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GEODESIC η-INVEX AND SEMISTRICTLY GEODESIC
η-PREQUASI INVEX FUNCTIONS ON RIEMANNIAN MANIFOLD

S. Jana, C. Nahak

Abstract. In this paper we consider an optimization problem on a Riemannian
manifold where the objective function is geodesic η-invex, the feasible set is geodesic
invex but the inequality constraints are not necessarily geodesic η-invex. We show
that if the program is superconsistent and a non-degeneracy condition is satisfied
then the Karush-Kuhn-Tucker (KKT) type optimality conditions are both necessary
and sufficient. We also introduce the notion of semistrictly geodesic η-prequasi
invex functions on Riemannian manifolds and study their properties. We construct
an example of a semistrictly geodesic η-prequasi invex function on a Riemannian
manifold.
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1. Introduction

Convexity plays an important role in science, engineering and optimization theory.
Convexity in linear topological spaces is based upon the possibility of connecting
any two points of the space by a line segment. Since convexity is often not enjoyed
by real problems, various approaches to the generalizations of the usual line segment
have been proposed.

Rapcsak [7] introduced a generalization of convexity called geodesic convexity
and extended many results of convex analysis and optimization theory from lin-
ear spaces to Riemannian manifolds. In the year 1994, C. Udriste [8] introduced
an exhaustive exposition of convex programming on Riemannian manifolds. The
notion of invex function on Riemannian manifold was introduced by Pini [6]. Mi-
titelu [5] introduced (η, θ)-invex function which is a generalization of invex function
on Riemannian manifolds. Barani and Pouryayevali [3] defined geodesic invex set,
geodesic η-invex function and geodesic η-preinvex function on Riemannian manifold
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and studied their properties. Ahmad et al. [2] extended these results by introducing
geodesic η-prepseudo invex functions and geodesic η-prequasi invex functions.

In Section 2 of the paper we recall some of concepts and facts from Riemannian
geometry.

In the year 2010, Lasserre [4] proved that if Slater’s condition and a non-
degeneracy assumption hold for a convex optimization problem on Euclidean spaces
then KKT optimality conditions are necessary and sufficient even if the inequality
constraints are not convex.
Motivated by the work of Lasserre [4], in Section 3 we extend KKT optimality condi-
tions with reference to a Riemannian manifold where we take a geodesic η-invex ob-
jective function on a geodesic invex set subject to some inequality constraints which
are not necessarily geodesic η-invex. We prove that if the optimization problem is
superconsistent and a mild non-degeneracy condition holds then KKT optimality
conditions are also necessary and sufficient.

Yang and Li [10] introduced semistrictly preinvex functions on Euclidean spaces.
Agarwal et al. [1] extended the results of Yang and Li by introducing semistrictly
geodesic η-preinvex functions over a Riemannian manifold.

In Section 4, we introduce the notion of semistrictly geodesic η-prequasi invex
functions on Riemannian manifolds which extend semistrictly quasi invex functions
introduced by Yang et al. [11]. We construct an example of a semistrictly geodesic
η-prequasi invex function and study its properties.

Section 5 includes some concluding remarks.

2. Preliminaries and Definitions

In this section, we recall some definitions and basic properties about Riemannian
manifolds which we use throughout the paper. One can refer [9] an easy access of
the standard materials on differential geometry.
Throughout this paper M is a C∞ smooth manifold endowed with a Riemannian
metric < ., . >p on the tangent space TpM and corresponding norm is denoted by
‖.‖p, which yields that M is a Riemannian manifold. The length of a piecewise C1

curve γ : [a, b] → M joining p to q such that γ(a) = p and γ(b) = q, is defined by

L(γ) =
∫ b
a ‖ γ̇(t) ‖γ(t) dt. We define the distance d between any two points p, q ∈M

by

d(p, q) = inf{L(γ) : γ is a piecewise C1 curve joining p to q}.

