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OBJECT ORIENTED CONCEPT LATTICES CONSTRAINED BY
HIERARCHICALLY ORDERED ATTRIBUTES

H. Mao

Abstract. Suggested by the hierarchically ordered attributes of formal concept
lattices produced by R. Bělohlávek, V. Sklenář and J. Zacpal in 2004, we discuss the
analysis of input data with a predefined hierarchy on attributes extending thus the
basic approach of object oriented concept lattices. We define the notion of an object
oriented concept respecting the attribute hierarchy. Object oriented concepts which
do not respect the hierarchy are considered not relevant. Elimination of the non-
relevant object oriented concepts leads to a reduced set of extracted object oriented
concepts making the discovered structure of hidden object oriented concepts more
comprehensible. We present basic formal results on our approach. In the end,
with hierarchy on attributes, we compare the differences and similarities between
constrained formal concept lattices and constrained object oriented concept lattices.
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1. Introduction

Formal concept analysis is an example of a method for finding patterns and depen-
dencies in data which can be run automatically (see [4]). The patterns looked for
are called concepts. The authors [1] present modal operator approach which offers
a complementary view of data with respect to derivation operator of formal concept
analysis. One type of approximation operators is � and �. It could form a type
of concept lattice–object oriented concept lattice (cf. [1-3]). Object oriented con-
cepts are different from formal concept lattices which are discussed by [4]. It derives
mainly from the fact that it is interpretable as natural concepts well-understood by
humans.
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The researchers indicate [4-7] that formal concept analysis treats both the in-
dividual objects and the individual attributes as distinct entities for which there is
no further information available except for the relationship R saying which objects
have which attributes. However, more often than not, both the set of objects and
the set of attributes are supplied by an additional information. Further processing
of the input data (formal context) should therefore take the additional information
into account in such a way that only those concepts which are in an appropriate
sense compatible with the additional information, are considered relevant. In the
end, this may result in a simplification of the overall processing. Therefore, it seems
reasonable to assume that instead of (U, V,R) (a formal context), the input data con-
sists of a richer structure (U, V,R, . . .) where . . . may contain further sets, relations,
functions, and so on.

This paper considers one particular kind of additional information which has the
form of a hierarchy of attributes expressing their relation importance. The hierarchy
enables us to eliminate object oriented concepts which are not compatible with the
hierarchy. An important effect of the elimination is a natural reduction of the size of
the resulting conceptual structure making the structure more comprehensible. The
similar discussion for formal concept lattices could be found from [5]. Because the
difference between formal concept lattices and object oriented concept lattices makes
this paper be valuable to be considered and read. Section 2 gives the definitions and
notation needed in this paper. A formal treatment of our approach is presented in
Section 3. The fourth section is discussion.

2. Definitions and notation

Throughout this paper, U and V are nonempty finite sets, and R ⊆ U × V . All
the knowledge about formal contexts come from [4], we only review some of them.
All the knowledge about operators � and �, and object oriented concept lattices are
mainly from [10], and also could be found from [1-3]. For unexplained notation and
notions in lattices and order theory, we refer the reader to [8] and [9].

We assume that a data set is given in terms of a formal context.
Elements of U are called objects and elements of V are called attributes. The

relationships between objects and attributes are described by a binary relation R
between U and V , which is a subset of the Cartesian product U × V . For a pair
of elements x ∈ U and y ∈ V , if (x, y) ∈ R written as xRy, we say that x has the
attribute y, or the attribute y is possessed by object x. (U, V,R) is called a formal
context. In general, every information table can be represented by a formal context.

An object x ∈ U has the set of attributes:
xR = {y ∈ V | xRy} ⊆ V .
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The set of attributes xR can be viewed as a description of the object x. In other
words, object x is described by the set of attributes xR. Similarly, an attribute y is
possessed by the set of objects:

Ry = {x ∈ U | xRy} ⊆ U .
For a set of objects A ⊆ U and a set of attributes B ⊆ V , we can define a pair

data operators, � : 2U → 2V and � : 2V → 2U , as follows:
A� = {y ∈ V | Ry ⊆ A},
B� = {x ∈ U | xR ⊆ B}.

We can define a pair data operators, � : 2U → 2V and � : 2V → 2U as follows:
A� = {y ∈ V | Ry ∩A 6= ∅} =

⋃
x∈A

xR,

B� = {x ∈ U | xR ∩B 6= ∅} =
⋃
y∈B

Ry.

A pair (A,B), A ⊆ U,B ⊆ V , is called an object oriented concept if A = B�

and B = A�. The set of objects A is referred to as the extension of the concept
(A,B), and the set of attributes B is referred to as the intension. If an object has
an attribute in B, then the object belongs to A. Moreover, only objects in A possess
attributes in B.

