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Abstract. The aim of this paper is to introduce and study the concepts of
Ωs∗-closed and Ωs∗-continuous maps. These concepts are used to obtain several
results concerning the preservation of Ωs-closed sets. Moreover, we use Ωs∗-closed
and Ωs∗-continuous maps to obtain a characterization of Ω− T 1

2
spaces.
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1. Introduction

Noiri and Sayed [16] introduced the class of Ωs-closed sets. By the mean of these
sets they introduced and studied Ωs-continuous and Ωs-irresolute maps. In [17],
Sayed introduced Ωs-open sets and studied some applications on them. In this
paper, we obtain some new decompositions of Ωs-continuity. Also, a new forms of
continuity (which we call Ωs∗-closed and Ωs∗-continuous) are introduced and several
properties of them are investigated. We use these concepts to obtain some results
concerning the preservation of Ωs-closed sets. Furthermore, we characterize Ω− T 1

2

and semi− T 1
2

spaces in terms of Ωs-closed sets.

2. Preliminaries

Throughout this paper (X, τ) , (Y, σ) and (Z, υ) represent non-empty spaces on
which no separation axioms are assumed, unless otherwise mentioned, and they are
simply written as X , Y, and Z, respectively, when no confusion arises.The family of
all closed subsets of X (resp. Y ) is denoted by FX (resp. FY ). All sets are assumed
to be subsets of topological spaces. The closure and the interior of a set A are
denoted by Cl(A) [6] and Int(A) [7], respectively. In order to make the contents
of this paper as self contained as possible, we briefly describe certain definitions;
notations and some properties.
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Definition 1. A subset A of (X, τ) is said to be:
(1) semi-open [11] if A ⊆ Cl(Int(A)) and semi-closed [4] if Int(Cl(A)) ⊆ A;
(2) preopen [14] if A ⊆ Int(Cl(A));
(3) semi-preopen [1] if A ⊆ Cl(Int(Cl(A)));
(4) regular open (resp. regular closed) [19] if A = Int(Cl(A)) (resp. A =

Cl(Int(A))).

Definition 2. Let (X, τ) be a topological space and A ⊆ X. The semi-interior of A
[6], denoted by sInt(A), is the union of all semi-open subsets of A. A is semi-open
[6] if and only if sInt(A) = A. It is well Known that sInt(A) = A ∩ Cl(Int(A))
[10].

Definition 3. Let (X, τ) be a topological space and A,B ⊆ X. Then A is semi-closed
if and only if X\A is semi-open and the semi-closure of B [4], denoted by sCl(B), is
the intersection of all semi-closed supersets of B. B is semi-closed [15] if and only
if sCl(B) = B. It is well Known that sCl(B) = B ∪ Int(Cl(B)) [10].

Definition 4. A subset A of (X, τ) is said to be
(1) sg-closed [3] in (X, τ) if sCl(A) ⊆ U whenever A ⊆ U and U is semi-open

in (X, τ);
(2) Ω-closed [16] in (X, τ) if sCl(A) ⊆ Int(U) whenever A ⊆ U and U is semi-

open in (X, τ);
(3) Ωs-closed [16] in (X, τ) if sCl(A) ⊆ Int(Cl(U))) whenever A ⊆ U and U is

semi-open in (X, τ).
(4) The complement of Ω-closed set (resp. Ωs-closed set) is said to be Ω-open

(resp. Ωs-open) [17] in (X, τ). Equivalently, a subset A of a space (X, τ) is said to
be Ωs-open [17, Proposition 2.3(2)] if Cl(Int(F )) ⊆ sInt(A) whenever F ⊆ A and
F is semi-closed.

We need the following notations:
• ΩsC(X, τ) (resp. ΩsO(X, τ)) denotes the family of all Ωs-closed sets (resp.

