ON SPACELIKE PARALLEL P_I -EQUIDISTANT RULED SURFACES IN THE MINKOWSKI 3-SPACE R_1^3

M. MASAL, N. KURUOĞLU

ABSTRACT. In this paper, radii and curvature axes of osculator Lorentz spheres and arc lengths of indicatrix curves of base curves of spacelike parallel p_i -Equidistant ruled surfaces in the Minkowski 3-space R_1^3 are given.

2000 Mathematics Subject Classification: 53A35, 53C25.

Keywords: ruled surface, Minkowski, spacelike, parallel p_i -equidistant.

1. INTRODUCTION

I. E. Valeontis, (see [3]), defined parallel *p*-equidistant ruled surfaces in E^3 and gave some results related with striction curves of ruled surfaces. Then he also studied on existence theorem related with homothety of parallel *p*-equidistant ruled surfaces.

M. Masal, N. Kuruoğlu, (see [1]) obtained arc lengths, curvature radii, curvature axes, spherical involute and areas of real closed spherical indicatrix curves of base curves (leading curves) of parallel *p*-equidistant ruled surfaces in E^3 .

And also, M. Masal, N. Kuruoğlu, (see [2]) defined spacelike parallel p_i -equidistant ruled surfaces in the Minkowski 3-space R_1^3 and obtained dralls, the shape operators, Gaussian curvatures, mean curvatures, shape tensor, q^{th} fundamental forms of these surfaces.

This paper is organized as follows: in Section 3 we find radii and curvature axes of osculator Lorentz spheres of spacelike parallel p_i -equidistant ruled surfaces in the Minkowski 3-space.

And later in Section 4 we give arc lengths of indicatrice curves of spacelike parallel p_i -equidistant ruled surfaces.

2. Preliminaries

Let $\alpha: I \to R_1^3$, $\alpha(t) = (\alpha_1(t), \alpha_2(t), \alpha_3(t))$ be a differentiable spacelike curve with arc-length in the Minkowski 3-space, where I is an open interval in R containing the

origin. Let V_1 be the tangent vector field of α , D be the Levi-Civita connection on R_1^3 and $D_{V_1}V_1$ be a spacelike vector. If V_1 moves along α , then we obtain a spacelike ruled surface which is given by the parametrization

$$M:\varphi(t,v) = \alpha(t) + vV_1(t).$$
(1)

 $\{V_1, V_2, V_3\}$ is an Frenet frame field along α in R_1^3 , where V_1 and V_2 are spacelike vectors and V_3 is a timelike vector, (see [2]). If k_1 and k_2 are the naturel curvature and torsion of $\alpha(t)$, respectively, then the Frenet formulas are, (see [4])

$$V_1' = k_1 V_2, \quad V_2' = -k_1 V_1 + k_2 V_3, \quad V_3' = k_2 V_2.$$
 (2)

Using $V_1 = \alpha'$ and $V_2 = \frac{\alpha''}{\|\alpha''\|}$, we have $k_1 = \|\alpha''\| > 0$, where "'" means derivate with respect to time t, (see [2]).

Definition 1. The planes which are corresponding to the subspaces $Sp \{V_1, V_2\}$, $Sp \{V_2, V_3\}$ and $Sp \{V_3, V_1\}$ are called **asymptotic plane**, **polar plane** and **central plane**, respectively, (see [2]).

Definition 2. Let M and M^* be two spacelike ruled surfaces in R_1^3 ; and p_1, p_2 and p_3 be the distances between the polar planes, central planes and asymptotic planes, respectively.

If

i) The generator vectors of M and M^* are parallel,

ii) The distances p_i , $1 \le i \le 3$, at the corresponding points of α and α^* are constant, then the pair of ruled surfaces M and M^* are called the spacelike parallel p_i -equidistant ruled surfaces in R_1^3 . If $p_i = 0$, then the pair of M and M^* are called the spacelike parallel p_i -equivalent ruled surfaces in R_1^3 .

From the definition 2, the spacelike parallel p_i -equidistant ruled surfaces have the following parametric representations, (see [2]).

$$M : \varphi(t, v) = \alpha(t) + vV_1(t), \quad (t, v) \in I \times R,$$
$$M^* : \varphi^*(t^*, v^*) = \alpha^*(t^*) + v^*V_1(t^*), \quad (t^*, v^*) \in I \times R.$$

where, t and t^{*} are the arc parameters of curves α and α^* , respectively. From now on M and M^{*} will be assumed the spacelike parallel p_i -equidistant ruled surfaces.