Then d induces the original topology on M. On every Riemannian manifold there
exists exactly one covariant derivation called Levi-Civita connection denoted by
∇XY for any vector fields X,Y on M. We recall that a geodesic is a C∞ smooth
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path γ whose tangent is parallel along the path γ, that is γ satisfies the equation
∇ dγ(t)

dt

dγ(t)
dt = 0. Any path γ joining p and q in M such that L(γ) = d(p, q) is a

geodesic, and it is called a minimal geodesic. The existence theorem for ordinary
differential equations implies that for every v ∈ TM there exist an open interval
J(v) containing 0 and exactly one geodesic γv : J(v) → M with dγ(0)

dt = v. This

implies that there is an open neighborhood T̃M of the submanifold M of TM such
that for every v ∈ T̃M the geodesic γv(t) is defined for |t| < 2. The exponential
mapping exp : T̃M → M is then defined as exp(v) = Jv(1) and the restriction of
exp to a fiber TpM in T̃M is denoted by expp for every p ∈M .
Let f be a differentiable map from the manifold M to the manifold N. The linear
map dfp : TpM → Tf(p)N defined by dfp(v) = f ′(p)v is called the differential of f
at the point p.
Recall that a simply connected complete Riemannian manifold of nonpositive sec-
tional curvature is called a Cartan-Hadamard manifold.

Definition 1. ([3]) Let M be an n-dimensional Riemannian manifold and η : M ×
M → TM be a function such that for every x, y ∈ M, η(x, y) ∈ TyM. A nonempty
subset S of M is said to be geodesic invex set with respect to η if for every x, y ∈ S,
there exists a unique geodesic γx,y : [0, 1]→M such that

γx,y(0) = y, γ
′
x,y(0) = η(x, y), γx,y(t) ∈ S, ∀t ∈ [0, 1].

Definition 2. ([3]) Let M be an n-dimensional Riemannian manifold and S be an
open subset of M which is geodesic invex with respect to η : M × M → TM. A
function f : S → R is said to be geodesic η-preinvex if ∀x, y ∈ S, we have

f(γx,y(t)) ≤ tf(x) + (1− t)f(y) ∀t ∈ [0, 1].

If f be differentiable on S. We say that f is geodesic η-invex on S if the following
holds

f(x)− f(y) ≥ dfy(η(x, y)), ∀x, y ∈ S.

Example([3]): Let M be a Cartan-Hadamard manifold and x0, y0 ∈M, x0 6= y0.
Let B(x0, r1) ∩B(y0, r2) = ∅ for some 0 < r1, r2 <

1
2d(x0, y0), where B(x, r) = {y ∈

M : d(x, y) < r} is an open ball with center x and radius r. Let S = B(x0, r1) ∪
B(y0, r2). Then S is not a geodesic convex set as every geodesic curve passing x0, y0

is not completely lie in S. Now if we define the function η : M ×M → TM by

η(x, y) =

{
exp−1

y x, x, y ∈ B(x0, r1) or x, y ∈ B(y0, r2);

0y, otherwise.

Then S is a geodesic invex set with respect to η.
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Definition 3. ([1]) Let M be an n-dimensional Riemannian manifold and S be an
open subset of M which is geodesic invex with respect to η : M × M → TM. A
function f : S → R is said to be semistrictly geodesic η-preinvex if ∀x, y ∈ S with
f(x) 6= f(y), we have

f(γx,y(t)) < tf(x) + (1− t)f(y) ∀t ∈ (0, 1).

Definition 4. ([1]) Let S ⊆ M × R, S is said to be geodesic G-invex set if there
exists η : M ×M → TM such that for any pair (x, α) and (y, β), we have

(γx,y(t), tα+ (1− t)β) ∈ S ∀t ∈ [0, 1].

Definition 5. ([2]) Let M be an n-dimensional Riemannian manifold and S be an
open subset of M which is geodesic invex with respect to η : M × M → TM. A
function f : S → R is said to be geodesic η-prequasi invex on S if

f(γx,y(t)) ≤ max{f(x), f(y)} ∀x, y ∈ S, ∀t ∈ [0, 1].

3. Necessity and Sufficiency of KKT Optimality Conditions

Throughout the remaining part of the paper (M, g) denotes a complete finite-
dimensional Riemannian manifold and A ⊂ M is a geodesic invex set. TxA is
the tangent space at a point x ∈ A and 0x is the zero vector in TxA.
We consider the optimization problem on the Riemannian manifold (M, g)

(P ) min
x∈A

f(x)

where f : M → R is a geodesic η-invex function which is differentiable.