For two object oriented concepts (A1, B1) and (A2, B2), we say that (A1, B1) is
a sub-concept of (A2, B2), and (A2, B2) is a super-concept of (A1, B1), in notation,
(A1, B1) ≤ (A2, B2), if and only if

A1 ⊆ A2,
or equivalently, if and only if

B1 ⊆ B2.
The family of all object oriented concepts is a complete lattice called object

oriented concept lattice, in notation B(U, V,R). The meet ∧ and the join ∨ of the
object oriented concept lattice are defined by

(A1, B1) ∧ (A2, B2) = ((A1 ∩A2)
��, (B1 ∩B2)),

(A1, B1) ∨ (A2, B2) = ((A1 ∪A2), (B1 ∪B2)
��).

Let (U,�� ) denote the family of sets (U,�� ) = {A�� | A ⊆ U}. It contains
the universe U and the empty set ∅ and is the family of the extension of all object
oriented concepts.

3. Object oriented concept lattices of contexts with hierarchically
ordered attributes

To easily compare the difference and similarity between formal concept lattices and
object oriented concept lattices for formal concept analysis with hierarchically or-
dered attributes, in what follows, we select some expressive sentences from [5]. Even
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though, the different methods to deal with a formal context between formal con-
cept lattices and object oriented concept lattices bring about the different views and
proofs, and further, the internal value of all the results here.

When considering a set of attributes that can be observed on certain objects,
people naturally consider some attributes more relevant than others, this leads to
the following treatment.

Definition 1. ([5]) A formal context with hierarchically ordered attributes (an HA-
context, for short) is a structure (U, V,R,E) (written also (U, (V,E), R)), where
(U, (V,E), R) is a formal context and E is a binary relation on V .

Our primary interpretation of E is the following: y1 E y2 means that y2 is at
least as important as y1 in the sense discussed above. Further to say, E represents
a restriction on how categories of objects can be formed–only categories which are
compatible with E are considered relevant. This justifies the following definition
analogously to the Definition 3 presented by [5].

Definition 2. For an HA-context (U, (V,E), R), an object oriented concept (A,B) ∈
B(U, V,R) is called compatible with E if for each y1, y2 ∈ V, y1 ∈ B and y1Ey2 implies
y2 ∈ B.

The set of all object oriented concepts from B(U, V,R) which are compatible
with E will be denoted by B(U, (V,E), R), i.e.
B(U, (V,E), R) =

{(A,B) ∈ B(U, V,R) | for each y1, y2 : y1 ∈ B, y1Ey2 implies y2 ∈ B}.

First of all, we deal with the properties of B(U, (V,E), R) in lattice theory, i.e,
the results beyond Theorem 3 and below.

Lemma 1. Let (Xj , Yj) ∈ B(U, (V,E), R), (j ∈ Y). Then
∧
j∈Y

(Xj , Yj) ∈ B(U, (V,E), R).

Proof. From Section 2, we show∧
j∈Y

(Xj , Yj) = ((
⋂
j∈Y

Xj)
��,

⋂
j∈Y

Yj) ∈ B(U, V,R).

Let y1, y2 ∈ V, y1 E y2 and y1 ∈
⋂
j∈Y

Yj . Since y1 ∈
⋂
j∈Y

Yj ⊆ Yj , y1 E y2 and

(Xj , Yj) ∈ B(U, (V,E), R) together follows y2 ∈ Yj , (j ∈ Y), we attain y2 ∈
⋂
j∈Y

Yj .

Thus, we obtain
∧
j∈Y

(Xj , Yj) ∈ B(U, (V,E), R).

Theorem 2. An object oriented concept (X,Y ) ∈ B(U, V,R) is compatible with E if
and only if (X,Y ) is an intersection of some elements in B(U, (V,E), R), i.e. there
is Y ⊆ B(U, (V,E), R) such that (X,Y ) = ∧Y.
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Proof. (⇒) Let (Xj , Yj) ∈ B(U, (V,E), R) be all the elements satisfying (X,Y ) ≤
(Xj , Yj) in B(U, V,R), (j ∈ A). By the definition of B(U, V,R), (X,Y ) ≤ (Xj , Yj)
means X ⊆ Xj and Y ⊆ Yj , (j ∈ A). (X,Y ) ∈ B(U, (V,E), R) implies that there
is j0 ∈ A satisfying (Xj0 , Yj0) = (X,Y ). Let Y = {(Xj , Yj) : j ∈ A}. Considering
Lemma 1, it is easy to obtain (X,Y ) = ∧Y.

