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Abstract. We consider the problem of nonparametric estimation of the con-
ditional hazard function for functional mixing data. More precisely, given a strictly
stationary random variables Zi = (Xi, Yi)i∈N, we investigate a kernel estimate of the
conditional hazard function of univariate response variable Yi given the functional
variable Xi. The principal aim of this paper is to give the mean squared convergence
rate and to prove the asymptotic normality of the proposed estimator.
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1. Introduction

The statistical problems involved in the modelization of functional data have received
an increasing interest in the literature. The infatuation for this topic is linked with
many fields of applications in which the data are collected in the functional order.
Under this supposition, the statistical analysis focuses on a framework of infinite
dimension for the data under study. This field of modern statistics has received
much attention in the last 20 years, and it has been popularized in the book of
Ramsay and Silverman [23]. This type of data appears in many fields of applied
statistics: environmetrics [8], chemometrics [2], meteorological sciences [3], etc..

In this paper, we are interested in the nonparametric estimation of the condi-
tional hazard function when the covariates are of functional nature.

The nonparametric estimation of the hazard and/or the conditional hazard func-
tion is quite important in a variety of fields including medicine, reliability, survival
analysis or in seismology. The literature on this model in multivariate statistics is
abundant. Historically, the hazard estimate was introduced by Watson and Lead-
better [30], since, several results have been added, see for example, Roussas [26] (for
previous works).
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From a theoretical point of view, a sample of functional data can be involved in
many different statistical problems, such as for example: classification and principal
components analysis (PCA)[4, 24] or longitudinal studies, regression and prediction
[2, 7].

The recent monograph by Ferraty and Vieu [13] summarizes many of their con-
tributions to the non-parametric estimation with functional data; among other prop-
erties, consistency of the conditional density, conditional distribution and regression
estimates are established in the i.i.d. case as well as under dependence conditions
(strong mixing). Almost complete rates of convergence are also obtained, and the
different techniques are applied to several examples of functional data samples. Re-
lated work can be seen in the paper of Masry [19], where the asymptotic normality of
the functional non-parametric regression estimate is proven, considering strong mix-
ing dependence conditions for the sample data. For automatic smoothing parameter
selection in the regression setting, see Rachdi and Vieu [22].

The literature is strictly not limited in the case where the data is of functional
nature (a curve). The first result in this context, was given by Ferraty et al .
[12]. They established the almost complete convergence of the kernel estimate of
the conditional hazard function in the i.i.d. case and under α-mixing condition .
Recently, Rabhi et al. [21] studied the mean quadratic convergence in the i.i.d.
case of this estimate. More recently Mahiddine et al. [18] established the pointwise
almost complete convergence and the uniform almost complete convergence (with
the rate) of the kernel estimate in the single-index models in the i.i.d. case.

The estimation of the hazard function is a problem of considerable interest,
especially to inventory theorists, medical researchers, logistics planners, reliability
engineers and seismologists. The non-parametric estimation of the hazard function
has been extensively discussed in the literature. Beginning with Watson and Lead-
better [30], there are many papers on these topics: Ahmad [1], Singpurwalla and
Wong [27], etc.We can cite Quintela [20] for a survey.

When hazard rate estimation is performed with multiple variables, the result is
an estimate of the conditional hazard rate for the first variable, given the levels of
the remaining variables. Many references, practical examples and simulations in the
case of non-parametric estimation using local linear approximations can be found in
Spierdijk [28].

The main aim of this paper, is to study, under general conditions, the asymptotic
proprieties of the functional data kernel estimate of the conditional hazard function
introduced by Ferraty et al. [12]. More precisely, we treat the L2-convergence rate by
giving the exact expression involved in the leading terms of the quadratic error. In
addition, we establish the asymptotic normality of the construct estimator. We point
out that our asymptotic results are useful in some statistical problems such as the
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choice of the smoothing parameters, the determination of confidence intervals and
in risk analysis. The present work extended to dependent case the result of Rabhi
et al. [21] given in i.i.d. case functional. We note that, one of the main difficulty,
when dealing with functional variables, relies on the difficulty for choosing some
appropriate measure of reference in infinite dimensional spaces. The main feature
of our approach is to build estimates and to derive their asymptotic properties
without any notion of density for the functional variable X. This approach allows
us to avoid the use of a reference measure in such functional spaces. In each of the
above described sections, we will give general asymptotic results without assuming
existence of such a density, and each of these results will be discussed in relation
with earlier literature existing in the usual finite dimensional case.

Our paper presents some asymptotic properties related with the non-parametric
estimation of the conditional hazard function. In a functional data setting, the con-
ditioning variable is allowed to take its values in some abstract semi-metric space.
In this case, Ferraty et al. [29] define non-parametric estimators of the conditional
density and the conditional distribution. They give the rates of convergence (in
an almost complete sense) to the corresponding functions, in an a dependence (α-
mixing) context. In Rabhi et al. [21], the same properties are shown in an i.i.d.
context in the data sample. We extend their results to dependent case by calcu-
lating the bias and variance of these estimates, and establishing their asymptotic
normality, considering a particular type of kernel for the functional part of the esti-
mates. Because the hazard function estimator is naturally constructed using these
two last estimators, the same type of properties is easily derived for it. Our results
are valid in a real (one- and multi-dimensional) context.

The paper is organized as follows: the next section we present our model. Section
3 is dedicated to fixing notations and hypotheses. We state our main results in
Section 4. The Section 5 is devoted to some discuss on the applicability of our
asymptotic result in some statistical problems such as the choice of the smoothing
parameters, the determination of confidence intervals and in seismology analysis.

2. The model

Consider Zi = (Xi, Yi), i ∈ N be a F × R-valued measurable strictly stationary
process, defined on a probability space (Ω,A,P), where (F , d) is a semi-metric space.

In the following x will be a fixed point in F and Nx will denote a fixed neigh-
borhood of x. We assume that the regular version of the conditional probability of
Y given X exists. Moreover, we suppose that, for all z ∈ Nx the conditional distri-
bution function of Y given X = z, F z(·) , is 3-times continuously differentiable and
we denote by fz its conditional density with respect to (w.r.t.) Lebesgue’s measure
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over R. In this paper, we consider the problem of the nonparametric estimation of
the conditional hazard function defined, for all y ∈ R such that F x(y) < 1, by

hx(y) =
fx(y)

1− F x(y)
.