A = {x ∈M : ψi(x) ≤ 0; i = 1, 2, ...,m},

where ψi : M → R is a differentiable function not necessarily geodesic η-invex for
all i = 1, 2, ...,m.

Definition 6. (Superconsistency) The program (P) is called superconsistent if there
exists y ∈ A such that ψi(y) < 0, for all i = 1, 2, ...,m.

We assume the following non-degeneracy condition.
Assumption 1(Nondegeneracy). For every i = 1, 2, ...,m,

grad ψi(x) 6= 0x, whenever x ∈ A and ψi(x) = 0. (1)

Lemma 1. If the superconsistency holds for A and the constraint functions ψi are
geodesic η-invex, then the above non-degeneracy condition holds automatically.
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Proof. By the superconsistency of A there exists a point x0 ∈ A, such that ψi(x0) <
0, for every i = 1, 2, ...,m.
Suppose that there exists x ∈ A such that grad ψi(x) = 0x, whenever ψi(x) = 0.
Let η : M ×M → TM be a function such that for every x0, x ∈ M, η(x0, x) ∈
TxM and αx0,x be a geodesic joining the point x and x0 in A such that αx0,x(0) =
x, α′x0,x(0) = η(x0, x). Since ψi are geodesic η-invex then we have

ψi(x0)− ψi(x) ≥ dψix(η(x0, x)).

Now dψix(η(x0, x)) = g(grad ψi(x), η(x0, x)) = g(0x, η(x0, x)) = 0. i.e., ψi(x0) ≥ 0
(as ψi(x) = 0), which is a contradiction to the superconsistency of A.
Hence our assumption is false. Therefore, for every i = 1, 2, ...,m, grad ψi(x) 6=
0x, whenever x ∈ A and ψi(x) = 0.

Lemma 2. Let the superconsistency and the nondegeneracy assumption be hold for
A. If A is geodesic invex then for every, i = 1, 2, ...,m,

dψiy(η(x, y)) ≤ 0, ∀x, y ∈ A with ψi(y) = 0. (2)

Proof. Since A is geodesic invex with respect to η, ∀x, y ∈ A there exists exactly
one geodesic αx,y : [0, 1] → M such that αx,y(0) = y, α′x,y(0) = η(x, y), αx,y(t) ∈
A, ∀t ∈ [0, 1].
If possible suppose dψiy(η(x, y)) > 0 for some i ∈ 1, 2, ...,m and some x, y ∈ A with
ψi(y) = 0. Then for sufficiently small t ∈ [0, 1], we have

ψi(αx,y(t)) > 0, (3)

which is a contradiction as αx,y(t) ∈ A for all 0 ≤ t ≤ 1 (as A is geodesic invex).
Hence dψiy(η(x, y)) ≤ 0, ∀x, y ∈ A with ψi(y) = 0.

Let us consider the problem (P). A point x̄ ∈ A is said to be a Karush-Kuhn-
Tucker (KKT) point of the problem (P) if there exists scalars λi ≥ 0, i = 1, 2, ...,m,
such that

grad f(x̄) +
m∑
i=1

λigrad ψi(x̄) = 0x̄,

λiψi(x̄) = 0,∀i = 1, 2, ...,m.

Theorem 3. Let the condition of superconsistency and the assumption of nonde-
generacy (Assumption 1) hold for the problem (P). If f is geodesic η-invex, then
every minimizer is a KKT point and conversely, every KKT point is a minimizer.
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Proof. Let x̄ ∈ A be a minimizer. We first prove that x̄ is a KKT point. Since x̄ is
a minimizer, by the Fritz-John optimality conditions we have,

λ0grad f(x̄) +
m∑
i=1

λigrad ψi(x̄) = 0x̄, (4)