Ωs-open sets) in (X, τ);
• ΩC(X, τ) (resp. ΩO(X, τ)) denotes the family of all Ω-closed sets (resp. Ω-

open sets) in (X, τ);
• SGC(X, τ) (resp. SGO(X, τ)) denotes the family of all sg-closed sets (resp.

sg-open sets) in (X, τ);
• SC(X, τ) (resp. SO(X, τ)) denotes the family of all semi-closed sets (resp.

semi-open sets) in (X, τ);

Definition 5. A map f : (X, τ)→ (Y, σ) is said to be:
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(1) RC-continuous [2] (resp. contra-semicontinuous [8], contra-precontinuous
[9]) if f−1(V ) is regular closed (resp. semi-closed, preclosed) in (X, τ) for every
open subset V in (Y, σ);

(2) Ωs-continuous [16] (resp. sg-continuous [20]) if f−1(V ) is Ωs-closed (resp.
sg-closed) in (X, τ) for every closed subset V in (Y, σ);

(3) irresolute [7](resp. Ωs-irresolute [16]) if f−1(V ) is semi-open (resp. Ωs-
closed) in (X, τ) for every semi-open (resp. Ωs-closed) subset V in (Y, σ);

(4) pre-semiopen [7](resp. pre-semi-closed [18], pre-Ωs-closed [17]) if f(F ) is
semi-open (resp. semi-closed, Ωs-closed) in (Y, σ) whenever F is semi-open (resp.
semi-closed, Ωs-closed) in (X, τ).

Definition 6. A topological space (X, τ) is said to be semi− T 1
2

[5] (resp. Ω− T 1
2

[15]) if every sg-closed (resp. Ωs-closed) set is semi-closed.

3. Ωs-closed sets and Ωs-continuity

Theorem 1. Every preopen subset of (X, τ) is Ωs-closed.

Proof. Let A be a preopen subset of (X, τ) and A ⊆ U , where U is a semi-open set
in (X, τ). Then sCl(A) = A ∪ Int(Cl(A)) = Int(Cl(A)) ⊆ Int(Cl(U)). Hence A is
Ωs-closed.

Remark 1. We have the following more relationship between Ωs-closed sets and
some other sets (cf. Remark 3.2 in [16]); and the following examples below show
them.

1) An Ωs-closed set need not be pre-open (cf. Example 1);
(2) Semi-preopen sets and Ωs-closed sets are independent (cf. Examples 1 and

2);
(3) Semi-closed sets and Ωs-closed sets are independent (cf. Examples 1 and 2);
(4) A closed semi-open set need not be Ωs-closed (cf. Example 2);
(5) sg-closed sets and Ωs-closed sets are independent (cf. Example 2).

Example 1. Let X = {a, b} be the Sierpinski space and τ = {X,φ, {a}}. The subset
{b} of X is Ωs-closed but it is neither preopen nor semi-preopen. Furthermore, the
subset {a} of X is Ωs-closed but it is not semi-closed.

Example 2. Let X = {a, b, c} and τ = {X,φ, {a}, {b}, {a, b}}. The subset {b, c}
of X is both closed and semi-open but it is not Ωs-closed. Also, {a, b} is Ωs-closed
but it is not sg-closed. Furthermore, the subset {c} of X is sg-closed but it is not
Ωs-closed.
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Theorem 2. If a subset A of a space (X, τ) is regular open then A is both semi-open
and Ωs-closed and the converse is not true.

Proof. Let A be a regular open subset of (X, τ). Then A is semi-open in (X, τ). To
prove that A is Ωs-closed, let A ⊆ G, where G is a semi-open subset of (X, τ). Then
sCl(A) = A ∪ Int(Cl(A)) = Int(Cl(A)) ⊆ Int(Cl(G)). Therefore A is Ωs-closed.
Conversely, in Example 2 the subset {a, b} of X is both semi-open and Ωs-closed
but it is not regular open.

Corollary 3. If a subset A of a space (X, τ) is regular closed then it is both semi-
closed and Ωs-open.

Remark 2. The converse of the above corollary is not true as shown by Example
2, where {c} is both semi-closed and Ωs-open but it is not regular closed .

Corollary 4. A subset A of a space (X, τ) is clopen if and only if A is semi-open,
semi-closed, Ωs-open and Ωs-closed.

Theorem 5. A contra-precontinuous map is Ωs-continuous.

Proof. From Theorem 1, the proof is straightforward.

The converse of the above theorem is not true as shown by the following example

Example 3. Let X = {a, b} and τ = {X,φ, {a}}. The identity map f : (X, τ) −→
(X, τ) is Ωs-continuous but it is not contra-precontinuous.

Theorem 6. If the map f : (X, τ) −→ (Y, σ) is RC-continuous, then it is both
Ωs-continuous and contra-semicontinuous.

Proof. From Theorem 2, the proof is straightforward.