In our spatial context, we estimate this function by

ĥx(y) =
f̂x(y)

1− F̂ x(y)

where

F̂ x(y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

, ∀y ∈ R

and

f̂x(y) =
h−1
H

∑n
i=1K(h−1

K d(x,Xi))H
′(h−1

H (y − Yi))∑n
i=1K(h−1

K d(x,Xi))
, ∀y ∈ R

with K is the kernel, H is a given continuously differentiable distribution function,
hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers and H ′ is the

derivative of H. Furthermore, the estimator ĥx(y) can we written as

ĥx(y) =
f̂xN (y)

F̂ xD − F̂ xN (y)
(1)

where

F̂ xD :=
1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi)), K1 = K(h−1

K d(x,X1))

F̂ xN (y) :=
1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y − Yi))

f̂xN (y) :=
1

nhHE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H

′(h−1
H (y − Yi)).

Our main purpose is to study the L2- consistency and the asymptotic normality
of the nonparametric estimate ĥx of hx when the random filed (Zi, i ∈ N) satisfies
the following mixing condition.
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3. Notations and hypotheses

All along the paper, when no confusion is possible, we will denote by C and C ′ some
strictly positive generic constants. In order to establish our asymptotic results we
need the following hypotheses:

(H0) ∀r > 0,P(X ∈ B(x, r)) =: φx(r) > 0, where B(x, r) = {x′ ∈ F/d(x, x′) < r}.

(H1) (Xi, Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H2) 0 < sup
i 6=j

P ((Xi, Xj) ∈ B(x, h)×B(x, h)) = O

(
(φx(h))(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the
distribution of the f.r.v. X, whereas (H2) concerns the behavior of the joint distri-
bution of the pairs (Xi, Xj). In fact, this hypothesis is equivalent to assume that,
for n large enough

sup
i 6=j

P ((Xi, Xj) ∈ B(x, h)×B(x, h))

P (X ∈ B(x, h))
≤ C

(
φx(h)

n

)1/a

.

(H3) For l ∈ {0, 2}, the functions Ψl(s) = E
[
∂lFX(y)
∂yl

− ∂lFx(y)
∂yl

∣∣∣d(x,X) = s
]
, Φl(s) =

E
[
∂lfX(y)
∂yl

− ∂lfx(y)
∂yl

∣∣∣d(x,X) = s
]

and Φ′l(s) = E
[
∂lf ′X(y)
∂yl

− ∂lf ′x(y)
∂yl

∣∣∣d(x,X) = s
]

are derivable at s = 0.

(H4) The bandwidth hK satisfies for j = 0, 1:

hK ↓ 0, ∀t ∈ [0, 1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and nh2j+1

H φx(hK)→∞ as n→∞,

(H5) The kernel K from R into R+ is a differentiable function supported on [0, 1].
Its derivative K ′ exists and is such that there exist two constants C and C ′

with −∞ < C < K ′(t) < C ′ < 0 for 0 ≤ t ≤ 1.

(H6) H has even bounded derivative function supported on [0, 1] that verifies∫
R
t2H ′(t)dt <∞ and

∫
R
|t|b2 (H(2))2(t)dt <∞.

(H7) There exist sequences of integers (un) and (vn) increasing to infinity such that
(un + vn) ≤ n, satisfying for j = 0, 1
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(i) vn = o((nh2j+1
H φx(hK))1/2) and

(
n

h2j+1
H φx(hK)

)1/2

α(vn)→ 0 as n→ 0,

(ii) qnvn = o((nh2j+1
H φx(hK))1/2) and qn

(
n

h2j+1
H φx(hK)

)1/2

α(vn)→ 0 as n→
0

where qn is the largest integer such that qn(un + vn) ≤ n.

3.1. Remarks on the assumptions

Remark 1. Assumption (H0) plays an important role in our methodology. It is
known as (for small h) the ”concentration hypothesis acting on the distribution
of X” in infi- nite-dimensional spaces. This assumption is not at all restrictive
and overcomes the problem of the non-existence of the probability density func-
tion. In many examples, around zero the small ball probabilityφx(h) can be writ-
ten approximately as the product of two independent functions ψ(z) and ϕ(h) as
φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry [19] who reformulated
the Gasser et al. [14] one. The increasing proprety of φx(.) implies that ζxh(.) is
bounded and then integrable (all the more so ζx0 (.) is integrable).

Without the differentiability of φx(.), this assumption has been used by many au-
thors where ψ(.) is interpreted as a probability density, while ϕ(.) may be interpreted
as a volume parameter. In the case of finite-dimensional spaces, that is S = Rd, it
can be seen that φx(h) = C(d)hdψ(x) + ohd), where C(d) is the volume of the unit
ball in Rd. Furthermore, in infinite dimensions, there exist many examples fulfilling
the decomposition mentioned above. We quote the following (which can be found in
Ferraty et al. [10]):

1. φx(h) ≈ ψ(h)hγ for som γ > 0.

2. φx(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.

3. φx(h) ≈ ψ(h)/| lnh|.

The function βxh(.) which intervenes in Assumption (H4) is increasing for all
fixed h. Its pointwise limit βx0 (.) also plays a determinant role. It intervenes in all
asymptotic properties, in particular in the asymptotic variance term. With simple
algebra, it is possible to specify this function (with β0(u) := βx0 (u) in the above
examples by:

1. β0(u) = uγ,

2. β0(u) = δ1(u) where δ1(.) is Dirac function,
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3. β0(u) = 1]0,1](u).

Assumption (H2) is classical and permits to make the variance term negligible.

Remark 2. Assumptions (H3) is a regularity condition which characterize the func-
tional space of our model and is needed to evaluate the bias.

Remark 3. Assumptions (H5) and (H6) are classical in functional estimation for
finite or infinite dimension spaces.

3.2. Main results

3.3. Mean squared convergence

The first result concerns the L2-consistency of ĥx(y).