λiψi(x̄) = 0,∀i = 1, 2, ...,m, (5)

for some non trivial vector 0 6= λ ∈ Rm+1.
We next prove that λ0 6= 0. Suppose that λ0 = 0.
Let I = {i ∈ {1, 2, ...,m} : λi > 0}.
As λ 6= 0 and λ0 = 0, the set I 6= ∅. Next by the superconsistency of A, there exists
x0 ∈ A, such that ψi(x0) < 0, for every i = 1, 2, ...,m. Hence there is some ρ > 0,
such that
B(x0, ρ) = {z ∈ M : d(x0, z) < ρ} ⊂ A and ψi(z) < 0, ∀z ∈ B(x0, ρ) and for all
i ∈ I.
As λ0 = 0, from (4) we have,

m∑
i=1

λigrad ψi(x̄) = 0x̄. (6)

Since A is geodesic invex with respect to η, then for x̄, z ∈ A there exists a geodesic
αz,x̄ : [0, 1]→M such that αz,x̄(0) = y, α′z,x̄(0) = η(z, x̄), αz,x̄(t) ∈ A, ∀t ∈ [0, 1].
From (6) it follows that

∑
i∈I λidψix̄(η(z, x̄)) = 0, ∀z ∈ B(x0, ρ). Hence by Lemma

2 (as ψi(x̄) = 0 for λi > 0), we have dψix̄(η(z, x̄)) = 0, ∀z ∈ B(x0, ρ) and i ∈ I.
i.e., dψix̄(η(z, x̄)) = g(grad ψi(x̄), η(z, x̄)) = 0, ∀z ∈ B(x0, ρ)
⇒ grad ψi(x̄) = 0x̄, ∀i ∈ I, which is a contradiction to the Assumption 1.
Hence λ0 > 0 and we may set λ0 = 1. So x̄ is a KKT point.
Conversely, let x ∈ A be an arbitrary KKT point. Hence

grad f(x) +
m∑
i=1

λigrad ψi(x) = 0x,

λiψi(x) = 0,∀i = 1, 2, ...,m,

for some nonnegative 0 6= λ ∈ Rm.
Since f is geodesic η-invex we have ∀y ∈ A,

f(y)− f(x) ≥ dfx(η(y, x)). (7)

As grad f(x) = −
∑m

i=1 λigrad ψi(x), we have from (7),

f(y)− f(x) ≥ −
m∑
i=1

λidψix(η(y, x)). (8)
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Now, since A is geodesic invex by Lemma 2, ∀i = 1, 2, ...,m,
dψix(η(y, x)) ≤ 0, ∀x, y ∈ A with ψi(x) = 0.
Since λi ≥ 0, then

∑m
i=1 λidψix(η(y, x)) ≤ 0.

Hence from (8), f(y)− f(x) ≥ 0, ∀y ∈ A. Hence x is a minimizer.

Hence if the feasible set is geodesic invex and both the non-degeneracy assump-
tion and the superconsistency hold, there is a one-to-one correspondence between
the KKT points and the set of minimizers of the problem (P).

4. Properties of semistrictly geodesic η-prequasi invex functions

In this section, the notion of semistrictly geodesic η-prequasi invex functions is
introduced and their properties are studied.

Definition 7. Let S be an open subset of M which is geodesic invex with respect
to η : M ×M → TM. A function f : S → R is said to be semistrictly geodesic
η-prequasi invex if ∀x, y ∈ S, f(x) 6= f(y), we have

f(γx,y(t)) < max{f(x), f(y)} ∀t ∈ (0, 1).

We show by an example that semistrictly geodesic η-prequasi invex function need
not be geodesic η-prequasi invex function.

Example: Let M = {eiθ = | − π ≤ θ < π} and S = {eiθ = | − π
2 < θ < π

2 }.
Then S is an open set in M. Let x, y ∈ S, where x = eiθ1 , y = eiθ2 and η(x, y) =
(θ2 − θ1)(sin θ2,− cos θ2).
We define a geodesic on M as γx,y : [0, 1]→M such that γx,y(t) = (cos((1− t)θ2 +
tθ1), sin((1− t)θ2 + tθ1)). Clearly

γx,y(0) = y, γ
′
x,y(0) = η(x, y), γx,y(t) ∈ S, ∀t ∈ [0, 1].

Hence S is a geodesic invex set in M.
Now we define f : S → R by

f(x) =

{
1, if θ = 0,
0, otherwise.