The converse of the above theorem is not true as shown by the following example

Example 4. Let X = {a, b, c}, τ = {X,φ, {a}, {b}, {a, b}} and σ = {X,φ, {c}}.
Define f : (X, τ) −→ (X,σ) to be the identity map. Then f is both contra-
semicontinuous and Ωs−continuous but not RC-continuous.

Let (X, τ) be a topological space. If τ = FX , then
(1) SO(X, τ) = SC(X, τ) = τ.
(2) ΩsO(X, τ) = ΩsC(X, τ) = P (X).
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4. Ωs∗-closed and Ωs∗-continuous maps

In this section, we introduce a new type of maps called Ωs∗-closed and Ωs∗-continuous
maps and obtain some of their properties and characterizations. Furthermore, we
establish a necessary and sufficient conditions for a map to be Ωs∗-closed and Ωs∗-
continuous.

Definition 7. A map f : (X, τ)→ (Y, σ) is said to be Ωs∗-closed if f(Cl(Int(S))) ⊆
sInt(O), whenever S is a semi-closed subset of (X, τ), O is an Ωs-open subset of
(Y, σ) and f(S) ⊆ O.

Definition 8. A map f : (X, τ)→ (Y, σ) is said to be Ωs∗-continuous if sCl(O1) ⊆
f−1(Int(Cl(S1))), whenever O1 is an Ωs-closed subset of (X, τ), S1 is a semi-open
subset of (Y, σ) and O1 ⊆ f−1(S1).

The following example shows that Ωs∗-continuous is not continuous, not Ωs∗-
closed, and not Ωs-irresolute.

Example 5. Let X = {a, b, c}, τ = {X,φ, {a}, {b}, {a, b}} be a topology on X ,
and σ = {Y, φ, {a}, {b, c}} be a topology on Y . Define the map f : (X, τ) → (Y, σ)
to be the identity map. We have that f is Ωs∗-continuous but not continuous, not
Ωs∗-closed, not Ωs-irresolute, and not Ωs-continuous.

The following example shows that Ωs-continuous does not imply Ωs∗-continuous.

Example 6. Let X = Y = {a, b, c}, τ = {X,φ, {c}} be a topology on X , and
σ = {Y, φ, {a}, {b, c}} be a topology on Y . Define the map f : (X, τ) → (Y, σ) to be
the identity map.We have that f is Ωs-continuous, but not Ωs∗-continuous.

From the above discussion we note that:
(1) Ωs-continuity and Ωs∗-continuity are independent.
(2) Continuity and Ωs∗-continuity are independent.

Theorem 7. For a map f : (X, τ) → (Y, σ), we denote the following properties by
(1), (2) and (3), respectively.

(1) f : (X, τ)→ (Y, σ) is Ωs∗-closed;
(2) sCl(O1) ⊆ f(Int(Cl(S1))) holds, whenever S1 is a semi-open subset of (X, τ),

O1 is an Ωs-closed subset of (Y, σ) and O1 ⊆ f(S1);
(3) Cl(Int(S)) ⊆ f−1(sInt(O)) holds, whenever S is a semi-closed subset of

(X, τ), O is an Ωs-open subset of (Y, σ) and S ⊆ f−1(O).
Then, we have the following implications:

(i) (2)⇒(1) if f : (X, τ)→ (Y, σ) is surjective;
(ii) (1)⇒(2) if f : (X, τ)→ (Y, σ) is bijective;
(iii) (1)⇔(3).
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Proof. (i) Let S ∈ SC(X, τ) and O ∈ ΩsO(Y, σ) such that f(S) ⊆ O. Then, since f
is surjective, we have that Y \O ⊆ Y \f(S) ⊆ f(X\S). For the sets X\S ∈ SO(X, τ)
and Y \O ∈ ΩsC(Y, σ), by (2), it is obtained that sCl(Y \O) ⊆ f(Int(Cl(X\S)));
and so f(Cl(Int(S))) ⊆ sInt(O). Therefore, f : (X, τ)→ (Y, σ) is Ωs∗-closed.

(ii) Let S1 ∈ SO(X, τ) and O1 ∈ ΩsC(Y, σ) such that O1 ⊆ f(S1). Then, since
f is injective, we have that f(X\S1) ⊆ Y \f(S1) ⊆ Y \O1. For the sets X\S1 ∈
SC(X, τ) and Y \O1 ∈ ΩsO(Y, σ), by (1), it is obtained that f(Cl(Int(X\S1))) ⊆
sInt(Y \O1); and so f(X\Int(Cl(S1))) ⊆ Y \sCl(O1). Using the assumption of sur-
jectivity of f , we have that Y \f(Int(Cl(S1))) ⊆ f(X\Int(Cl(S1))) ⊆ Y \sCl(O1)
and so sCl(O1) ⊆ f(Int(Cl(S1))).