Theorem 1. Under assumptions (H0)-(H6), we have

E
[
ĥx(y)− hx(y)

]2
= B2

n(x, y) +
σ2
h(x, y)

nhHφx(hK)
+ o(h4

H) + o(hK) + o

(
1

nhHφx(hK)

)
,

and∫
R
E
[
ĥx(y)− hx(y)

]2
dx =

∫
R
B2
n(x, y)dx+

∫
R

σ2
h(x, y)

nhHφx(hK)
dx+ o

(
1

nhHφx(hK)

)
,

where

Bn(x, y) =
(Bf

H − hx(y)BF
H)h2

H + (Bf
K − hx(y)BF

K)hK
1− F x(y)

with

Bf
H(x, y) =

1

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt

Bf
K(x, y) = hKΦ′0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
)

BF
H(x, y) =

1

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

BF
K(x, y) = hKΨ′0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
) .

and

σ2
h(x, y) =

β2h
x(y)(

β2
1(1− F x(y)

) (with βj = Kj(1)−
∫ 1

0
(Kj)′(s)βx(s)ds, for, j = 1, 2),
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Proof. By using the same decomposition used in ( Theorem 3.1 Rabhi et al. [21],
P.408), we show that the proof of Theorem 1 can be deduced from the following
intermediates results:

Lemma 2. Under the hypotheses of Theorem (1), we have

E
[
f̂xN (y)

]
− fx(y) = Bf

H(x, y)h2
H +Bf

K(x, y)hK + o(h2
H) + o(hK)

and
E
[
F̂ xN (y)

]
− F x(y) = BF

H(x, y)h2
H +BF

K(x, y)hK + o(h2
H) + o(hK).

Remark 4. Observe that, the result of this lemma permits to write[
EF̂ xN (y)− F x(y)

]
= O(h2

H) +O(hK)

and [
Ef̂xN (y)− fx(y)

]
= O(h2

H + hK).

Lemma 3. Under the hypotheses of Theorem (1), we have

V ar
[
f̂xN (y)

]
=

σ2
f (x, y)

nhHφx(hK)
+ o

(
1

nhHφx(hK)

)
,

V ar
[
F̂ xN (y)

]
= o

(
1

nhHφx(hK)

)
and

V ar
[
F̂ xD

]
= o

(
1

nhHφx(hK)

)
.

where σ2
f (x, y) := fx(y)

∫
H ′

2
(t)dt.

Lemma 4. Under the hypotheses of Theorem (1), we have

Cov(f̂xN (y), F̂ xD) = o

(
1

nhHφx(hK)

)
,

Cov(f̂xN (y), F̂ xN (y)) = o

(
1

nhHφx(hK)

)
and

Cov(f̂xD, F̂
x
N (y)) = o

(
1

nhHφx(hK)

)
.

Remark 5. It is clear that, the results of Lemmas (3 and 4) allows to write

V ar
[
F̂ xD − F̂ xN

]
= o

(
1

nhHφx(hK)

)
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3.4. Asymptotic normality

This section contains results on the asymptotic normality of ĥx(y) and ĥ′
x
(y). Let

us assume that hZ is sufficiently smooth ( at least of class C2)
We can write an estimator of the first derivative of the hazard function through

the first derivative of the estimator.
It is therefore natural to try to construct an estimator of the derivative of the

function hX on the basis of these ideas. To estimate the conditional distribution
function and the conditional density function in the presence of functional condi-
tional random variable X.

The kernel estimator of the derivative of the function conditional random func-
tional hZ can therefore be constructed as follows:

ĥ′
X

(y) =
f̂ ′
X

(y)

1− F̂ Y (y)
+ (ĥX(y))2, (2)

the estimator of the derivative of the conditional density is given in the following
formula:

f̂ ′
X

(y) =

n∑
i=1

h−2
H K(h−1

K d(X,Xi))H
′′(h−1

H (y − Yi))

n∑
i=1

K(h−1
K d(X,Xi))

(3)

Later, we need assumptions on the parameters of the estimator, ie onK,H,H ′, hH
and hK are little restrictive. Indeed, on one hand, they are not specific to the prob-
lem estimate of hX (but inherent problems of FX , fX and f ′X estimation), and
secondly they consist with the assumptions usually made under functional variables.

To obtain the asymptotic normality of the conditional estimates, we have to add
the following assumptions:

(H8) H ′ is twice differentiable.

(H9) The bandwidth hH and hK , small ball probability φz(h) and arithmetical α
mixing coefficient with order a > 3 satisfying

(H9a)∃C > 0, h2j+1
H φz(hK) ≥ C

n2/(a+1) , for j = 0, 1

(H9b)
(
φz(hK)

n

)1/a
+ φz(hK) = o

(
1

n2/(a+1)

)
, for j = 0, 1

(H9c) lim
n→∞

hK = 0, lim
n→∞

hH = 0, and lim
n→∞

log n

nh2j+1
H φx(hK)

= 0, j = 0, 1;
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Theorem 5. Assume that (H0)-(H7) hold, and if the following inequalities

∃η > 0, C, C ′ > 0 such that C n
3−a
a+1

+η ≤ hH φx(hK) and φx(hK) ≤ C ′n
1

1−a (4)

are verified with a > (5 +
√

17)/2, then we have for any x ∈ A,(
nhHφx(hK)

σ2
h(x, y)

)1/2 (
ĥx(y)− hx(y)−Bn(x, y)

)
D→ N (0, 1) as n→∞.

where
A = {x ∈ F , fx(y)(1− F x(y)) 6= 0}

and
D→ means the convergence in distribution.

Obviously, if one imposes some additional assumptions on the function φx(·) and
the bandwidth parameters (hK and hH) we can improved our asymptotic normality
by removing the bias term Bn(x, y).

Corollary 6. Under the hypotheses of Theorem 5 and if the bandwidth parameters
(hK and hH) and if the function φx(hK) satisfies:

lim
n→∞

(h2
H + hK)

√
nφx(hK) = 0

we have (
nhHφx(hK)

σ2
h(x, y)

)1/2 (
ĥx(y)− hx(y)

)
D→ N (0, 1) as n→∞.

Proof. Proof of Theorem 5 and Corollary 6 We consider the decomposition

ĥx(y)− hx(y) =
1

F̂ xD − F̂ xN (y)

(
f̂xN (y)− Ef̂xN (y)

)
+

1

F̂ xD − F̂ xN (y)

{
hx(y)

[
EF̂ xN (y)− F x(y)

)
+
(
Ef̂xN (y)− fx(y)

)}
+

hx(y)

F̂ xD − F̂ xN (y)

{
1− EF̂ xN (y)−

(
F̂ xD − F̂ xN (y)

)}
(5)

Therefore, Theorem 5 and Corollary 6 are a consequence of Lemma 2, remark
(4) and the following results.

Lemma 7. Under the hypotheses of Theorem 5(
nhHφx(hK)

σ2
f (x, y)

)1/2 (
f̂xN (y)− E

[
f̂xN (y)

])
→ N(0, 1).
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Lemma 8. Under the hypotheses of Theorem 5

F̂ xD − F̂ xN (y)→ 1− F x(y) in probability

and (
nhHφx(hK)

σ2
h(x, y)

)1/2 (
F̂ xD − F̂ xN (y)− 1 + E[F̂ xN (y)]

)
= oP(1).

