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HARDY’S TYPE INEQUALITY FOR PSEUDO-INTEGRALS
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ABSTRACT. In this paper, we prove Hardy’s type inequality for two classes of
pseudo-integrals. One of them concerns the pseudo-integrals based on a function
reduces on the g-integral where pseudo-operations are defined by a monotone and
continuous function g. The other one concerns the pseudo-integrals based on a
semiring ([a, b], max, ®) where ® generated.
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1. INTRODUCTION AND PRELIMINARIES

Recently, some authors ([3, 10, 17, 18]) have studied some fuzzy integral inequali-
ties. The purpose of this paper is to prove a Hardy type inequality for the pseudo-
integrals.

Pseudo-analysis is a generalization of the classical analysis, where instead of the
field of real numbers a semiring is taken on a real interval [a,b] C [—00, 00| endowed
with pseudo-addition @ and with pseudo-multiplication ® ([1, 2, 9, 11, 12, 19]).
Based on this structure there where developed the concepts of @-measure (pseudo-
additive measure), pseudo-integral, pseudo-convolution, pseudo-Laplace transform
and etc. ([4, 5, 6, 13, 15, 16, 18]).

The well-known Hardy inequality is a part of the classical mathematical analysis
([7]). The classical Hardy’s integral inequality holds

(px) ) e [ (5) e

where P > 1 and f : [0,00) — [0,00) is an integrable function (f # 0) and F'(z) =
fom f(t)dt. Furthermore, for parameters a,b such that 0 < a < b < oo, the following
inequality is also valid ([20]):
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where 0 < [i fP(t)dt < co. H. Roman-Flores et al. have proved a Hardy type
inequality for fuzzy integrals ([17]). The fuzzy Hardy’s integral inequality holds

(f @)™ = [ (5) a 0

where P > 1, f :[0,1] = [0,00) is an integrable function and F(z) = ;" f(t)dt.

In this paper, we generalize their work for pseudo-integrals. In special case, if
in the pseudo-integral version of the Hardy type inequality we put & = maz and
® = min, then we get the fuzzy Hardy type inequality that has been studied in
([17]) by H. Romén-Flores et al.

Let [a, b] be a closed (in some cases can be considered semiclosed) subinterval of
[—00, 00]. The full order on [a,b] will be denoted by <.

The operation & (pseudo-addition) is a function & : [a,b] X [a,b] — [a, b] which
is commutative, nondecreasing (with respect to =< ), associative and with a zero
(neutral) element denoted by 0, i.e., for each = € [a,b],0@® x = z holds (usually O is
either a or b). Let [a,b]+ = {z|x € [a,b],0 < z}.

Definition 1. The operation ® (pseudo-multiplication) is a function © : [a,b] X
[a,b] — [a,b] which is commutative, positively non-decreasing, i.e., x =< y implies
x®z 3y©z forall z € [a,b]+, associative and for which there exists a unit element
1€ [a,b], i.e., for each x € [a,b],1 ®x = x.

We assume also 0 ® x = 0 that ® is a distributive pseudo-multiplication with
respect to @, i.e., O (YD 2z) = (O y) ® (z @ 2). The structure ([a,b], D, ®) is
a semiring ([8, 17]). In this paper, we will consider semirings with the following
continuous operations:

Case I: The pseudo-addition is idempotent operation and the pseudo-multiplication
is not.

(a) z @y = sup(x,y),® is arbitrary not idempotent pseudo-multiplication on the
interval [a,b]. We have 0 = a and the idempotent operation sup induces a full order
in the following way: x <y if and only if sup(z,y) = v.
(b) x @ y = inf(x,y),® is arbitrary not idempotent pseudo-multiplication on the
interval [a,b]. We have 0= b and the idempotent operation inf induces a full order
in the following way: = < y if and only if inf(z,y) = y.

Case II: The pseudo-operations are defined by a monotone and continuous func-
tion g : [a,b] — [0, o0], i.e., pseudo operations are given with 2@y = g~ (g(z) +g(z))
and r ©®y = g~ (g(z)g(x)). If the zero element for the pseudo-addition is a, we will
consider increasing generators. Then g(a) = 0 and g(b) = oco. If the zero element
for the pseudo-addition is b, we will consider decreasing generators. Then g(b) = 0
and g(a) = oo. If the generator g is increasing (respectively decreasing), then the
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operation @ induces the usual order (respectively opposite to the usual order) on
the interval [a, b] in the following way: = < y if and only if g(z) < g(y).