(iii) (1)⇒(3) Let S ∈ SC(X, τ) and O ∈ ΩsO(Y, σ) such that S ⊆ f−1(O).
Since f is Ωs∗-closed, we have f(Cl(Int(S))) ⊆ sInt(O); and so Cl(Int(S)) ⊆
f−1(sInt(O)).
(3)⇒(1) Let S ∈ SC(X, τ) and O ∈ ΩsO(Y, σ) such that f(S) ⊆ O. Since
S ⊆ f−1(O), by (3), it is obtained that Cl(Int(S)) ⊆ f−1(sInt(O)) holds; and
so f(Cl(Int(S))) ⊆ sInt(O).

Theorem 8. For a map f : (X, τ)→ (Y, σ), the following conditions are equivalent:
(1) f is Ωs∗-continuous.
(2) f−1(Cl(Int(S))) ⊆ sInt(O) whenever f−1(S) ⊆ O, where S is a semi-closed

subset of Y and O is an Ωs-open subset of X.
(3) f(sCl(O1)) ⊆ Int(Cl(S1)) whenever f(O1) ⊆ S1, where O1 is an Ωs-closed

subset of X and S1 is a semi-open subset of Y .

Proof. (1)=⇒(2) Suppose that f−1(S) ⊆ O, where S ∈ SC(Y, σ) andO ∈ ΩsO(X, τ).
Since X\O ⊆ f−1(Y \S) and f is Ωs∗-continuous, then X\sInt(O) = sCl(X\O) ⊆
f−1(Int(Cl(Y \S))) = X\f−1(Int(Cl(S))). Therefore, we have the required prop-
erty: f−1(Int(Cl(S))) ⊆ sInt(O).

(2)=⇒(3) Let f(O1) ⊆ S1, where S1 ∈ SO(Y, σ) and O1 ∈ ΩsC(X, τ). Then,
we have f−1(Y \S1) ⊆ X\O1, Y \S1 ∈ SC(Y, σ) and X\O1 ∈ ΩsO(X, τ). By (2),
it is obtained that X\f−1(Int(Cl(S1))) = f−1(Cl(Int(Y \S1))) ⊆ sInt(X\O1) =
X\sCl(O1); and so f(sCl(O1)) ⊆ Int(Cl(S1)).

(3)⇒(1) Let S ∈ SO(Y, σ) and O ∈ ΩsC(X, τ) such that O ⊆ f−1(S). Since
f(O) ⊆ f(f−1(S)) ⊆ S, by (3), it is obtained that f(sCl(O)) ⊆ Int(Cl(S)) and
hence sCl(O) ⊆ f−1(Int(Cl(S))). Therefore, f is Ωs∗-continuous.

Theorem 9. Let f : (X, τ) → (Y, σ) be a bijection. Then the following conditions
are equivalent:

(1) f is Ωs∗-closed.
(2) f−1 is Ωs∗-continuous.
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Proof. (1)=⇒(2) Let O1 ⊆ (f−1)−1(S1) = f(S1), where O1 is an Ωs-closed subset of
(Y, σ) and S1 is a semi-open subset of (X, τ). From Theorem 7 we have sCl(O1) ⊆
f(Int(Cl(S1))) = (f−1)−1(Int(Cl(S1))). Hence f−1 is Ωs∗-continuous.

(2)=⇒(1) Let O1 ⊆ f(S1) or O1 ⊆ (f−1)−1(S1), where O1 is an Ωs-closed subset
of (Y, σ) and S1 is a semi-open subset of (X, τ). Then sCl(O1) ⊆ (f−1)−1(Int(Cl(S1)))
or sCl(O1) ⊆ f(Int(Cl(S1))). Therefore by Theorem 7 we have f is Ωs∗-closed.

Theorem 10. Let f : (X, τ) → (Y, σ) be a map . If f(H) is a semi-closed subset
of (Y, σ) and f(Cl(Int(H))) ⊆ Cl(Int(f(H))) for every semi-closed subset H of
(X, τ), then f is Ωs∗-closed map.