Theorem 9. Under conditions (H0)-(H9), then we have for any x ∈ A,(
nh3

Hφx(hK)
)1/2 (

ĥ
′X(y)− h′X(y)

)
D→N

(
0, σ2

h′(y)
)

azl = K l(1)−
∫ 1

0

(
K l(u)

)′
βz0(u)du for l = 1, 2

and

σ2
h′(y) =

az2h
X(y)

(az1)2 (1− FX(y))

∫
(H ′′(t))2dt.

Proof. Let

ĥ′X(y) =
f̂ ′X(y)

1− F̂X(y)
+ (ĥX(y))2, (6)

with

ĥ′X(y)− h′X(y) =

{(
ĥX(y)

)2
−
(
hX(y)

)2}
+

{
f̂ ′X(y)

1− F̂X(y)
− f ′X(y)

1− FX(y)

}
(7)

Using again (7), and the fact that(
1− FX(y)

)
(1− F̂X(y)) (1− FX(y))

−→ 1

1− FX(y)

and
f̂ ′X(y)(

1− F̂X(y)
)

(1− FX(y))
−→ f ′X(y)

(1− FX(y))2

The asymptotic normality of
(
nh3

Hφx(hK)
)1/2 (

ĥ′
X

(y)− h′X(y)
)

can be deduced

from both following lemmas and Corollary 6.
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Lemma 10. Under Assumptions (H0)-(H6) and (H8), we have

(nφx(hK))1/2
(
F̂X(y)− FX(y)

)
D→N

(
0, σ2

FX (y)
)

(8)

where

σ2
FX (y) =

az2F
X(y)

(
1− FX(y)

)
(az1)2

Lemma 11. Under Assumptions of Theorem 9, we have(
nh3

Hφx(hK)
)1/2 (

f̂ ′
X

(y)− f ′X(y)
)
D→N

(
0, σ2

f ′X (y)
)

(9)

where

σ2
f ′Z(y) =

az2f
X(y)

(az1)2

∫
R

(H ′′(t))2dt

The proofs of Lemma 10 can be seen in Ezzahrioui and Ould-Säıd [9].

4. Discussions and applications

In this section we emphasize the potential impact of our work by studying its prac-
tical interest in some important statistical problems. Moreover, in order to show the
easily implementation of our approach on a concrete cases, we discuss in the second
part of this section the practical utilization of our model in risk analysis.

4.1. Some derivatives

• On the choices of the bandwidths parameters: As all smoothing by a kernel
method, the choice of bandwidths parameters has crucial role in determining
the performance of the estimators. The mean quadratic error given in Theorem
(1) is a basic ingredient to solve this problem. Usually, the ideal theoretical
choices are obtained by minimizing this error. Here, we have explicated its
leading term which is

B2
n(x, y) +

σ2
h(x, y)

nhHφx(hK)
.

Then, the smoothing parameters minimizing this leading term is asymptot-
ically optimal with respect the L2-error. However, the practical utilization
of this criterium requires some additional computational efforts. More pre-
cisely, it requires the estimation of the unknown quantities Ψ′0, Φ′0, fx(y) and

20



N. Belkhir, A. Rabhi, S. Soltani – Conditional hazard estimate . . .

F x(y). Clearly, all these estimations can be obtained by using a pilots esti-
mators of the conditional distribution function F x(y) and of the conditional
density fx(y). Such estimations are possible by using the kernel methods, with
a separate choice of the bandwidths parameters between both models. More
preciously, for the conditional density, we propose to adopt, to the functional
case, the bandwidths selectors studied by Bouraine et al. [6] by considering
the following criterion

CV PDF =
1

n

∑
i=1

W1(Xi)

∫
f̂X
−i2

i (y)W2(y)dy− 2

n

∑
i=1

f̂X
−i
i (Yi)W1(Xi)W2(Yi)

(10)
while, for the the conditional distribution function we can use the cross-
validation rule proposed by De Gooijer and Gannoun (2000) (in vectorial case)

CV CDF =
1

n

∑
k,l∈In

[
1Yk≤Yl − F̂

X−k
k (Yl)

]2
W (Xk)

where W1, W2 and W are some suitable trimming functions and

F̂X
−k
k (Yl) =

∑
i∈Ik,ln,ςn

K(h−1
K d(Xk, Xi))H(h−1

H (Yl − Yi))∑
i∈Ik,ln,ςn

K(h−1
K d(Xk, Xi))

and

f̂X
−i
i (y) =

h−1
H

∑
j∈Iin,ςn

K(h−1
K d(Xi, Xj))H

′(h−1
H (y − Yj))∑

j∈Iin,ςn
K(h−1

K d(Xi, Xj))

with {
Ik,ln,ςn = {i such that |i− k| ≥ ςn and |i− l| ≥ ςn},
Iin,ςn = {j such that |j − i| ≥ ςn }.

Of course, we can also adopt another selection methods, such that, the para-
metric bootstrap method, proposed by Hall et al. [15] and Hyndman et al.
[16] for, respectively, the conditional cumulative distribution function and the
conditional density in the finite dimensional case. Nevertheless, a data-driven
method allows to overcome this additional computation is very important in
practice and is one of the natural prospects of the present work.

• Confidence intervals: The main application of Theorem 5 is to build confi-
dence band for the true value of hx(y). Similarly to the previous application,
the practical utilization of our result in this topic requires the estimation of the
quantity σ2

h(x, y). A plug-in estimate for the asymptotic standard deviation
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σ2
h(x, y) can be obtained by using the estimators f̂x(y) and F̂ x(y) of fx(y) and
F x(y). Then we get

σ̂2
h(x, y) :=

ζ̂2f̂
x(y)(

ζ̂1
2
(1− F̂ x(y))2

)
where

ζ̂1 =
1

nφx(hK)

n∑
i=1

K(h−1
K d(x,Xi)) and ζ̂2 =

1

nφx(hK)

n∑
i=1

K2(h−1
K d(x,Xi)).

Clearly, the function φx(·) does not appear in the calculation of the confidence
interval by simplification. More precisely, we obtain the following approximate
(1− ζ) confidence band for hx(y)

ĥx(y)± t1−ζ/2 ×
(

σ̂2
h(x, y)

nhHφx(hK)

)1/2

where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

5. Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y − Yi) and H ′i = H ′(h−1
H (y − Yi).