Case III: Both operations are idempotent. We have
(a) z ®y = sup(x,y),z ©® y = inf(x,y), on the interval [a,b]. We have 0 = a and
1 = b. The idempotent operation sup induces the usual order (x < y if and only if
sup(z,y) = y).

(b) x ® y = inf(z,y),x ©®y = sup(z,y), on the interval [a,b]. We have 0 = b and
1 = a. The idempotent operation inf induces an order opposite to the usual order
(x <y if and only if inf(z,y) = y).

Let X be a non-empty set. Let A be a o-algebra of subsets of a set X.

We shall consider the semiring ([a, b],®, ®), when pseudo-operations are gen-
erated by a monotone and continuous function ¢ : [a,b] — [0,00], i.e., pseudo-
operations are given with 2 ®y = g1 (g(z) + g(y)) and x © y = g~ (g(x)g(y)).

Then the pseudo-integral for a function f : [¢, d] — [a, b] reduces on the g-integral
([12, 14)),

& d
f@yde =g~ ( [ atf@)iz). )
[c,d] c

More on this structure as well as corresponding measures and integrals can be found
in [7, 11]. The second class is when  © y = max(z,y) and * ©y = g~ (g(x)g(y)),
the pseudo-integral for a function f : R — [a,b] is given by

/R " f o dm = sup (@) @ v@),

where function 1 defines sup-measure m. Any sup-measure generated as essential
supremum of a continuouse denisty can be obtained as a limit of pseudo-additive
measures with respect to generated pseudo-additive [5]. For any continuouse func-
tion f : [0,00] — [0,00] the integral [© f @ dm can be obtained as a limit of
g-integrals, [5]. We denoted by p the usual Lebesgue measure on R. We have

m(A) = esssup(z|r € A) = sup{a|u(z|r € A,z > a) > 0}.

Theorem 1. (/9]). Let m be a sup-measure on ([0, c0],B[0, 00]), where B(]0, 00]) is
the Borel o-algebra on [0, 00], m(A) = esssup, (¢ (x)|z € A), and ) : [0, 00] — [0, o0]
s a continuouse density. Then for any pseudo-addition & with a generator g there
exists a family my of ®x-measure on ([0,00],B), where ®y is a generated by g* (the
function g of the power X\), A € (0,00), such that limy_,o, my = m.

Theorem 2. ([9]). Let (0, 00],sup,®) be a semiring, when ©® is a generated with
g, i.e., we have x ©y = g~ (g(x)g(y)) for every x,y € (0,00). Let m be the same
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as in Theorem 2.1., Then there exists a family {my} of ©\ -measures, where Oy is
a generated by g*, A € (0,00) such that for every continuous function f : [0,00] —
[0, o9],

[ roan=jim [ roan = o ( [ o)

Now, we recall the following inequality which is the pseudo version of Chebyshev’s
inequality and appears ([1]).

Theorem 3. (Chebyshev’s inequality for pseudo-integrals ). Let f,h:[0,1] — [0,1]
be two measurable function and g : [a,b] — [0, 00) be an increasing generator function
for pseudo-operation. If f,h are comonotone, then the inequality

(&) @ D
/ (f © h)dz > ( fdx)@(/ hdz)
[

0,1] [0,1] [0,1]
holds.
Theorem 4. ([12]). For any measurable function f, f1, fo and A € R, we have
() fica (f1 @ f)dz = [icy frde & ficy Fada,
(i) oy (A @ f)dx; A® g J;da:,
(i) f1 < fo == [iog frdz < [0y f2do.

2. HARDY’S INEQUALITY FOR PSEUDO-INTEGRALS

Our purpose in this section is to prove a Hardy type inequality for pseudo-integrals.
Unfortunately, the following example shows that, the Hardy’s integral inequality is
not valid for the pseudo-integrals.

Example 1. Let f(x) = k where k > 1 and P > 1. If g : [0,1] — [0,1] is defined as
follows
g(x) = .
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Then by using (2) we have

( ’ fP(J:)da:>Pl+1 =

[0,1]

Since

then by (2) we obtain that

Fla) =g /0 Cg(fendt = g

It follows that

So by using (2) we have

D
/[071] (g)de = ¢!

= g1 kP dx
= g '(k")
= kP
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Consequently, (1) is not valid for pseudo-integrals.
In order to prove Theorem 2.4. and 2.6. we need some Lemmas.

Lemma 5. If f : [0,1] — [0, 1] is a pu-measurable function and g : [0,1] — [0,1] is a
continuous and decreasing function, then

S

D
T ( /[0 H fau) (3)

)

holds for all P > 1.