Proof. Suppose that f(H) ⊆ O, where H is a semi-closed subset of (X, τ) and O is
an Ωs-open subset of (Y, σ). Since O is an Ωs-open, then Cl(Int(f(H))) ⊆ sInt(O).
Hence f(Cl(Int(H))) ⊆ sInt(O). Therefore f is Ωs∗-closed.

Theorem 11. Let f : (X, τ) → (Y, σ) be a map. If f−1(V ) is a semi-open subset
of (X, τ) and Int(Cl(f−1(V ))) ⊆ f−1(Int(Cl(V ))) for every semi-open subset V of
(Y, σ), then f is Ωs∗-continuous.

Proof. Suppose that O ⊆ f−1(V ), where O is an Ωs-closed subset of (X, τ) and V is a
semi-open subset of (Y, σ). SinceO is an Ωs-closed, then sCl(O) ⊆ Int(Cl(f−1(V ))).
Hence sCl(O) ⊆ f−1(Int(Cl(V ))). Therefore f is Ωs∗-continuous.

5. Preserving Ωs-closed sets

In this section, the concepts of Ωs∗-closed and Ωs∗-continuous maps are used to
study the preservation of Ωs-closed set. Also, we establish a necessary conditions
for a map to be Ωs∗-closed and Ωs∗-continuous. Finally, we investigate some of the
properties of these maps involving restriction and composition.

Theorem 12. If f : (X, τ)→ (Y, σ) is irresolute and Ωs∗-closed, then f−1(B) is an
Ωs-closed (Ωs-open) subset of (X, τ) whenever B is an Ωs-closed (Ωs-open) subset
of (Y, σ).

Proof. Assume that B is an Ωs-closed subset of (Y, σ) and f−1(B) ⊆ U, where U is
a semi-open subset of (X, τ). Then X\U ⊆ X\f−1(B) = f−1(Y \B) or f(X\U) ⊆
Y \B. Since f is Ωs∗-closed, then f(Cl(Int(X\U))) ⊆ sInt(Y \B) = Y \sCl(B).
Hence Cl(Int(X\U)) ⊆ f−1(Y \sCl(B)) = X\f−1(sCl(B)). Thus f−1(sCl(B)) ⊆
X\Cl(Int((X\U)) = Int(Cl(U)). Since f is irresolute, then sCl(f−1(B)) ⊆
sCl(f−1(sCl(B))) = f−1(sCl(B)) ⊆ Int(Cl(U)). Therefore f−1(B) is an Ωs-closed
subset of (X, τ).
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A similar argument shows that the inverse image of an Ωs-open set is an Ωs-
open.

Remark 3. From the above theorem we note that if f : (X, τ)→ (Y, σ) is irresolute
and Ωs∗-closed, then f is Ωs−irresolute.

The converse of the above remark is not true as illustrated by the following
example

Example 7. Let X = {a, b, c}, τ = {X,φ, {a}, {b, c}}, Y = {p, q} and σ = {Y, φ, {p}}.
Define f : (X, τ) → (Y, σ) as follows: f(a) = f(c) = p and f(b) = q. Then f is
Ωs−irresolute but not irresolute.

Theorem 13. If f : (X, τ) → (Y, σ) is Ωs∗-continuous and pre-semi-closed, then
f(A) is an Ωs-closed subset of (Y, σ) whenever A is an Ωs-closed subset of (X, τ).

Proof. Assume that A is an Ωs-closed subset of (X, τ) and f(A) ⊆ V,where V is
a semi-open subset of (Y, σ). Then A ⊆ f−1(V ). Since f is Ωs∗-continuous, then
sCl(A) ⊆ f−1(Int(Cl(V ))). Hence f(sCl(A)) ⊆ Int(Cl(V )). Since f is pre-semi-
closed, sCl(f(A)) ⊆ sCl(f(sCl(A))) = f(sCl(A)) ⊆ Int(Cl(V )). Therefore f(A) is
an Ωs-closed subset of (Y, σ) .

Remark 4. From the above theorem we note that if f : (X, τ) → (Y, σ) is Ωs∗-
continuous and pre-semi-closed, then f is pre-Ωs-closed.

The converse of the above remark is not true as illustrated by the following
example.