Proof of Lemma 2. Firstly, for E[f̂xN (y)], we start by writing

E[f̂xN (y)] =
1

E[K1]
E
[
K1E[h−1

H H ′1|X]
]

with h−1
H E

[
H ′1|X

]
=

∫
R
H ′(t)fX(y − hHt)dt.

The latter can be re-written, by using a Taylor expansion under (H3), as follows

h−1
H E[H ′1|X] = fX(y) +

h2
H

2

(∫
t2H ′(t)dt

)
∂2fX(y)

∂2y
+ o(h2

H).

Thus, we get

E
[
f̂xN (y)

]
=

1

E[K1]

(
E
[
K1f

X(y)
]

+

(∫
t2H ′(t)dt

)
E
[
K1

∂2fX(y)

∂2y

]
+ o(h2

H)

)
.
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Let ψl(·, y) := ∂lf ·(y)
∂ly

: for l ∈ {0, 2}, since Φl(0) = 0, we have

E [K1ψl(X, y)] = ψl(x, y)E[K1] + E [K1 (ψl(X, y)− ψl(x, y))]
= ψl(x, y)E[K1] + E [K1 (Φl(d(x,X))]
= ψl(x, y)E[K1] + Φ′l(0)E [d(x,X)K1] + o(E [d(x,X)K1]).

So,

E
[
f̂xN (y)

]
= fx(y) +

h2
H

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt+ o

(
h2
H

E [d(x,X)K1]

E[K1]

)
+Φ′0(0)

E [d(x,X)K1]

E[K1]
+ o

(
E [d(x,X)K1]

E[K1]

)
.

Similarly to Ferraty et al. (2007) we show that

1

φx(hK)
E [d(x,X)K1] = hK

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds+ o(1)

)
and

1

φx(hK)
E [K1] = K(1)−

∫ 1

0
K ′(s)βx(s)ds+ o(1).

Hence,

E
[
f̂xN (y)

]
= fx(y) +

h2
H

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt

+hKΦ′0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
) + o(h2

H) + o(hK).

Secondly, concerning E[F̂ xN (y)], we write by an integration by part

E[F̂ xN (y)] =
1

E[K1]
E [K1E[H1|X]] with E [H1|X] =

∫
R
H ′(t)FX(y − hHt)dt.

The same steps used to studying E[f̂xN (y)] can be followed to prove that

E
[
F̂ xN (y)

]
= F x(y) +

h2
H

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

+hKΨ′0(0)

(
K(1)−

∫ 1
0 (sK(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
) + o(h2

H) + o(hK).
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Proof of Lemma 3. For the first quantity V ar[f̂xN (y)], we have

s2
n = V ar[f̂xN (y)] =

1

(nhHE [K1(x)])2
V ar

[∑
i=1

Γi(x)

]
where

Γi(x) = Ki(x)H ′i(y)− E
[
Ki(x)H ′i(y)

]
.

Thus

V ar[f̂xN (y)] =
1

(nhHE [K1])2

∑
i 6=j

Cov (Γi(x),Γj(x))︸ ︷︷ ︸
scovn

+

n∑
i=1

V ar (Γi(x))︸ ︷︷ ︸
svarn

=
1

n(hHE [K1])2
V ar [Γ1] +

1

(nhHE [K1])2

∑
i 6=j

Cov(Γi,Γj).

Let us calculate the quantity V ar [Γ1(x)]. We have:

V ar [Γ1(x)] = E
[
K2

1 (x)H ′
2

1 (y)
]
−
(
E
[
K1(x)H ′1(y)

])2
= E

[
K2

1 (x)
] E [K2

1 (x)H ′
2

1 (y)
]

E
[
K2

1 (x)
] − (E [K1(x)])2

(
E [K1(x)H ′1(y)]

E [K1(x)]

)2

.

So, by using the same arguments as those used in pervious lemma we get

1

φx(hK)
E
[
K2

1 (x)
]

= K2(1)−
∫ 1

0
(K2(s))′βx(s)ds+ o(1)

E
[
K2

1 (x)H ′
2

1 (y)
]

E
[
K2

1 (x)
] = hHf

x(y)

∫
H ′

2
(t)dt+ o(hH)

E[K1(x)H ′1(y)]

E [K1(x)]
= hHf

x(y) + o(hH)

which implies that

V ar [Γi(x)] = hHφx(hK)fx(y)

∫
H ′

2
(t)dt

(
K2(1)−

∫ 1

0
(K2(s))′βx(s))ds

)
+o (hHφx(hK)) .

(11)
Now, let us focus on the covariance term. To do that, we need to calculate the

asymptotic behavior of quantity defined as∑
i 6=j

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣ =

∑
1≤|i−j|≤cn

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣ = J1,n + J2,n.
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with cn →∞, as n→∞.
For all (i, j) we write

Cov (Γi(x),Γj(x)) = E
[
Ki(x)Kj(x)H ′i(y)H ′j(y)

]
−
(
E
[
Ki(x)H ′i(y)

])2
and we use the fact that E

[
H ′i(y)H ′j(y)|(Xi, Xj)

]
= O(h2

H); ∀ i 6= j, E [H ′i(y)|Xi] =

O(hH); ∀ i.
For J1,n: by means of the integral realized above and under (H2) and (H5), we

get
E
[
KiKjH

′
iH
′
j

]
≤ Ch2

HP [(Xi, Xj) ∈ B(x, hK)×B(x, hK)]

and
E
[
Ki(x)H ′i(y)

]
≤ ChHP (Xi ∈ B(x, hK)) .

It follows that, the hypothesis (H0), (H2) and (H5), imply that

Cov (Γi(x),Γj(x)) ≤ Ch2
Hφx(hK)

(
φx(hK) +

(
φx(hK)

n

)1/a
)

So

J1,n ≤ C

(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

Hence

J1,n = O

(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

On the other hand, these covariances can be controled by mean of the usual
Davydov-Rios’s covariance inequality for mixing processes (see Rio 2000, formula
1.12a). Together with (H1), this inequality leads to:

∀i 6= j, |Cov(Di(x), Dj(x))| ≤ C |i− j|−a.

