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Abstract. In this paper, the generalized Kudryashov method is presented to
establish traveling wave solutions for two nonlinear space-time fractional differential
equations (FDEs) in the sense of modified Riemann-Liouville derivatives, namely
the space-time fractional modified Benjamin-Bona-Mahony (mBBM) equation and
the space-time fractional potential Kadomstev-Petviashvili (pKP) equation. The
proposed method is effective and convenient for solving nonlinear evolution equations
with fractional order.
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1. Introduction

The investigation of traveling wave solutions for nonlinear partial differential equa-
tions plays an important role in the study of nonlinear physical phenomena [1].
Nonlinear wave phenomena appears in various scientific and engineering fields, such
as fluid mechanics, plasma physics, optical fibers, biology, solid state physics and so
on. Because of the increased concentration in the theory of solitary waves, a large
variety of analytic and computational methods have been established in the anal-
ysis of the nonlinear models for example, tanh function method [2], extended tanh
function method [3, 4], sine-cosine method [5], Jacobi elliptic function method [6, 7],
F-expansion method [8, 9], exp-function method [10], (G′/G)-expansion method
[11, 12], Kudryashov method [13] and so on.

FPDEs are generalizations of classical PDEs of integer order and have recently
proved to be valuable tools to the modeling of many physical phenomena and have
been the focus of many studies due to their frequent appearance in various applica-
tions in many fields. In order to obtain exact solutions for FPDEs, many powerful
and efficient methods have been proposed so far (e.g., see [14-21]).
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The objective of this paper is to apply the generalized Kudryashov method [22]
for solving two FPDEs in the sense of the modified Riemann-Liouville derivative
which has been derived by Jumarie [23]. These equations can be reduced into non-
linear ordinary differential equations (ODE) with integer orders using some fractional
complex transformations.

2. The modified Riemann-Liouville derivative

In this section we give some definitions and properties of the modified Riemann-
Liouville derivative which are used further in this paper. Assume that f : R →
R, t→ f(t), denote a continuous function, the Jumarie modified Riemann-Liouville
derivative of order α is defined by

Dα
t f(t) =


1

Γ(−α)
d
dt

t∫
0

(t− η)−α−1[f(η)− f(0)]dη, α < 1,

1
Γ(1−α)

d
dt

t∫
0

(t− η)−α[f(η)− f(0)]dη, 0 < α ≤ 1,[
f (n)(t)

](α−n)
, n ≤ α < n+ 1, n ≥ 1

(1)

We list some important properties for the fractional modified Riemann-Liouville
derivative as follows:

Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α, r > 0 (2)

Dα
t [f(t)g(t)] = f(t)Dα

t g(t) + g(t)Dα
t f(t) (3)

Dα
t [f(g(t))] = f ′g(g(t))Dα

t g(t) = Dα
g f(g(t))[g′(t)]α, (4)

which are direct consequence of the equality dαx(t) = Γ(1 + α)dx(t).

3. The generalized Kudryashov method

Suppose that we have a nonlinear evolution equation with fractional order in the
form:

F (u, ut, D
α
t u,D

α
xu, ...) = 0, 0 < α ≤ 1, (5)

where Dα
t u,D

α
xu are Jumaries modified Riemann-Liouville derivative of u =

u(x, t), u is an unknown function, F is a polynomial in u and its various partial
derivatives, in which the highest order derivatives and nonlinear terms are involved.
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Step1. Using the fractional complex transformation

u(x, t) = u(ξ), ξ =
kxα

Γ(1 + α)
+

ctα

Γ(1 + α)
+ ξ0, (6)

where ξ0 is an arbitrary constant and k, c, are constants to be determined. Then
Eq. (5) reduces to a nonlinear ordinary differential equation of the form

P (u, uξ, uξξ, ...) = 0, (7)

Step2. Suppose that the solution of Eq. (7) has the following form:

u(ξ) =

N∑
i=0

aiQ
i(ξ)

M∑
j=0

bjQj(ξ)

=
A[Q(ξ)]

B[Q(ξ)]
, (8)

where ai(i = 0, 1, ..., N)and bj(j = 0, 1, ...,M) are constants to be determined such
that aN 6= 0, bM 6= 0 and

Q(ξ) =
1

1± eξ
, (9)

Is the solution of the equation

Qξ = Q2 −Q. (10)

Step3. Determine the positive integer numbers N and M in Eq. (8) by using
the homogeneous balance method between the highest order derivatives and the
nonlinear terms in Eq. (7).