Example 8. Let X = {x, y}, τ = {X,φ, {x}}, Y = {p, q, r} and σ = {Y, φ, {p}, {q, r}}.
Define f : (X, τ) → (Y, σ) as follows: f(x) = p and f(y) = r. Then f is pre-
Ωs−closed but not pre-semi-closed.

Theorem 14. Let (X, τ) and (Y, σ) be two topological spaces such that σ = FY . If
f : (X, τ) → (Y, σ) is a pre-semi-closed map and f(Cl(Int(S))) ⊆ f(S) holds for
every semi-closed subset S of (X, τ), then f is an Ωs∗-closed map.

Proof. Let f(S) ⊆ O, where S be a semi-closed subset of (X, τ) and O is an Ωs-
open subset of (Y, σ). Then, by Proposition 1, f(S) is a semi-open subset of (Y, σ).
Therefore f(Cl(Int(S))) ⊆ f(S) ⊆ sInt(f(S)) ⊆ sInt(O). Hence f : (X, τ)→ (Y, σ)
is an Ωs∗-closed map.

Theorem 15. Let (X, τ) and (Y, σ) be two topological spaces such that τ = FX .
If f : (X, τ) → (Y, σ) is irresolute map and f−1(S) ⊆ f−1(Int(Cl(V S))) holds for
every semi-open subset S of (Y, σ), then f is Ωs∗-continuous map.
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Proof. Let O ⊆ f−1(S), where S is a semi-open subset of (Y, σ) and O is Ωs-closed
subset of (X, τ). Then f−1(S) ∈ SO(X) and by Proposition 1, f−1(S) ∈ SC(X).
Therefore sCl(O) ⊆ sCl(f−1(S)) = f−1(S) ⊆ f−1(Int(Cl(S))). Hence f is Ωs∗-
continuous map.

Theorem 16. Let f : (X, τ) → (Y, σ) be a map. If f(S) is a semi-closed subset of
(Y, σ), f(Cl(Int(S))) ⊆ Cl(Int(f(S))) for every semi-closed subset S of (X, τ) and
g : (Y, σ) → (Z, ν) is Ωs∗-closed map, then g ◦ f : (X, τ) → (Z, ν) is an Ωs∗-closed
map.

Proof. Suppose that S is a semi-closed subset of (X, τ) and O is an Ωs-open
subset of (Z, ν) and g(f(S)) ⊆ O. Then g(Cl(Int(f(S)))) ⊆ sInt(O). Therefore
g(f(Cl(Int(S)))) ⊆ g(Cl(Int(f(S)))) ⊆ sInt(O). Hence g ◦ f is Ωs∗-closed map.

Theorem 17. If f : (X, τ)→ (Y, σ) is an Ωs∗-closed map and g : (Y, σ)→ (Z, ν) is
an Ωs-irresolute and pre-semi-open map, then g◦f : (X, τ)→ (Z, ν) is an Ωs∗-closed
map.

Proof. Suppose that S is a semi-closed subset of (X, τ) and O is an Ωs-open sub-
set of (Z, ν) such that g(f(S)) ⊆ O. Then f(S) ⊆ g−1(O). By assumption, g is
an Ωs-irresolute map; and so g−1(O) is an Ωs-open subset of (Y, σ). Since f is an
Ωs∗-closed map, then f(Cl(Int(S))) ⊆ sInt(g−1(O)). Hence g(f(Cl(Int(S)))) ⊆
g(sInt(g−1(O))) = sInt(g(sInt(g−1(O)))) ⊆ sInt(g(g−1(O))) ⊆ sInt(O). There-
fore, g ◦ f is an Ωs∗-closed map.

Theorem 18. If f : (X, τ) → (Y, σ) is an Ωs∗-continuous map and g : (Y, σ) →
(Z, ν) is an irresolute map; and Int(Cl(g−1(S)))) ⊆ g−1(Int(Cl(S))) for every semi-
open subset S of (Z, ν), then g ◦ f : (X, τ)→ (Z, ν) is an Ωs∗-continuous map.

Proof. Let S be a semi-open subset of (Z, ν) and O be an Ωs-closed subset of
(X, τ) such that O ⊆ (g◦f)−1(S). Then O ⊆ f−1(g−1(S)) and g−1(S) is a semi-open
subset of (Y, σ). Since f is Ωs∗-continuous, then sCl(O) ⊆ f−1(Int(Cl(g−1(S)))) ⊆
f−1(g−1Int(Cl(S)))) = (g ◦ f)−1(Int(Cl(S))). Therefore g ◦ f is an Ωs∗-continuous
map.