Proof. By induction: For P = 2, inequality (3) is valid by Theorem 1.4.
For P — 1, we suppose that the Lemma is valid as follows

@ @ P-1
fP > / fap) .
/[0,1] ( [0,1] >

Hence for P we have

D P D
frdp = [ fdu
[0,1] [0,1]
@ P—-1
> / (P fdp.
[0,1]

So from case P = 2, we get

@ [S5) P
[tz ([ gan)”
[0,1] [0,1]

Thereby, the Lemma is proved.

Lemma 6. Let f:[0,1] — [0,1] be a continuouse function. If m be the same as in
Theorem 2.1., and g : [0,1] — [0,1] is a continuous and decreasing function, then

sup

sup P
dem > (/ fdm)
[0,1] [0,1]

holds for all P > 1.

Proof. Using the same arguments in Lemma 2.2. proof is easy.
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Theorem 7. (Pseudo Hardy’s inequality). Let f :[0,1] — [0, 1] be a p-measurable
and g : [0,1] — [0, 1] be a continuous and decreasing function. If

2
F(z) = f(t)dt
[0,z]
where x € [0, 1], then the inequality
P \P [® p /@ F\FP
—_— x)dx > — ) dx 4

holds for all P > 1.

Proof. By using Lemma 2.2. we have

&

® ® o f(0)dt
[ e = [ ()

[ G
[

dx
0,1] z?
. [ Joa fP(t)dtd
>~ - P XZ.
[0,1] X

Thus, by (2), we have

/@ (F)de - /[EB f[gim]fj:(t)dtdl‘

[0,1] x
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Since Q%P > 1 and g is a decreasing function, we have g(xip) < g(1), It follows that

/[0 @” (5) < o /0 o) ( /0 o (e) )
< o ([ omar) ([ atrorrar)
= g‘l(gg‘l/olg(l)dw) (gg‘l/oxg(f(t))Pdt)
— (/[i] ldx) ® (/[Oi]g(f(t))Pdt).

By using Theorem(1.5.(ii)), we have

2 @ o
/[0’1} <§)Pd$ < (/[071] ldfﬂ) ® </[07z} g(f(t))Pdt)

Which complete the proof.

Example 2. Let f(z) = 3, and g : [0,1] — [0,00] define as follows g(z) = gc% By
using (2) we have

(&) 1
/ fPlayde = g / o(fP (@))dz
[0,1] 0

L[
= g_/ dx
o (3p)?

—_
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Then a straightforward calcules shows that

S
F(z) = F(t)dt

It follows that,

On the other hand,

22P ’
3P+1
This shows that the Hardy’s inequality is valid for pseudo-integral.

Now, we generalize the Hardy type inequality by the semiring ([a, b], max, ®),
where © is generated.

Theorem 8. Let f : [0,1] — [0,1] be a p-measurable, g : [0,1] — [0,1] be a
continuous and decreasing function and m be the same as in Theorem 2.1. If ® is
represented by a decreasing multiplicative generator g and

F(z)= /[sup fdm

0,x]
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where x € [0, 1], then the inequality

P P /sup 5 sup , '\ P
—_— frdm > / — ) dm 5
holds for all P > 1.

Proof. By using Lemma 2.3. and Theorem 1.3. we have

su 52
Joy G = i [ (5 s

IN
=
=
—~
Q
>
~—
L

= )\lj_{go(gA)*l g)‘<>\hm (g)\) 1/0xg>‘(fp(t))dt)g/\<xlp>dl’
1 x
= Jim lim (¢)"" / / f<9A>*19A<fp<t>>gk<xip>dtdx

Thus, we conclude
sup , '\ P

/ (—) dm < lim lim (¢") // AME@) )dtda:
[0,1] xr A—00 A= o0

= (AILII;O(QA)_I/O gA(fP(t))dt><A1L1§O(gA)—1/Olgk(wlp)dw)'

Since :%P > 1, g is a decreasing function and A € (0,0), so we have

A

P ) < g ),
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then
[ (o < (o [ e g oo
< (e [[Puroa)(m e [ Pow)
< (i [ oronam) (i i)
- ([ o
([ rom
< () [ e

Which complete the proof.
Example 3. Let f:[0,1] — [0,1] be a u-measurable, and g*(x) = 2=, So

—-A

@y = (@ +y ) and Oy =zy.

Therefore Relation (5) reduces on the following inequality:

sup ()7 +6(0)) < ()" sup (7(2) + 0(@)).

P—-1

where 1 is from Theorem 2.1.
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