Theorem 1. *i)* The Frenet frames $\{V_1, V_2, V_3\}$ and $\{V_1^*, V_2^*, V_3^*\}$ are equivalent at the corresponding points in M and M^* , respectively. (For $\frac{dt^*}{dt} > 0$.)

ii) If k_1 and k_1^* are the naturel curvatures and k_2 , k_2^* are the torsions of base curves of M and M^{*}, respectively, then we have, (see [2]).

$$k_i^* = k_i \frac{dt}{dt^*}, \quad 1 \le i \le 2.$$

3. The Osculator Lorentz Spheres of Spacelike Parallel p_i -equidistant Ruled Surfaces

In this Section, we will investigate radii and curvature axes of osculator Lorentz spheres of the spacelike parallel p_i -equidistant ruled surfaces M and M^* . We compute the locus of center of the osculator sphere S_1^2 which is fourth order contact with the base curve α of M. Let us consider the function f defined by

$$\begin{aligned} f: I \to R \\ t \to f(t) &= \langle \alpha(t) - a, \alpha(t) - a \rangle - R^2, \end{aligned} \tag{3}$$

where a and R are the center and radius of S_1^2 , respectively. Since S_1^2 is fourth order contact with the curve α , we get

$$f(t) = f'(t) = f''(t) = f'''(t) = 0.$$

From f(t) = 0 we have

$$\langle \alpha(t) - a, \alpha(t) - a \rangle = R^2, \tag{4}$$

Then f'(t) = 0, we obtain

$$\langle V_1(t), \alpha(t) - a \rangle = 0, \tag{5}$$

Using f''(t) = 0 and equation (2) we get

$$\langle V_2(t), \alpha(t) - a \rangle = -\frac{1}{k_1(t)}.$$
(6)

For the vector $\alpha(t) - a$, we can write

$$\alpha(t) - a = m_1(t)V_1(t) + m_2(t)V_2(t) + m_3(t)V_3(t), \quad m_i(t) \in \mathbb{R},$$
(7)

where $\{V_1, V_2, V_3\}$ is the Frenet frame field of M. From equation (7), we obtain

$$\langle \alpha(t) - a, V_1(t) \rangle = m_1(t), \langle \alpha(t) - a, V_2(t) \rangle = m_2(t), \langle \alpha(t) - a, V_3(t) \rangle = -m_3(t).$$
(8)

From equations (5) and (6), we get

$$m_1(t) = 0, \quad m_2(t) = -\frac{1}{k_1(t)}.$$
 (9)

Using equations (4), (7) and (9) we find

$$R = \sqrt{m_2^2 - m_3^2} \tag{10}$$

or

$$m_3 = \pm \sqrt{m_2^2 - R^2}.$$
 (11)

Substituting equation (9) to equation (7), we have the center a of S_1^2 as follows

$$a = \alpha(t) + \frac{1}{k_1} V_2(t) - \lambda V_3(t), \quad \lambda = m_3(t) \in R.$$
 (12)

Using f'''(t) = 0

$$k_1' \langle V_2(t), \alpha(t) - a \rangle + k_1 \langle V_2'(t), \alpha(t) - a \rangle + k_1 \langle V_2(t), V_1(t) \rangle = 0$$

is obtained. Hence, from (2), (8) and (9) we get

$$m_3 = -\frac{k_1'}{k_1^2 k_2} = -\frac{m_2'}{k_2}.$$
(13)