The following example shows that the restrictions of Ωs∗-closed and Ωs∗-continuous
maps can fail to be Ωs∗-closed and Ωs∗-continuous, respectively.

Example 9. Let X be an indiscrete space with a nonempty proper subset B. The
identity mapping f : X → X is Ωs∗-closed and hence by Theorem 9 is Ωs∗-
continuous.

First, we prove that f |B: B → X is not Ωs∗-closed. Observe that f(B) = f |B
(B) is Ωs-open in X (Proposition 1). Then f |B (B) ⊆ f(B), where f(B) is Ωs-open
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in X and B is a semi-closed in B. But f |B (ClB(IntB(B))) = f |B (B) = f(B) *
sInt(f(B)) (where ClB(B) is the closure of B in B and IntB(B) is the interior of
B in B). Hence f |B is not Ωs∗-closed.

Second, we prove that f |B: B → X is not Ωs∗-continuous. Since B ⊆ (f |B
)−1(B), where B is semi-open in X (Proposition 1) and Ωs-closed in B. But (f |B
)−1(Int(Cl(B))) = f−1(Int(Cl(B))) ∩ B + sClB(B) = B (where sClB(B) is the
semi-closure of B in B). Hence f |B is not Ωs∗-continuous.

Now, we have the following two theorems

Theorem 19. If f : X → Y is an Ωs∗-closed map and B is an open and a
semi-closed subset of X, then f |B: B → Y is Ωs∗-closed.

Proof. Suppose f |B (S) ⊆ O, where O is an Ωs-open subset of Y and S is an open
and a semi-closed subset of B. Then S is semi-closed in X ([13, Theorem 2.6]) and
f |B (S) = f(S). Therefore f(S) ⊆ O. Since f is Ωs∗-closed, then f(Cl(Int(S))) ⊆
sInt(O). Now, we prove that f |B (ClB(IntB(S))) ⊆ f(Cl(Int(S))). Since Cl(E) ∩
B = ClB(E) holds for any set E ⊆ B and Int(E) ∩ B = IntB(E) holds for any
E ⊆ B if B is open, then Cl(Int(S)) ∩ B = ClB[(Int(S)) ∩ B] = ClB(IntB(S)).
Thus, we have f(Cl(Int(S))) ⊇ f(Cl(Int(S))∩B) = f |B (Cl(Int(S))∩B) ⊇ f |B
(ClB(IntB(S))). Therefore, we have that f |B (ClB(IntB(S))) ⊆ f(Cl(Int(S))) ⊆
sInt(O).Hence, f |B is an Ωs∗-closed map.

Theorem 20. If f : X → Y is Ωs∗-continuous and B is open and Ω−closed subset
of X, then f |B: B → Y is Ωs∗-continuous.

Proof. Assume O ⊆ (f |B)−1(S), where O is Ωs-closed in B and S is semi-open
in Y. Then, we have O ⊆ f−1(S) and O is Ωs-closed relative to X ([16, Theorem
3.4]). Since f is an Ωs∗-continuous map, then sCl(O) ⊆ f−1(Int(Cl(S))). Hence
sCl(O) ∩ B ⊆ f−1(Int(Cl(S))) ∩ B = (f |B)−1(Int(Cl(S))). Since B is open in X,
then sCl(O) ∩ B = sClB(O) [12]. Therefore sClB(O) ⊆ (f |B)−1(Int(Cl(S))) and
f |B: B → Y is an Ωs∗-continuous map.

6. A characterization of Ω− T 1
2
spaces

In the following results, we obtain two properties of semi−T 1
2

spaces. Furthermore,

we offer a characterization of the class of Ω − T 1
2

spaces by using the concepts of

Ωs∗-closed and Ωs∗-continuous.

Theorem 21. Let (X, τ) be a topological space.
(i) For each point x ∈ X, {x} is semi-closed or Ωs−open in (X, τ).
(ii) (X, τ) is semi-T 1

2
if every Ωs−open singleton is semi-open.
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Proof. (i) Suppose that a singleton {x} is not semi-closed. Then, X\{x} is not
semi-open; and so the only semi-open set containing X\{x} is X . Thus, whenever
U is a semi-open set such that X\{x} ⊆ U, then U = X and sCl(X\{x}) ⊆ X =
Int(Cl(U)) hold; and so X\{x} is Ωs−closed. Hence {x} is Ωs−open.