(⇐) Since (X,Y ) = ∧Y holds, where Y = {(Xj , Yj) : j ∈ A} ⊆ B(U, (V,E), R).
By the definition of B(U, V,R) and (X,Y ) ∈ B(U, V,R), we receive

(X,Y ) = ∧Y =
∧
j∈A

(Xj , Yj).

By Lemma 1 and (Xj , Yj) ∈ B(U, (V,E), R), we obtain
∧
j∈A

(Xj , Yj) ∈ B(U, (V,E), R).

Therefore, we know (X,Y ) ∈ B(U, (V,E), R).

The restriction of the subconcept-superconcept hierarchy ≤ which is defined on
B(U, V,R) makes B(U, (V,E), R) itself a partially ordered set (B(U, (V,E), R),≤).
The following theorem shows that B(U, (V,E), R) is itself a complete lattice which
is a reasonable substructure of the whole object oriented concept lattice B(U, V,R).

Theorem 3. B(U, (V,E), R) equipped with ≤ is a complete lattice in which arbi-
trary infima coincide with infima in B(U, V,R), i.e. it is a complete ∧-sublattice of
B(U, V,R).

Proof. B(U, (V,E), R) ⊆ B(U, V,R) is obvious by definitions.
Let (X1, Y1), (X2, Y2) ∈ B(U, (V,E), R). Theorem 1 means

(X1, Y1) ∧ (X2, Y2) ∈ B(U, (V,E), R).
This hints the infima in B(U, (V,E), R) coincide with infima in B(U, V,R).

Next we prove the suprema in B(U, (V,E), R) is existed with the order ≤ in
B(U, V,R).

By Section 2, (U,�� ) contains the universe U and is the family of the extension
of all object oriented concepts. The definition of � leads to

U� = {y ∈ V | Ry ⊆ U} = V .
Thus, the greatest element in B(U, V,R) is (U, V ). It is evident (U, V ) ∈ B(U, (V,E), R).

Let I = {(Ai, Bi) ∈ B(U, (V,E), R) | (Xj , Yj) ≤ (Ai, Bi), (j = 1, 2; i ∈ I)}.
Evidently, we get (U, V ) ∈ I, and so, I 6= ∅. Theorem 1 pledges

∧
i∈I

(Ai, Bi) ∈

B(U, (V,E), R). Therefore, (X1, Y1), (X2, Y2) ≤
∧
i∈I

(Ai, Bi) holds and
∧
i∈I

(Ai, Bi) is

the suprema of (X1, Y1) and (X2, Y2) in B(U, (V,E), R). This follows that B(U, (V,E), R)
is a complete lattice equipped with ≤.
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Remark 1. Let (A1, B1), (A2, B2) ∈ B(U, (V,E), R). The suprema of (A1, B1)
and (A2, B2) in B(U, (V,E), R) is denoted by (A1, B1) ∨E (A2, B2). Theorem 2 and
B(U, (V,E), R) ⊆ B(U, V,R) together implies

(A1, B1) ∨ (A2, B2) ≤ (A1, B1) ∨E (A2, B2).
We assert that it does not always have

(A1, B1) ∨ (A2, B2) = (A1, B1) ∨E (A2, B2).
Since (A1, B1) ∨ (A2, B2) = (A1 ∪A2, (B1 ∪B2)

��)
= (A1 ∪A2, (B

�
1 ∪B�2)�)

= (A1 ∪A2, B1 ∪B2 ∪{y ∈ V | Ry ⊆ B1 ∪B2 but Ry * B1, and Ry * B2}).
Let y1, y2 ∈ V,Ry1 = B1 ∪B2 and y1 E y2, where E is defined as aE b⇔ Ra ⊂ Rb.
Under this case, it will not have y2 ∈ (B�1 ∪B�2)�. In other words, for some context
and some hierarchy order on attributes, it could not pledge the following to be true:

(A1, B1) ∨ (A2, B2) = (A1, B1) ∨E (A2, B2)
Therefore, in general, B(U, (V,E), R) is not a ∨-sublattice of B(U, V,R).

The next theorem shows a natural result saying that the more restrictions, the
less object oriented concepts satisfying the restrictions.

Theorem 4. If E1 ⊆ E2, then B(U, (V,E2), R) ⊆ B(U, (V,E1), R).

Proof. Let (X,Y ) ∈ B(U, (V,E2), R), y1, y2 ∈ V, y1 E1 y2 and y1 ∈ Y . In view of
E1 ⊆ E2, we obtain y1 E2 y2. Owing to y1 ∈ Y and (X,Y ) ∈ B(U, (V,E2), R), we
earn y2 ∈ Y . Therefore, (X,Y ) ∈ B(U, (V,E1), R) holds.