Similarly, we find the locus of center of osculator sphere S_1^{*2} which is fourth order contact with the base curve α^* of M^* . Let us consider the function f^* defined by

$$\begin{aligned}
f^*: I \to R \\
t^* \to f^* (t^*) &= \langle \alpha^*(t^*) - a^*, \alpha^*(t^*) - a^* \rangle - R^{*2},
\end{aligned}$$
(14)

where a^* and R^* are the center and the radius of S_1^{*2} . Since S_1^{*2} is fourth order contact with the curve α^* , we can write

$$f^{*}(t^{*}) = f^{*'}(t^{*}) = f^{*''}(t^{*}) = f^{*'''}(t^{*}) = 0.$$

From $f^*(t^*) = f^{*'}(t^*) = f^{*''}(t^*) = 0$ and (2), we get

$$\langle \alpha^*(t^*) - a^*, \alpha^*(t^*) - a^* \rangle = R^{*2},$$
 (15)

$$\langle V_1^*(t^*), \alpha^*(t^*) - a^* \rangle = 0,$$
 (16)

$$\langle V_2^*(t^*), \alpha^*(t^*) - a^* \rangle = -\frac{1}{k_1^*(t^*)}.$$
 (17)

Furthermore, for the vector $\alpha^*(t^*) - a^*$,

$$\alpha^{*}(t^{*}) - a^{*} = m_{1}^{*}(t^{*})V_{1}^{*}(t^{*}) + m_{2}^{*}(t^{*})V_{2}^{*}(t^{*}) + m_{3}^{*}(t^{*})V_{3}^{*}(t^{*}), \quad m_{i}^{*}(t^{*}) \in R, \quad (18)$$

can be written, where $\{V_1^*, V_2^*, V_3^*\}$ is Frenet frame field of M^* . Using (18), we find

$$\langle \alpha^{*}(t^{*}) - a^{*}, V_{1}^{*}(t^{*}) \rangle = m_{1}^{*}(t^{*}), \langle \alpha^{*}(t^{*}) - a^{*}, V_{2}^{*}(t^{*}) \rangle = m_{2}^{*}(t^{*}), \langle \alpha^{*}(t^{*}) - a^{*}, V_{3}^{*}(t^{*}) \rangle = -m_{3}^{*}(t^{*}).$$

$$(19)$$

Considering equations (16) and (17), we have

$$m_1^*(t^*) = 0, \quad m_2^*(t^*) = -\frac{1}{k_1^*(t^*)}.$$
 (20)

From (15), (18) and (20), we get

$$R^* = \sqrt{m_2^{*2} - m_3^{*2}} \tag{21}$$

or

$$m_3^* = \pm \sqrt{m_2^{*2} - R^{*2}}.$$
 (22)

Using (18), for the center a^* of S_1^{*2} , we can write

$$a^* = \alpha^*(t^*) + \frac{1}{k_1^*} V_2^*(t^*) - \lambda^* V_3^*(t^*), \quad \lambda^* = m_3^*(t^*) \in R.$$
(23)

Then $f^{*'''}(t^*) = 0$ we find

$$k_1^{*'} \langle V_2^*(t^*), \alpha^*(t^*) - a^* \rangle + k_1^* \left\langle V_2^{*'}(t^*), \alpha^*(t^*) - a^* \right\rangle + k_1^* \left\langle V_2^*(t^*), V_1^*(t^*) \right\rangle = 0.$$

Thus from (2), (19) and (20), we have

$$m_3^* = \frac{-k_1^{*\prime}}{k_1^{*2}k_2^*} = -\frac{m_2^{*\prime}}{k_2^*}.$$
(24)

Now, let us find the relations between the radii of osculator Lorentz spheres and curvature axes of the base curves of M and M^* :

Using Theorem 1, (ii) equations (9) and (20) we obtain

$$m_1^*(t^*) = m_1(t) = 0, \quad m_2^*(t^*) = \frac{dt^*}{dt}m_2(t).$$
 (25)

If $\frac{dt}{dt^*}$ is constant, then considering the **Theorem 1**, (ii), we get

$$k_1^{*'} = k_1' \left(\frac{dt}{dt^*}\right)^2.$$
 (26)

So, from equations (24), (26) and (13), we have

$$m_3^* = \frac{dt^*}{dt}m_3.$$
 (27)

Combining (7), (18),(25), (27) and **Theorem 1**,(ii), we find

$$\alpha^* - a^* = \frac{dt^*}{dt} \left(\alpha - a\right). \tag{28}$$

Similarly, thinking (10), (21), (25) and (27), we obtain

$$R^{*2} = \left(\frac{dt^*}{dt}\right)^2 R^2$$
$$R^* = \left|\frac{dt^*}{dt}\right| R.$$
(29)

or

Hence, we can give the following theorem without proof:

Theorem 2. i) If q_{α} and q_{α^*} are the curvature axes (the locus of center of osculator Lorentz spheres) of the base curves α and α^* of M and M^* , then we have

$$q_{\alpha^*} - \alpha^* = \frac{dt^*}{dt} \left(q_\alpha - \alpha \right).$$

ii) If R and R^{*} are the radii of osculator Lorentz spheres of base curves α and α^* of M and M^{*}, then we get

$$R^* = \left|\frac{dt^*}{dt}\right| R.$$

4. Arc Lengths of Indicatrix Curves of Spacelike Parallel p_i -Equidistant Ruled Surfaces

In this section, we will investigate arc lengths of indicatrix curves of base curves of the spacelike parallel p_i -equidistant ruled surfaces M and M^* .

Since V_1 and V_2 are spacelike vectors, the curves (V_1) and (V_2) generated by the spacelike vectors V_1 and V_2 on the pseudosphere S_1^2 , are called the pseudo-spherical indicatrix curves. Since V_3 is a timelike vector, the curve (V_3) generated by the vector V_3 on the pseudohyperbolic space H_1^2 is called indicatrix curve.

Let S_{V_i} and $S_{V_i^*}$ denote the arc lengths of indicatrix curves (V_i) and (V_i^*) generated by the vector fields V_i and V_i^* , respectively. So, we can write $S_{V_i} = \int ||V_i'|| dt$ and $S_{V_i^*} = \int ||V_i^{*'}|| dt^*$, $1 \le i \le 3$. From the Frenet formulas and **Theorem 1**,(ii), we obtain

$$S_{V_1^*} = \int k_1 dt = S_{V_1}, \quad S_{V_2^*} = \int \sqrt{\left|k_1^2 - k_2^2\right|} dt = S_{V_2}, \quad S_{V_3^*} = \int \left|k_2\right| dt = S_{V_3},$$

where $\frac{dt}{dt^*} > 0$.

Similarly, for the arc lengths S_{α} and S_{α^*} of the indicatrix curves (α) and (α^*) generated by the spacelike curves α and α^* on the pseudosphere S_1^2 , we find $S_{\alpha} = \int ||\alpha'|| dt = \int dt$ and $S_{\alpha^*} = \int ||\alpha^{*'}|| dt^* = \int dt^*$, respectively. If $\frac{k_1}{k_1^*}$ is constant, using **Theorem 1.(ii)**, we get

$$S_{\alpha^*} = \frac{k_1}{k_1^*} S_{\alpha}.$$

Thus, we can give the following theorems without proofs:

Theorem 3. If S_{V_i} and $S_{V_i^*}$, $1 \le i \le 3$, are the arc lengths of indicatrix curves of Frenet vectors V_i and V_i^* of base curves α and α^* of M and M^* , respectively, then we have

$$S_{V_i^*} = S_{V_i}, \ 1 \le i \le 3.$$

Theorem 4. Let S_{α} and S_{α^*} be the arc lengths of indicatrix curves of base curves α and α^* of M and M^* , respectively. If $\frac{k_1}{k_1^*}$ is constant, then we get $S_{\alpha^*} = \frac{k_1}{k_1^*}S_{\alpha}$.

References

[1] M. Masal and N. Kuruoğlu, Some characteristics properties of the spherical indicatrices leading curves of parallel p-equidistant ruled surfaces, Bulletin of Pure and Applied Sciences 19E, 1, (2010), 405-410.

[2] M. Masal and N. Kuruoğlu Spacelike parallel p_i -equidistant ruled surfaces in the Minkowski 3-space R_1^3 , Algebras Groups and Geometries 22, (2005), 13-24.

[3] I. E. Valeontis, *Parallel p-Äquidistante regelflächen*, Manuscripta Math. 54 (1986), 391-404.

[4] I. Woestijne, *Minimal surfaces of the 3-dimensional Minkowski space*, World Scientific Publishing, Singapore (1990), 344-369.

Melek Masal Department of Elementery Education, Faculty of Education Sakarya University, Hendek, Sakarya, Turkey email: mmasal@sakarya.edu.tr

Nuri Kuruoğlu Faculty of Arts and Sciences, Department of Mathematics and Computer Sciences, Bahcesehir University, Istanbul, Turkey email: kuruoglu@bahcesehir.edu.tr