(ii)From (i), {x} is semi-closed or Ωs−open in (X, τ). By hypothesis {x} is
semi-closed or semi-open. Then (X, τ) is semi-T 1

2
[16, Theorem 5.1].

The converse of Theorem 21 (ii) is not true as shown by the following example.

Example 10. Let X = {a, b, c} and τ := {X,φ, {a}} and FX := {X,φ, {b, c}}; then
it is shown that SO(X, τ) := {X,φ, {a}, {a, b}, {a, c}}, SC(X, τ) := {X,φ, {b}, {c},
{b, c}}; and SGC(X, τ) := {X,φ, {b}, {c}, {b, c}} = SC(X, τ); ΩC(X, τ) := {X,φ,
{b, c}}; ΩO(X, τ) := {X,φ, {a}}; ΩsC(X, τ) = ΩsO(X, τ) := {X,φ, {a}, {b}, {c},
{a, b}, {a, c}, {b, c}} = P (X).
• One singleton {a} is semi-open and two singletons {b} and {c} are semi-closed.
Thus, we conclude that this space (X, τ) is semi-T 1

2
. Indeed, SGC(X, τ) = SC(X, τ)

holds. Namely, every sg-closed set is semi-closed; and so by definition of semi-
T 1

2
ness, this space (X, τ) is semi-T 1

2
. However, there exists a singletons {b} such

that {b} is Ωs−open but {b} is not semi-open in (X, τ). Thus, we conclude that the
property (=every Ωs−open singleton is semi-open or (open)) is not true for this
singleton {b} of (X, τ). Therefore, we conclude that the converse of Theorem 21 is
not true.

Theorem 22. If f : (X, τ)→ (Y, σ) is an Ωs∗-continuous map for any space (Y, σ),
then the space (X, τ) is an Ω− T 1

2
space.

Proof. Let O be an Ωs−closed subset of X and Y be the set X with the topology
σ = {Y,O, Y \O,φ}. Let f : X → Y be the identity map. By assumption, f
is an Ωs∗-continuous map. Since O is Ωs−closed in X , open and closed in Y ,
and O ⊆ f−1(O), then sCl(O) ⊆ f−1(Int(Cl(O)) = f−1(O) = O. Hence, O is
semi-closed in X. Therefore, the space Y is Ω− T 1

2
.

Theorem 23. If f : (X, τ) → (Y, σ) is an Ωs∗-closed map for any space (X, τ),
then the space (Y, σ) is an Ω− T 1

2
space.

Proof. Let O be an Ωs−open subset of Y and X be the set Y with the topology
τ = {X,O,X\O,φ}. Let f : X → Y be the identity map. By assumption, f is
Ωs∗-closed. Since O is Ωs−open in Y, open and closed in X, and f(O) ⊆ O, it
follows that O = f(O) = f(Cl(Int(O))) ⊆ sInt(O). Hence, O is semi-open in Y .
Therefore, the space Y is Ω− T 1

2
.
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The converse of both Theorem 22 and 23 is not true as shown by the following
example

Example 11. Let X = {a, b, c} and τ := {X,φ, {a}, {b}, {a, b}} and FX := {X,φ, {c},
{a, c}, {b, c}}; then it is shown that SO(X, τ) = SC(X, τ) = P (X); ΩsC(X, τ) = τ ;
and ΩsO(X, τ) = FX . The space (X, τ) is Ω−T 1

2
. Now, define the map f : (X, τ)→

(X, τ) to be: f(a) = a, f(b) = c and f(c) = b. f is not Ωs∗-continuous. In-
deed, we have {b} ⊆ f−1({c}), where {b} ∈ ΩsC(X, τ) and {c} ∈ SO(X, τ), but
sCl({b}) = {b} * f−1(Int(Cl({c}))) = φ. We conclude that f is not an Ωs∗-
continuous map and the converse of Theorem 22 is not true.

Furthermore, f is not Ωs∗- closed. Indeed, we have f({b}) ⊆ {c},where {b} ∈
SC(X, τ) and {c} ∈ ΩsO(X, τ), but f(Cl(Int({b}))) = {b, c} * {c} = sInt({c}).We
conclude that f is not an Ωs∗-closed map and the converse of Theorem 23 is not
true.

References
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