

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

BaseContainer

Decorator StorageSupport

Unique| |FIFO| [LIFO IndexedSeq Sorted

Figure 4: Classes in decorator pattern

Stacks and queues have a well defined internal stategy for adding (and removing)
elements. These are called LIFO, respectively FIFO. They are obtained by decorat-
ing base container with LIFO :

new LIFO<...>(new StorageSupport<...>())
respectively FIFO:
new FIFO<...>(new StorageSupport<...>())

A sequence is an ordered collection of elements, where position of elementes are
stated in the moment of inserting the elements. Indexed acces sequences use indexes
to specify position of elements.

new IndexedSeq<...>(new StorageSupport<...>()

A sorted container is obtained by decorating base container with Sorted and by

proving comparator function:
new Sorted<...>(new StorageSupport<...>(), new Comparator())

Combing decorations, new containers can be obtained. For example, a sorted set

can be obtained by decorating base container with Unique and Sorted, in any order:
new Sorted<...>(
new Unique<...>(new StorageSupport<...>()), new Comparator()

or

new Unique<...>(
new Sorted<...>(

73

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

new StorageSupport<...>(), new Comparator()

4.2. Implementation choices

In this section, we discuss how we implemented fetures with decorations in Java.
We use the schema from fig. 4 to translate features as decorations. For each feature
there is a concrete classes. Container objects are created by using feature decorations
(as described in previous subsection).

An important choice for a concrete implementation is the type of the base con-
tainer and all its operations. Base container is reused for any container that is
generated. In our implementation, the base container, which is depicted shortly as
StorageSupport in fig. 4, is a multimap. It is designed to be used in conjunction
with a bidirectional, read-write iterator.

MMap RWBidirlterator
+add (a_kev:Tk,a walue:Tv) +getKey (}: Tk
+isIn(a_key:Tk): boolean +getValue(): Twv
+isIn(a_key:Tk, ,a walue:Tv): boalean +valid(): boolean
+iterator() : EWBidirIterator +hasNext () : boolean
+search(a key:Tk) : RWBidirIterator +golNext (}
4+zearch{a kev:Tk,a value:Tv): BEWBidirIterator +hasPrev(}: boolean
+goPrev ()
+insert (a _key:Tk,a_value:Tv)
+remove |}

Figure 5: Base container and iterator. Operations

Base container is designed in conjunction with a bidirectional, read-write iterator.
Our collections are all designed to be iterable. In our approach, iterable is a fixed
property and is not added as a feature. There is always an iterator order of a
container: all iterations over an unmodified container will provide elements in the
same order; and modifier operations do not affect the order of the untouched items.
For all the collections there is an iterator avalaible with insert and remove operations.

Operations are split between the two classes: container and iterator (fig. 5).
Add is an operation that add an element on a default position, specific to container
type (where appropriate), being defined by container. Operations remove and insert,
that are defined as position based operations, are put in the iterator. Operation isIn
(which corresponds to contains in JCF) returns a boolean value. The operation is
part of the container itself. Search is also part of the container, but it returns an
iterator pointing to the searched element. Our choice follows the idea from C++
STL , although there are reports that view search as a property|6] .

74

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

The disadvantage of using a multimap as a base container is that inside every
container are stored pairs, not simply elements. In order to build a collection with
(single) elements, we use an empty, dummy element. In order to do this, we provide
an EmptyElement class, to be used as follows:

new StorageSupport<..., EmptyElement>()
That means that only the first element in the pair would be the element stored in
the container. But this also mean that we carry all along two parameters (due to
the restrictions of the same operation interface).

4.2.1. Implementation issues

Many decorations need to modify the basic operations of the collections. For exam-
ple, operation add is affected by many decorations, and we will emphasize some of
these situations in what it follows.

For a Unique decorated collection, if an element with the same value is already
in the collection, the new element won’t be added. The decoration verifies if the
element is in the collection, then uses the back storage operation, as we can see in
the following excerpt from program code:

public void add(Tk a key, Tv a_value){

RWBidirIterator<Tk, Tv> it =

(RWBidirIterator<Tk, Tv>) backStorage().iterator();
if (backStorage().isIn(a key) == false) {

backStorage() .add(a key, a_value);

}
}

In the presented (java code) example, object backStorage is an instance of Stor-
ageSupport.

Within a Sorted decorator, first we find the (iterator based) position to be in-
serted, then we use iterator based insertion of the storage support to really add the
element.

In order to have a first and last element, FIFO / LIFO decorations make use of
iterator based order. For example, LIFO add the element after the (iterator based)
last element. FIFO add the element before the first (iterator based) element, by
using iterator based insert.

In an indexed collection, indexes use consecutive integers to specify positions of
elements, and the index of an element changes over time. The SeqIndexed approach
uses keys for indexes and values for elements. Keys are required to be Integer, and
they can change with the insertion of new elements. An example is illustrated in
table 1.