By the fact,
∑

k≥cn+1

k−a ≤
∫ ∞
cn

t−adt =
c−a+1
n

a− 1
, we get by applying (H1),

J2,n ≤
∑

|i−j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a− 1

Thus, by using the following classical technique (see Bosq, 1998 [5]), we can write

scovn =
∑

0<|i−j|≤un

|Cov(Γi(x),Γj(x))|+
∑

|i−j|>un

|Cov(Γi(x),Γj(x))| .
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Thus

scovn ≤ Cn

(
cnh

2
H

(
φx(hK)

n

)1/a

φx(hK) +
c−a+1
n

a− 1

)

Choosing cn = h−2
H

(
φx(hK)

n

)−1/a
, and owing to the right inequality in (H7b), we

can deduce
scovn = o (nhHφx(hK)) . (12)

Finally,

s2
n = o (nhHφx(hK)) +O (nhHφx(hK))

= O (nhHφx(hK))

In conclusion, we have

V ar[f̂xN (y)] =
fx(y)

nhHφx(hK)

(∫
H ′

2
(t)dt

)
(
K2(1)−

∫ 1
0 (K2(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
)2

+o

(
1

nhHφx(hK)

)
(13)

Now, for F̂ xN (y), (resp. F̂ xD) we replace H ′i(y) by Hi(y) (resp. by 1) and we follow
the same ideas, under the fact that H ≤ 1

V ar[F̂ xN (y)] =
F x(y)

nφx(hK)

(∫
H ′

2
(t)dt

)
(
K2(1)−

∫ 1
0 (K2(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
)2

+o

(
1

nφx(hK)

)
.

and

V ar[F̂ xD] =
1

nφx(hK)


(
K2(1)−

∫ 1
0 (K2(s))′βx(s)ds

)
(
K(1)−

∫ 1
0 K

′(s)βx(s)ds
)2

+ o

(
1

nφx(hK)

)
.

This yields the proof.

Proof of Lemma 4. The proof of this lemma follows the same steps as the previous
Lemma. For this, we keep the same notation and we write

Cov(f̂xN (y), F̂ xN (y)) =
1

nhH(E [K1(x)])2
Cov (Γ1(x),∆1(x))

+
1

n2hH(E [K1(x)])2

∑
i 6=j

Cov(Γi(x),∆j(x))
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where
∆i(x) = Ki(x)Hi(y)− E [Ki(x)Hi(y)] .

For the first term, we have under (H4)

Cov (Γ1(x),∆1(x)) = E[K2
1 (x)H1(y)H ′1(y)]− E[K1(x)H1(y)]E[K1(x)H ′1(y)]

= O(hHφx(hK)) +O(hHφ
2
x(hK))

= O(hHφx(hK))

Therefore,

1

nhH(E [K1(x)])2
Cov (Γ1(x),∆1(x)) = O

(
1

nφx(hK)

)
= o

(
1

nhHφx(hK)

)
(14)

So, by using similar arguments as those invoked in the proof of Lemma 3, and
we use once again the boundedness of K and H, and the fact that (H1) and (H6)
imply that

E
(
H ′i(y)|Xi

)
= O(hH).

Moreover, the right part of (H7b) implies that

Cov (Γi(x),∆j(x)) = O

(
hHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
,

Meanwhile, using the Davydov-Rio’s inequality in Rio (2000) for mixing processes
leads to

|Cov (Γi(x),∆j(x))| ≤ Cα (|i− j|) ≤ C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i 6=j

Cov (Γi(x),∆j(x)) = O

(
n cn hHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
+ O

(
nhH c

−a
n

)
.

It suffices now to take cn = h−1
H

(
φx(hK)

n

)−1/a

to get the following expression

for the sum of the covariances:∑
i 6=j

Cov (Γi(x),∆j(x)) = o (nφx(hK)) . (15)
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From (14) and (15) we deduce that

Cov(f̂xN (y), F̂ xN (y)) = o

(
1

nhHφx(hK)

)
The same arguments can be used to shows that

Cov(f̂xN (y), F̂ xD) = o

(
1

nhHφx(hK)

)
and Cov(F̂ xN (y), F̂ xD) = o

(
1

nhHφx(hK)

)
.

Proof of Lemma 7. Let

Sn =
n∑
i=1

Λi(x)

where

Λi(x) :=

√
hHφx(hK)

hHE[K1(x)]
Γi(x). (16)

Obviously, we have√
nhHφx(hK) [σf (x, y)]−1

(
f̂xN (y)− Ef̂xN (y)

)
=
(
n(σf (x, y))2

)−1/2
Sn.

Thus, the asymptotic normality of
(
n(σf (x, y))2

)−1/2
Sn, is sufficient to show the

proof of this Lemma. This last is shown by the blocking method, where the random
variables Λi are grouped into blocks of different sizes defined.

We consider the classical big- and small-block decomposition. We split the set
{1, 2, . . . , n} into 2kn+1 subsets with large blocks of size un and small blocks of size
vn and put

kn :=
[ n

un + vn

]
.

Assumption (H7)(ii) allows us to define the large block size by

un =:
[(nhHφx(hK)

qn

)1/2 ]
.

Using Assumption (H7) and simple algebra allows us to prove that

vn
un
→ 0,

un
n
→ 0,

un√
nhHφx(hK)

→ 0, and
n

un
α(vn)→ 0 (17)
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Now, let Υj , Υ′j and Υ
′′
j be defined as follows:

Υj =

j(u+v)+u∑
i=j(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Υ′j =

(j+1)(u+v)+u∑
i=j(u+v)+u+1

Λi(x), 0 ≤ j ≤ k + 1

Υ
′′
j =

n∑
i=k(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Cleary, we can write

Sn =
k−1∑
j=0

Υj +
k−1∑
j=0

Υ′j + Υ
′′
kr =: S′n + S′′n + S

′′′
n .

We prove that

(i)
1

n
E(S′′n)2 −→ 0, (ii)

1

n
E(S

′′′
n )2 −→ 0, (18)

∣∣∣E{exp
(
itn−1/2S′n

)}
−
k−1∏
j=0

E
{

exp
(
itn−1/2Υj

)} ∣∣∣ −→ 0, (19)

1

n

k−1∑
j=0

E
(
Υ2
j

)
−→ σ2

f (x, y), (20)

1

n

k−1∑
j=0

E
(

Υ2
j1{|Υj |>ε

√
nσ2

f (x,y)}

)
−→ 0 (21)

for every ε > 0.
Expression (18) show that the terms S′′n and S

′′′
n are negligible, while Equations

(19) and (20) show that the Υj are asymptotically independent, verifying that the
sum of their variances tends to σ2

f (x, y). Expression (21) is the Lindeberg-Feller’s
condition for a sum of independent terms. Asymptotic normality of Sn is a conse-
quence of Equations (18)-(21).
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• Proof of (18) Because E(Λj) = 0, ∀j, we have that

E(S′′n)2 = V ar

k−1∑
j=0

Υ′j

 =

k−1∑
j=0

V ar
(
Υ′j
)
+

∑
0≤i<j≤k−1

Cov
(
Υ′i,Υ

′
j

)
:= Π1+Π2.