Step4. Substitute u(ξ) and its necessary derivatives into Eq.(7)

uξ =
(
Q2 −Q

)(A′B −AB′
B2

)
, (11)

uξξ =
(Q2−Q)

2

B3 {B(BA′′ −AB′′)− 2B′(A′B −AB′)}+

(2Q− 1)
(
Q2 −Q

) (
A′B−AB′

B2

)
,

(12)

u
ξξξ

=
(Q2−Q)

3

B3

{
B(BA′′′ −AB′′′) + 3B′′(AB′ −A′B) + 3B′(AB′′ −BA′′)+
6B′2

B (A′B −AB′)

}
+

3(Q2−Q)
2
(2Q−1)

B3 {B(BA′′ −AB′′) + 2B′(AB′ −A′B)}+(
A′B−AB′

B2

) (
Q2 −Q

) (
6Q2 − 6Q+ 1

)
.

(13)
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where the prime ′ denotes the derivative d
dQ . As a result of this substitution, we get

a polynomial of Qi

Qj
, (i, j = 0, 1, 2, ...). In this polynomial we gather all terms of same

powers and equating them to zero, we obtain a system of algebraic equations which
can be solved by the Maple or Mathematica to get the unknown parameters ai(i =
0, 1, ..., N), bj(j = 0, 1, ...,M),k, c. Consequently, we obtain the exact solutions of
Eq. (5).

4. Applications

In this section, we apply the generalized Kudryashov method to find the traveling
solutions of the following space-time FDEs:

4.1. The space-time fractional modified Benjamin-Bona-Mahony
(mBBM) equation

This equation is well known and has the form

Dα
t u+Dα

xu− vu2Dα
xu+D3α

x u = 0, (14)

where 0 < α < 1, t > 0. Eq. (14) has been solved in [24] using the modified
Kudryashov method and [25] using a fractional sub equation method based on frac-
tional Riccati equation . Let us now solve Eq. (14) by using the generalized Kudru-
ashov method. To this end, we use the wave transformation (6) to reduce Eq. (14)
to the following ODE :

(c+ k)uξ − vku2uξ + k3uξξξ = 0, (15)

Integrating Eq. (15) with respect to ξ, we get

(c+ k)u− vk

3
u3 + k3uξξ +R = 0, (16)

where R is the integration constant. Balancing uξξ with u3 in (16), then we get the
formula N = M + 1 If we choose M = 1 and N = 2, then

A = a0 + a1Q+ a2Q
2, B = b0 + b1Q, (17)

u =
a0 + a1Q+ a2Q

2

b0 + b1Q
. (18)

Substituting A,B and their necessary derivatives (with respect to Q) with (8)

and (12) into (16) and equating all the coefficients of Qi

Qj
, (i, j = 0, 1, 2, ...) to zero,

we obtain

− 1

3
kva3

2 + 2k3a2b
2
1 = 0, (19)

44



A. H. Arnous – Solitary wave solutions . . .

− kva1a
2
2 + 6k3a2b0b1 − 3k3a2b

2
1 = 0, (20)

− kva2
1a2 − kva0a

2
2 + 6k3a2b

2
0 − 9k3a2b0b1 + ca2b

2
1 + ka2b

2
1 + k3a2b

2
1 = 0, (21)

−1
3kva

3
1 − 2kva0a1a2 + 2k3a1b

2
0 − 10k3a2b

2
0 − 2k3a0b0b1 + k3a1b0b1+

2ca2b0b1 + 2ka2b0b1 + 3k3a2b0b1 − k3a0b
2
1 + ca1b

2
1 + ka1b

2
1 +Rb31 = 0,

(22)

−kva0a
2
1 − kva2

0a2 − 3k3a1b
2
0 + ca2b

2
0 + ka2b

2
0 + 4k3a2b

2
0 + 3k3a0b0b1+

2ca1b0b1 + 2ka1b0b1 − k3a1b0b1 + ca0b
2
1 + ka0b

2
1 + k3a0b

2
1 + 3Rb0b

2
1

(23)

−kva2
0a1+ca1b

2
0+ka1b

2
0+k3a1b

2
0+2ca0b0b1+2ka0b0b1−k3a0b0b1+3Rb20b1 = 0, (24)

− 1

3
kva3

0 + ca0b
2
0 + ka0b

2
0 +Rb30 = 0. (25)

Solving the system of equations (19)-(25) using Mathematica, we obtain
Case1.

a0 = 0, a1 = ∓
√

3

2v
kb1, a2 = ±

√
6

v
kb1, b0 = 0, c =

1

2
k(k2 − 2), R = 0 (26)

where b1, k are arbitrary constants. The solution of Eq. (14) corresponding to (26)
is

u1,2(x, t) = ∓
√

3

2v
k tanh

[
kxα

2Γ(1 + α)
+
k(k2 − 2)tα

4Γ(1 + α)
+
ξ0

2

]
, (27)

u3,4(x, t) = ∓
√

3

2v
k coth

[
kxα

2Γ(1 + α)
+
k(k2 − 2)tα

4Γ(1 + α)
+
ξ0

2

]
, (28)