Given a formal context (U, V,R) and binary relation E on V , a natural question
arises for what binary relations Q on V , we have B(U, (V,E), R) = B(U, (V,Q), R),
that is, what Q are restrictive to the same extent as E. We will answer the question
with respect to the operations of transitive closure. Namely, given a binary relation
E on attributes specifying their relative importance, the transitive closure of E
represents an intuitively sound extension of E. For a binary relation R, the transitive
closure will be denoted by R+. By definition, R+ is the least transitive closure
relation containing R. We need the following lemma.

Lemma 5. For an HA-context (U, (V,E), R), we have B(U, (V,E), R) = B(U, (V,E+), R).

Proof. By definition, it follows E ⊆ E+. Thus, Theorem 3 hints
B(U, (V,E+), R) ⊆ B(U, (V,E), R).

Conversely, let (X,Y ) ∈ B(U, (V,E), R), y1 ∈ Y and y1E+ y2. As y1E+ y2, from
the well-known description of transitive closure, we believe that there are z1, . . . , zn ∈
Y such that
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y1 E z1, z1 E z2, . . . , zn−1 E zn, zn E y2.
Taking into account that (X,Y ) ∈ B(U, (V,E), R), y1 ∈ Y and y1 E z1, we present
z1 ∈ Y . Taken z1 ∈ Y and z1 E z2 together, we produce z2 ∈ Y . Repeating this
argument, we finally get y2 ∈ Y . This shows (X,Y ) ∈ B(U, (V,E+), R).

For a binary relation Q on V , we denote by Q2 the composition Q ◦ Q, i.e.
(y1, y2) ∈ Q2 if and only if there is some y ∈ V such that (y1, y) ∈ Q and (y, y2) ∈ Q.
In addition, if x and y do not satisfy Q, it is denoted by x¬Qy. Now we have the
following theorem.

Theorem 6. For an HA-context (U, (V,E), R), we have
B(U, (V,E−E2), R) = B(U, (V,E), R) = B(U, (V,E+), R).

Furthermore, for each binary relation Q on V satisfying E−E2 ⊆ Q ⊆ E+, we
have B(U, (V,Q), R) = B(U, (V,E), R).

Proof. First to prove (E−E2)+ = E+.
(E−E2)+ ⊆ E+ is evident. Next we demonstrate E+ ⊆ (E−E2)+.
For any x1, x2 ∈ U, x1 E+ x2 means that there exist z1, z2, . . . , zn ∈ U satisfying

x1 E z1, z1 E z2, . . . , zn E x2.
For x1 E z1, we give the following analysis.
If x1 E z1 and x1¬E2 z1.

It means the hold of x1(E−E2)z1, and so x1(E−E2)+z1.
If x1 E z1 and x1 E2 z1.

Then, there is z ∈ U satisfying z 6= x1, z 6= z1, x1 E z and z E z1.
Suppose x1 E z and x1¬E2 z.

This hints the true of x1(E−E2)z.
Suppose x1 E z and x1 E2 z.

This follows x1 E a and a E z for some a ∈ U . Repeating the above argument for
x1E a, considering with |U | <∞ together, we may obtain a series p1, p2, . . . , pl ∈ U
satisfying

x1 E p1, x1¬E2 p1, p1 E p2, p1¬E2 p2, . . . , pl E a and pl¬E2 a.
This hints

x1(E−E2)p1, p1(E−E2)p2, . . . , pl(E−E2)a.
Similarly discussion to aE z, it will bring about pl+1, . . . , pt ∈ U satisfying

a(E−E2)pl+1, pl+1(E−E2)pl+2, . . . , pt(E−E2)z.
In other words, if x1 E z and x1 E2 z, we will get p1, . . . , pt ∈ U satisfying

x1(E−E2)p1, p1(E−E2)p2, . . ., and pt(E−E2)z.
Analogously to z1, z2, . . . , zn, finally, we obtain the correct of the following formulas

x1(E−E2)y1, . . . , ys(E−E2)x2
for some y1, y2, . . . , ys ∈ U . Simply to say, x1(E−E2)+x2 is right.
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Therefore, we refer to
E+ ⊆ (E−E2)+.

Afterwards, by Lemma 2, we believe
B(U, (V, (E−E2)+)), R) = B(U, (V, (E−E2)), R).

Summing up, we attain
B(U, (V, (E−E2)), R) = B(U, (V, (E−E2)+), R) = B(U, (V,E+), R).