By the second-order stationarity we get

V ar
(
Υ′j
)

= V ar

 (j+1)(un+vn)∑
i=j(un+vn)+un+1

Λi(x)


= vnV ar(Λ1(x)) +

vn∑
i 6=j

Cov (Λi(x),Λj(x)) .

Then

Π1

n
=

kvn
n
V ar(Λ1(x)) +

1

n

k−1∑
j=0

vn∑
i 6=j

Cov (Λi(x),Λj(x))

≤ kvn
n

{
φx(hK)

hHE2K1(x)
V ar (Γ1(x))

}
+

1

n

n∑
i 6=j

∣∣∣Cov (Λi(x),Λj(x))
∣∣∣

≤ kvn
n

{
1

hHφx(hK)
V ar (Λ1(x))

}
+

1

n

n∑
i 6=j

∣∣∣Cov (Λi(x),Λj(x))
∣∣∣

Simple algebra gives us

kvn
n
∼=
(

n

un + vn

)
vn
n
∼=

vn
un + vn

∼=
vn
un
−→ 0 as n→∞.

Using Equation (12) we have

lim
n→∞

Π1

n
= 0 (22)

Now, let us turn to Π2/n. We have

Π2

n
=

1

n

k−1∑
i=0i 6=j

k−1∑
j=0

Cov (Υi(x),Υj(x))

=
1

n

k−1∑
i=0i 6=j

k−1∑
j=0

vn∑
l1=1

vn∑
l2

Cov
(
Λmj+l1 ,Λmj+l2

)
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with mi = i(un+vn)+vn. As i 6= j, we have |mi−mj + l1− l2| ≥ un. It follows
that

Π2

n
≤ 1

n

n∑
i=1 |i−j|≥un

n∑
j=1

Cov (Λi(x),Λj(x)) ,

then

lim
n→∞

Π2

n
= 0. (23)

By Equations (22) and (23) we get Part(i) of the Equation(18).

We turn to (ii), we have

1

n
E
(
S
′′′
n

)2
=

1

n
V ar

(
Υ′′k
)

=
ϑn
n
V ar (Λ1(x)) +

1

n

ϑn∑
i=1 i 6=j

ϑn∑
j=1

Cov (Λi(x),Λj(x))

where ϑn = n− kn(un + vn); by the definition of kn, we have ϑn ≤ un + vn.

Then

1

n
E
(
S
′′′
n

)2
≤ un + vn

n
V ar (Λ1(x)) +

1

n

ϑn∑
i=1 i 6=j

ϑn∑
j=1

Cov (Λi(x),Λj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation
(18).

• Proof of (19) We make use of Volkonskii and Rozanov’s lemma (see the ap-
pendix in Masry, 2005) and the fact that the process (Xi, Xj)is strong mixing.

Note that Υa is F jaia -mesurable with ia = a(un+vn)+1 and ja = a(un+vn)+un;

hence, with Vj = exp
(
itn−1/2Υj

)
we have

∣∣∣E{exp
(
itn−1/2S′n

)}
−
k−1∏
j=0

E
{

exp
(
itn−1/2Υj

)} ∣∣∣ ≤ 16knα(vn+1) ∼=
n

vn
α(vn+1)

which goes to zero by the last part of Equation (17). Now we establish Equa-
tion (20).

• Proof of (20) Note that V ar(S′n) −→ σ2
f (x, y) by Equation (18)-(i) and (18)-

(ii) and since V ar(Sn) −→ σ2
f (x, y) (by the definition of the Λi and Equation
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(13)). Then because

E
(
S′n
)2

= V ar
(
S′n
)

=
k−1∑
j=0

V ar (Υj) +
k−1∑
i=0 i 6=j

k−1∑
j=0

Cov (Υi,Υj) ,

all we have to prove is that the double sum of covariances in the last equation
tends to zero. Using the same arguments as those previously used for Π2 in
the proof of first term of Equation (18)we obtain by replacing vn by un we get

1

n

k−1∑
j=0

E
(
Υ2
j5
)

=
kun
n
V ar (Λ1) + o(1).

As V ar (Λ1) −→ σ2
f (x, y) and kun/n −→ 1, we get the result.

Finally, we prove Equation (21).

• Proof of (21) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Λi.

Making use Assumptions (H5) and (H6), we have∣∣∣Λi∣∣∣ ≤ C (hHφx(hK))−1/2

thus ∣∣∣Υj

∣∣∣ ≤ Cun (hHφx(hK))−1/2 ,

which goes to zero as n goes to infinity by Equation (17). Then for n large

enough, the set {|Υj | > ε
(
nσ2

f (x, y)
)−1/2

} becomes empty, this completes the

proof and therefore that of the asymptotic normality of
(
n(σf (x, y))2

)−1/2
Sn,

Proof of Lemma 8. It is clear that, the result of Lemma (2) and Lemma (3) permits
us

E
(
F̂ xD − F̂ xN − 1 + F x(y)

)
−→ 0

and
V ar

(
F̂ xD − F̂ xN − 1 + F x(y)

)
−→ 0

32



N. Belkhir, A. Rabhi, S. Soltani – Conditional hazard estimate . . .

then
F̂ xD − F̂ xN − 1 + F x(y)

P−→ 0

Moreover, the asymptotic variance of F̂ xD − F̂ xN given in remark (5) allows to
obtain

nhHφx(hK)

σh(x, y)2
V ar

(
F̂ xD − F̂ xN − 1 + E

(
F̂ xN (y)

))
−→ 0.

By combining result with the fact that

E
(
F̂ xD − F̂ xN − 1 + E

(
F̂ xN (y)

))
= 0

we obtain the claimed result.