Case2.

a0 = 0, a1 = ∓2

√
6

v
kb0, a2 = ±2

√
6

v
kb0, b1 = −2b0, c = −k(k2+1), R = 0 (29)

where b0, k are arbitrary constants. The solution of Eq. (14) corresponding to (29)
is

u5,6(x, t) = ±
√

6

v
k csch

[
kxα

Γ(1 + α)
− k(k2 + 1)tα

Γ(1 + α)
+ ξ0

]
, (30)

Case3.

a0 = ∓
√

6

v
kb0, a1 = ±2

√
6

v
kb0, a2 = ∓2

√
6

v
kb0, b1 = −2b0, c = k(2k2−1), R = 0.

(31)
where b0, k are arbitrary constants. The solution of Eq. (14) corresponding to (31)
is

u7,8(x, t) = ±
√

6

v
k coth

[
kxα

Γ(1 + α)
+
k(2k2 − 1)tα

Γ(1 + α)
+ ξ0

]
. (32)
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Case4.

a0 = ∓
√

6

v
kb0, a1 = 0, a2 = ∓2

√
6

v
kb0, b1 = 2b0, c = k(5k2−1), R = ±3

√
6

v
k4 (33)

where b0, k are arbitrary constants. The solution of Eq. (14) corresponding to (33)
is

u9,10(x, t) = ±
√

3
2vk

(
tanh

[
kxα

2Γ(1+α) + k(5k2−1)tα

2Γ(1+α) + ξ0
2

]
+ 3

tanh
[

kxα

2Γ(1+α)
+
k(5k2−1)tα

2Γ(1+α)
+
ξ0
2

]
−2

)
,

(34)

u11,12(x, t) = ±
√

3
2vk

(
coth

[
kxα

2Γ(1+α) + k(5k2−1)tα

2Γ(1+α) + ξ0
2

]
+ 3

coth
[

kxα

2Γ(1+α)
+
k(5k2−1)tα

2Γ(1+α)
+
ξ0
2

]
−2

)
,

(35)

4.2. The space-time fractional potential Kadomstev-Petviashvili (pKP)
equation

This equation is well known and has the form

1

4
D4α
x u+

3

2
Dα
xuD

2α
x u+

3

4
D2α
y u+Dα

t
(Dα

xu) = 0, (36)

where 0 < α < 1, t > 0. Eq. (36) has been solved in [24] using the modified
Kudryashov method and [26] using Exp-function and (G′/G)-expansion methods.
Let us now solve Eq. (36) by using the generalized Kudruashov method. To this
end, we use the wave transformation

u(x, y, t) = u(ξ), ξ =
kxα

Γ(1 + α)
+

lyα

Γ(1 + α)
+

ctα

Γ(1 + α)
+ ξ0, (37)

to reduce Eq. (36) to the following ODE :

1

4
k4uξξξξ +

3

2
k3uξuξξ +

(
3

4
l2 + ck

)
uξξ = 0. (38)

Integrating Eq. (38) with respect to ξ, we obtain

1

4
k4uξξξ +

3

4
k3uξ

2 +

(
3

4
l2 + ck

)
uξ +R = 0. (39)

where is the integration constant. Balancing uξξξ with uξ
2 in (39), then we get the

formula N = M + 1 If we choose M = 1 and N = 2, then

A = a0 + a1Q+ a2Q
2, B = b0 + b1Q, (40)
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u =
a0 + a1Q+ a2Q

2

b0 + b1Q
. (41)

Substituting A,B and their necessary derivatives (with respect to Q) with (11)

and (13) into (39) and equating all the coefficients of Qi

Qj
, (i = 0, 1, 2, j = 0, 1) to

zero, we obtain
3

4
k3a2b

2
1(a2 + 2kb1) = 0, (42)

3

2
k3a2(2b0 − b1)b1(a2 + 2kb1) = 0, (43)

1
4a2(3k3a2(4b20 − 8b0b1 + b21)+
b1(6k3a1b0 + 36k4b20 − 48k4b0b1 + b1(−6k3a0 + (4ck + 7k4 + 3l2)b1))) = 0,

(44)

−1
4a2(−24k4b30 − 12k3a1b0(b0 − b1) + 12k3a2b0(2b0 − b1) + 12k3a0b0b1 + 72k4b20b1
−12k3a0b

2
1 − 16ckb0b

2
1 − 28k4b0b

2
1 − 12l2b0b

2
1 + 4ckb31 + k4b31 + 3l2b31)