For user-ordered collections, sorted feature can be also used: keys and compare

75

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

Input Collection
(code sample) (iterator order)
seq.add(1, "a"); 1la
seq.add(2, "b"); 2e
seq.add(3, "c"); 3b
seq.add(4, "d"); 4c
seq.add(2, "e"); 5d

Table 1: Example of using IndexSeq feature

function can be used to set the user-wanted order. But this will operate differently
from index feature. With sorted, no key value is modified, and key values does not
have to be consecutives. In table 2 is presented an example, where a collection is
built in a similar manner with indexing, by using Integer keys.

Input Collection
(code sample) (iterator order)
seq._sort.add(3, "a"); le
seq_sort.add(4, "b"); 2c
seq_sort.add(2, "c"); 3a
seq_sort.add(25, "d"); 4b
seq-sort.add(1, "e"); 25d

Table 2: Example of using Sorted feature

5. CONCLUSIONS AND FUTURE DIRECTIONS

In the work reported here, features make the distinctions between the container
types. A container is built on the top of a basic container, being decorated with
features. The implementation is based on decorator pattern.

Our approach is connected with feature-based programming. Collections are
defined in terms of features. Feature selection is based on the theoretical concepts
used to data structure design and existing collections frameworks. C++ STL and
JCF are considered. Following the work in [8], we select a small number of software
engineering concepts relevant to the collections design.

Our approach benefits of the advantages of features, but without making use of
feature-based generative approaches [2, 1, 3]. In some papers [10] , feature model
is reported to be translated into programming languages by using inheritance and
aggregation with delegation.

76

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

In [9] we considered an approach that still uses decorator pattern, but with some
differences. The used storage support was in that case based on linear sequences,
and this led to difficulties in implementing maps. Also, the iterators were based on
the Iterator Java interface, and so, more specialized iterators were available only for
some decorated collections.

In the future, we plan to extend our study, by considering other design patterns
in this feature based approach of collection implementation. Possible choices [4], [7],
would be to use adapter, bridge or abstract factory design pattern. Adapter design
pattern [5] allows the conversion of the interface of a class into another interface
clients expect. Adapter lets classes work together that could not otherwise because
of incompatible interfaces. Bridge design pattern [5] decouples an abstraction from
its implementation so that the two can vary independently. Generally, if we have
different ways of representation or storage, for a data structure, we may separate
the storage from the data structure using Bridge design pattern. Abstract Factory
design pattern provides an interface for creating families of related or dependent
objects without specifying their concrete classes.

REFERENCES

[1] D. Batory, B.J. Geraci, Composition Validation and Subjectivity in GenVoca
Generators, IEEE Transactions on Software Engineering, 1997.

[2] D. Batory, S. O’Malley, The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components, ACM Transactions on Software Engineer-
ing and Methodology, 1992.

[3] E. Czarneck, Generative Programming, Addison Wesley, 2000.

[4] G. Czibula, V. Niculescu, Fundamental Data Structures and Algorithms. An
Object-Oriented Perspective, Casa Cartii de Stiinta, 2011 (in Romanian).

[5] R. Johnson, J. Vlissides, E. Gamma, R. Helm, Design Patterns: Elements of
Reusable Object Oriented Software, Addison-Wesley, 1995.

[6] J. L. Keedy, A. Schmolitzky, M. Evered, G. Menger, A Useable Collection
Framework for Java, 16th IASTED Intl. Conf. on Applied Informatics, Garmisch
Partenkirchen, 1998.

[7] V. Niculescu, Storage Independence in Data Structures Implementation, Studia
Universitatis ”Babes-Bolyai”, Informatica, Special Issue, LVI(3), 2011, pp.21-26,.

[8] V. Niculescu, D. Lupsa, R. Lupsa, Issues in Collections Framework Design,
Studia Universitatis ”Babes-Bolyai”, Informatica,Vol. LVII(4), 2012, pp. 30-38.

[9] V. Niculescu, D. Lupsa, A Decorator Based Design for Collections, Studia Uni-
versitatis ”Babes-Bolyai”, Informatica, Special Issue, LVIII(3), 2013, pp. 54-64.

77

D. Lupsa, V. Niculescu, R.Lupsa — Collections as Combinations of Features

[10] C. Prehofer, Feature-Oriented Programming: A Fresh Look at Objects, Springer,
1997, pp. 419-443.
[11] YACL, http://sourceforge.net/projects/zedlib.

Dana Lupsa, Virginia Niculescu, Radu-Lucian Lupsa

Department of Computer Science, Faculty of Mathematics and Computer Science,
Babeg-Bolyai University,

Address: 1, M. Kogalniceanu, Cluj-Napoca, Romania

email: dana@cs.ubbcluj.ro, niculescu@cs.ubbcluj.ro, rlupsa@cs.ubbcluj.ro

78

	Introduction
	Collections
	Features
	Our approach

	Collections by their features
	 Features and decorations
	 Features and decorator pattern
	Examples

	 Implementation choices
	 Implementation issues

	Conclusions and future directions