Proof of lemma 11. For i = 1, . . . , n, we consider the quantitiesKi = K
(
h−1
K d(z, Zi)

)
,

H ′′i (x) = H ′′
(
h−1
H (x−Xi)

)
and let f̂ ′

Z

N (x) (resp. F̂ZD ) be defined as

f̂ ′
Z

N (x) =
h−2
H

nEK1

n∑
i=1

KiH
′′
i (x) (resp. F̂ZD =

1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
X

(y)− f ′X(y) =
1

F̂XD

{(
f̂ ′
X

N (y)− Ef̂ ′
X

N (y)
)
−
(
f ′X(y)− Ef̂ ′

X

N (y)
)}

+

f ′X(y)

F̂XD

{
EF̂XD − F̂XD

}
(24)

and on the following intermediate results.√
nh3

Hφx(hK)
(
f̂ ′
X

N (y)− Ef̂ ′
X

N (y)
)
D→N

(
0, σ2

f ′X (y)
)

(25)

where σ2
f ′X

(y) is defined as in Lemma 11.

lim
n→∞

√
nh3

Hφx(hK)
(
Ef̂ ′

X

N (y)− f ′X(y)
)

= 0 (26)

√
nh3

Hφx(hK)
(
F̂XD (y)− 1

)
P→ 0, as n→∞. (27)
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• Concerning (25). By the definition of f̂ ′
X

N (y), it follows that√
nh3

Hφx(hK)
(
f̂ ′
X

N (y)− Ef̂ ′
X

N (y)
)

=
n∑
i=1

√
φx(hK)√
nhHEK1

(
KiH

′′
i − EKiH

′′
i

)
=

n∑
i=1

∆i,

which leads

n∑
i=1

E∆2
i =

φx(hK)

hHE2K1
EK2

1 (H ′′1 )2 − φx(hK)

hHE2K1

(
EK1H

′′
1

)2
= Π1n −Π2n. (28)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φx(hK)

E2K1
E
{
K2

1

∫
H ′′2(t)

(
f ′X(y − thH)− f ′X(y) + f ′X(y)

)
dt

}
.

Meanwhile, by (H0), (H3), (H4) and (H5), it follows that:

φx(hK)EK2
1

E2K1
−→
n→∞

az2
(az1)2

,

which leads

Π1n −→
n→∞

az2f
X(y)

(az1)2

∫
(H ′′(t))2dt, (29)

Regarding Π2n, by (H0), (H3) and (H6), we obtain

Π2n −→
n→∞

0. (30)

This result, combined with (28) and (29), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′X (y) (31)

Secondly, by the boundedness of H ′′, we have

E (|∆i∆j |) ≤
Cφx(hK)

nE2K1
(KiKj + EKiKj)

≤ C

nhH

{(
φx(hK)

n

)1/a

+ φx(hK)

}
, ∀i 6= j.
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Then, taking

δn = max
1≤i 6=j≤n

{E (| ∆i∆j |)} =
C

nhH

((
φx(hK)

n

)1/a

+ φx(hK)

)
.

leads

nmnδn =
Cmn

hH

((
φx(hK)

n

)1/a

+ φx(hK)

)
. (32)

Similarly, the boundedness ofH ′′ andK allows us to take Ci = O
(

1√
nh3Hφx(hK)

)
,

which implies that ∞∑
j=mn+1

α(j)

 n∑
i=1

C2
i ≤

C

hHφx(hK)

∫
t≥mn

t−adt =
C

hHφx(hK)

m−a+1
n

a− 1
. (33)

Then, the sum of the right side of (32) and (33) is of type Amn +Bm−a+1
n , by

talking mn = (A/B)−1/a = {(a− 1)φx(hK)((φx(hK)
n )1/a + φx(hK))}−1/a →∞,

it is clear that, under conditions (H9a) and (H9b), combining (32) and (33)
allows us to get

nmnδn = o(1), (34)

and  ∞∑
j=mn+1

α(j)

 n∑
i=1

C2
i = o(1), (35)

respectively. Finally, by choosing %n =
√

nh3Hφx(hK)
logn , under (H9a) again and

a > 3, we have
%n√
n

= o(1) (36)

and

n

%n
α(ε%n) ≤ C

(log n)(a+1)/2

n(a−1)/2(h3
Hφx(hK))(a+1)/2

≤ C
(log n)(a+1)/2

n(a−3)/2
→ 0 as n→∞.

Therefore, combining (30)-(36) with Corollary 2.2 in Liebscher [17], (25) is
valid.
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• Concerning (26). The proof is completed along the same steps as that of Π1n.
We omit it here.

• Concerning (27). The idea is similar to that given by Ferraty et al. [29].

By definition of F̂XD (y), we have√
nh3

Hφx(hK)(F̂XD (y)− 1) = Ωn − EΩn,

where Ωn =

√
nh3Hφx(hK)

∑n
i=1Ki

nEK1
. In order to prove (27), similar to Ferraty et

al. [29], we only need to proov V ar Ωn → 0, as n→∞. In fact, since

V ar Ωn =
nh3

Hφx(hK)

nE2K1

nV arK1 +
∑
1≤i

∑
j≤n

cov(Ki,Kj)


≤

nh3
Hφx(hK)

E2K1
EK2

1 +
nh3

Hφx(hK)

nE2K1

∑∑
0≤|i−j|≤vn

cov(Ki,Kj)

+
nh3

Hφx(hK)

nE2K1

∑∑
0≤|i−j|≥vn

cov(Ki,Kj)

= Ψ1 + Ψ2 + Ψ3,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3
Hφx(hK)→ 0, as n→∞.

Meanwhile, by (H0) and (H1), it follows that

Ψ2 ≤ vnh3
H

{(
φx(hK)

n

)1/a

+ φx(hK)

}
. (37)

Finally, using the Davydov-Rio’s inequality in Rio [25] for mixing processes
leads to

|cov(Ki,Kj | ≤ Cα(|i− j|),

for all i 6= j. Then, we have

Ψ3 ≤
h3
Hφx(hK)

nE2K1
n2Cα(|i− j|) ≤ C

h3
Hφx(hK)

nE2K1
n2v−a+1

n

≤ Ch3
Hnv

−a+1
n . (38)
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Since the right side of (37) and (38) is also of type Avn+Bv−a+1
n , by choosing

vn = [n−1((φx(hK)
n )1/a + φx(hK))]−1/a → ∞ and simple calculations, we get

that Ψ2 → 0 and Ψ3 → 0 as n→∞, respectively.

Therefore, the proof of this result is completed.

Therefore, the proof of this lemma is completed.
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multi-fonctionnel: méthode de validation croisée, R. Roumaine Math. Pures et Appl.
50, 5 (2010), 355-367.

[7] H. Cardot, F. Ferraty, P. Sarda, Functional linear model, Stat. Proba. Lett. 45
(1999), 11-22.

[8] J. Damon, S. Guillas, The inclusion of exogenous variables in functional autore-
gressive ozone forecasting, Environmetrics. 13 (2002), 759-774.
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