(45)
1
4(3k3a2

1b
2
0 + 12k3a2

2b
2
0 + a1b0(6k4b20 + 6k4b0b1 + 6k3a2(−4b0 + b1)+

b1(−6k3a0 + (4ck + k4 + 3l2)b1)) + a2(−54k4b30 + (20ck + 41k4 + 15l2)b20b1−
6k3a0b

2
1 − 4b0b1(−6k3a0 + (4ck + k4 + 3l2)b1)) + b1(3k3a2

0b1 + 4Rb31−
a0(6k4b20 + 6k4b0b1 + (4ck + k4 + 3l2)b21))) = 0,

(46)

1
4 (−6k3a21b

2
0 + a2b0((8ck + 38k4 + 6l2)b20 − 12k3a0b1 − 5(4ck + k4 + 3l2)b0b1)−

a1b0(−12k3a2b0 + 12k4b20 − 2(4ck − 5k4 + 3l2)b0b1 + b1(−12k3a0 + (4ck + k4 + 3l2)b1))+
b1(−6k3a20b1 + 16Rb0b

2
1 + a0(12k4b20 − 2(4ck − 5k4 + 3l2)b0b1 + (4ck + k4 + 3l2)b21))) = 0,

(47)

1
4(3k3a2

1b
2
0 − 2(4ck + 4k4 + 3l2)a2b

3
0 + a1b0((4ck + 7k4 + 3l2)b20 − 6k3a0b1−

2(4ck − 2k4 + 3l2)b0b1) + b1(3k3a2
0b1 + 24Rb20b1 − a0b0((4ck + 7k4 + 3l2)b0−

2(4ck − 2k4 + 3l2)b1))) = 0,
(48)

1

4
b20(−(4ck + k4 + 3l2)a1b0 + ((4ck + k4 + 3l2)a0 + 16Rb0)b1) = 0, (49)

Rb40 = 0. (50)

Solving the system of equations (42)-(50) using Mathematica, we obtain
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Case1.

a1 =
−2kb20 + a0b1

b0
, a2 = −2kb1, c = −k

4 + 3l2

4k
, R = 0. (51)

where a0, b0, k, l are arbitrary constants.
The solution of Eq. (36) corresponding to (51) is

u1(x, y, t) =
a0

b0
+ k

(
tanh

[
kxα

2Γ(1 + α)
+

lyα

2Γ(1 + α)
−
(
k4 + 3l2

)
tα

8kΓ(1 + α)
+
ξ0

2

]
− 1

)
,

(52)

u2(x, y, t) =
a0

b0
+ k

(
coth

[
kxα

2Γ(1 + α)
+

lyα

2Γ(1 + α)
−
(
k4 + 3l2

)
tα

8kΓ(1 + α)
+
ξ0

2

]
− 1

)
,

(53)
Case2.

a0 = 0, a2 = −2kb1, b0 = 0, c = −k
4 + 3l2

4k
, R = 0. (54)

where a1, b1, k, l are arbitrary constants.
The solution of Eq. (36) corresponding to (54) is

u3(x, y, t) =
a1

b1
+ k

(
tanh

[
kxα

2Γ(1 + α)
+

lyα

2Γ(1 + α)
−
(
k4 + 3l2

)
tα

8kΓ(1 + α)
+
ξ0

2

]
− 1

)
,

(55)

u4(x, y, t) =
a1

b1
+ k

(
coth

[
kxα

2Γ(1 + α)
+

lyα

2Γ(1 + α)
−
(
k4 + 3l2

)
tα

8kΓ(1 + α)
+
ξ0

2

]
− 1

)
,

(56)
Case3.

a1 = −2a0, a2 = 4kb0, b1 = −2b0, c = −4k4 + 3l2

4k
, R = 0. (57)

where a0, b0, k, l are arbitrary constants.
The solution of Eq. (36) corresponding to (57) is

u5(x, y, t) =
a0

b0
+ 2k

(
coth

[
kxα

Γ(1 + α)
+

lyα

Γ(1 + α)
−
(
4k4 + 3l2

)
tα

4kΓ(1 + α)
+ ξ0

]
− 1

)
,

(58)
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5. Conclusions

In this paper, we have proposed the generalized Kudryashov method for solving two
nonlinear space-time FDEs in the sense of modified Riemann-Liouville derivatives,
namely the space-time fractional modified Benjamin-Bona-Mahony (mBBM) equa-
tion and the space-time fractional potential Kadomstev-Petviashvili (pKP) equation.
A new results have been obtained in this work using this method. This method is
effective and can be extended for solving many systems of nonlinear FPDEs.
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