Then ∀x, y ∈ S, f(x) 6= f(y), we have

f(γx,y(t)) < max{f(x), f(y)} ∀t ∈ (0, 1).

i.e., f is semistrictly geodesic η-prequasi invex function.
Let θ1 = π

4 , θ2 = −π
4 , t = 1

2 , then
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f(γx,y(t)) = f(cos(1
2θ2 + 1

2θ1), sin(1
2θ2 + 1

2θ1)) = f(cos 0, sin 0) = 1

≮ max{f(e
iπ
4 ), f(e−

iπ
4 )} = 0.

Hence f is not geodesic η-prequasi invex function.

Remark 1. If the function f is semistrictly geodesic η-preinvex on S, then f is
semistrictly geodesic η-prequasiinvex on S.

Proof. Let f be a semistrictly geodesic η-preinvex on S, then ∀x, y ∈ S with f(x) 6=
f(y), we have

f(γx,y(t)) < tf(x) + (1− t)f(y), ∀t ∈ (0, 1)
≤ tmax{f(x), f(y)}+ (1− t) max{f(x), f(y)}
= max{f(x), f(y)}.

Hence f is semistrictly geodesic η-prequasiinvex on S.

Theorem 4. Let S be a nonempty geodesic invex subset of M with respect to η :
M ×M → TM and f : M → R be a semistrictly geodesic η-prequasi invex function.
If x̄ ∈ S is a local optimal solution to the optimization problem

(OP ) min
x∈S

f(x)

then x̄ is a global minimum of (OP).

Proof. let x̄ ∈ S be a local minimum of (OP). Then there is a neighborhood Nε(x̄)
of x̄ such that

f(x̄) ≤ f(x) ∀x ∈ S ∩Nε(x̄). (9)

If possible let x̄ is not a global minimum of f then there exists a point x∗ ∈ S such
that f(x∗) ≤ f(x̄).
Since S is a geodesic invex set with respect to η, there exists exactly one geodesic
γx∗,x̄ joining x∗, x̄ such that

γx∗,x̄(0) = x̄, γ
′
x∗,x̄(0) = η(x∗, x̄), γx∗,x̄(t) ∈ S ∀t ∈ [0, 1].

Let us choose ε > 0 small enough such that d(γx∗,x̄(t), x̄) < ε, then γx∗,x̄(t) ∈ Nε(x̄).
Since f is semistrictly geodesic η-prequasi invex function, we have

f(γx∗,x̄(t)) < max{f(x∗), f(x̄)} ∀t ∈ (0, 1).

i.e., for all γx∗,x̄(t) ∈ S ∩Nε(x̄), we have f(γx∗,x̄(t)) < f(x̄), which is a contradiction
to (9).
Hence x̄ is a global minimum of (OP).
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Theorem 5. Let S be a nonempty geodesic invex subset of M with respect to η :
M×M → TM. Let f : S → R be a semistrictly geodesic η-prequasi invex function for
the same η and let φ : R→ R be a strictly increasing function. Then the composite
function φ(f) is a semistrictly geodesic η-prequasi invex function.

Proof. For any x, y ∈ S, λ ∈ (0, 1) if φ(f(x)) 6= φ(f(y)), then f(x) 6= f(y).
Since f is semistrictly geodesic η-prequasi invex function, we have

f(γx,y(t)) < max{f(x), f(y)} ∀t ∈ (0, 1).

Since φ is strictly increasing, then

φ[f(γx,y(t))] < φ[max{f(x), f(y)}] = max{φ(f(x)), φ(f(y))}.

This shows that φ(f) is a semistrictly geodesic η-prequasi invex function.

5. Conclusion

In this work we prove the necessity and sufficiency of the KKT theorem for an invex
optimization problem where the inequality constraints are not necessarily geodesic
η-invex over a Riemannian manifold. This work generalizes the classical KKT the-
orem on Riemannian manifolds which had been introduced by C. Udriste [8]. We
extend the notion of semistrictly quasi invex functions from Euclidean spaces to
Riemannian manifolds by introducing semistrictly geodesic η-prequasi invex func-
tions. Variational and control problems on Riemannian manifolds under geodesic
η-invexity will orient the future study of the authors.
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