For the second part, Theorem 3, Lemma 2 and the above taken together will
pledge its true.

Theorem 4 shows natural bounds (in terms of transitive reduction and closure)
on relation Q which are equally restrictive as E.

4. Discussion

We assume that the reader is familiar with Hasse diagrams which will be used
for visualization of object oriented concept lattices and attribute hierarchies. The
following example shows the effect of a binary relation E on V .

Example 1. Consider the formal context from Table I and a relation E given by
y1 E y2, that is, for any (A,B) ∈ B(U, V,R), there is

y1 ∈ B ⇒ y2 ∈ B.
Then, the diagram of B(U, V,R) and B(U, (V,E), R) is Figure 1 and Figure 2 respec-
tively.

Table I A formal context

y1 y2 y3
x1 1 0 0

x2 0 1 0

x3 0 0 1
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(∅, ∅)

Figure 1 Object oriented concept lattice B(U, V,R) from Table I
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Figure 2 Constrained object oriented concept lattice B(U, (V,E), R) from Table I
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Let (U, V,R) be a formal context and (U, (V,E), R) be an HA-context rela-
tive to (U, V,R). Let B(U, V,R),B(U, (V,E), R) be the correspondent formal con-
cept lattice and the family of all constrained formal concepts respectively. Let
B(U, V,R),B(U, (V,E), R) be the correspondent object oriented concept lattice and
the family of all constrained object oriented concepts respectively. For two lattices
L1 and L2, L1

∼= L2 and L1 � L2 stands for the isomorphism of L1 and L2 and the
non-isomorphism of L1 and L2 respectively.

Comparing the properties of B(U, (V,E), R) presented by [5] with the results
for B(U, (V,E), R) in this paper, we could read out some differences and similarities
between them as follows.

(1) Both of B(U, (V,E), R) and B(U, (V,E), R) are complete lattices.
(2) For what binary relations Q on V , we have B(U, (V,E), R) = B(U, (V,Q), R),

i.e. what Q are restrictive to the same extent as E. The Theorem 8 provided by [5]
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answers the question with respect to the operation of transitive closure for E+.
For what binary relations Q on V , we have B(U, (V,E), R) = B(U, (V,Q), R), i.e.

what Q are restrictive to the same extent as E. Theorem 4 answers the question
with respect to the operation of transitive closure for E+.

We find that the Theorem 8 provided by [5] is similar to Theorem 4.
(3) The Example 5 and Example 8 provided by [10] show B(U, V,R) � B(U, V,R)

generally. From [5] and this paper, we may infer to B(U, (V, idV ), R) = B(U, V,R)
and B(U, (V, idV ), R) = B(U, V,R) respectively. Hence, it follows that for E on
attributes, it does not always pledge B(U, (V,E), R) ∼= B(U, (V,E), R).

(4) The Theorem 10 provided by [5] states that B(U, (V,E), R) is a ∨-sublattice
of B(U, V,R), but not a ∧-sublattice of B(U, V,R). Theorem 2 and Remark 1
together indicates that B(U, (V,E), R) is a ∧-sublattice of B(U, V,R), but not a
∨-sublattice of B(U, V,R).

The authors point [5] that since the present state of art of formal concept analy-
sis does not offer a way to cope with attribute hierarchies, the reduction techniques
have to be applied even if the user is able to formulate a natural attribute hierarchy.
In fact, the research for object oriented concept lattice is the same as the above
description for formal concept lattices. From this view, the present approach offers
a direct way to reduce the number of object oriented concepts by keeping only ob-
ject oriented concepts compatible with an attribute hierarchy. To discussing object
oriented concepts deeply, as the future research for formal concept lattices provided
by [5], our future research for object oriented concept lattices constrained by hier-
archically ordered attributes will be directed to the investigation of other natural
forms of an additional information accompanying (U, V,R) and the corresponding
constraining rules. The next step is also to consider constraining rules by which an
object oriented concept (A,B) satisfies a constraint if it is true that whenever the
attribute y belongs to B, then at least one of the attributes y1, . . . , yn belong to B.
Clearly, for n = 1, this becomes just the restrictions considered in this paper.
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[9] A. Davey, A. Priestley, Introduction to Lattices and Order, 2nd. ed., Cambridge
University Press, Cambridge, (2003).

[10] Y. Chen, Y. Yao, A multiview approach for intelligent data analysis based on
data operators, Infor. Sci. 178(2008), 1-20.

Hua Mao
Department of Mathematics,
Hebei University,
Baoding 071002,
China
email: yushengmao@263.net

141


