SANDWICH-TYPE THEOREMS FOR MULTIVALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH CERTAIN TRANSFORMS

T. Panigrahi

ABSTRACT. In the present paper, the author investigates some subordination and superordination results for certain subclasses of multivalent meromorphic functions defined through the combinations and iterations of a meromorphic analogue of the Cho-Kwon-Srivastava operator for normalized analytic functions. Sandwichtype theorems for function belonging to these classes and some consequences are also obtained.

2000 Mathematics Subject Classification: 30C45, 30C80, 30D30.

Keywords: Subordination and superordination, Meromorphic functions, Cho-Kwon-Srivastava operator, Sandwich theorems.

1. Introduction and Definitions

Let \sum_{p} denote the class of functions of the form:

$$f(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k-p} z^{k-p} \quad (p \in \mathbb{N} = \{1, 2, 3, \dots\})$$
 (1)

which are analytic and p-valent in the punctured unit disk $\mathbb{U}^* := \{z : z \in \mathbb{C} \text{ and } 0 < |z| < 1\} = \mathbb{U} \setminus \{0\}.$

Let $\mathcal{H} = \mathcal{H}(\mathbb{U})$ be the linear space of all analytic functions in the open unit disk \mathbb{U} and let $\mathcal{H}[a,p]$ denote the subclass of $\mathcal{H}(\mathbb{U})$ consisting of functions of the form:

$$f(z) = a + a_p z^p + a_{p+1} z^{p+1} + \dots \quad (a \in \mathbb{C}, \ p \in \mathbb{N}).$$

Let the functions f and g be members of the analytic function class \mathcal{H} . We say that the function f is subordinate to g, written as $f(z) \prec g(z)$ ($z \in \mathbb{U}$), if there exists a Schwarz function w, which (by definition) is analytic in \mathbb{U} with w(0) = 0

0 and |w(z)| < 1 such that f(z) = g(w(z)) ($z \in \mathbb{U}$). It follows from this definition that

$$f(z) \prec g(z) \Longrightarrow f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

In particular, if the function g is univalent in \mathbb{U} , then we have the following equivalence (see [1, 7, 8]):

$$f(z) \prec g(z) \ (z \in \mathbb{U}) \iff f(0) = g(0) \text{ and } f(\mathbb{U}) \subset g(\mathbb{U}).$$

Now, we mention some definitions from the theory of differential subordination given by Miller and Mocanu [8, 9].

Definition 1. (see [8]) Let $\phi : \mathbb{C}^2 \longrightarrow \mathbb{C}$ and let h be univalent in \mathbb{U} . If p is analytic in \mathbb{U} and satisfies the following:

$$\phi\left(p(z), zp'(z)\right) \prec h(z) \quad (z \in \mathbb{U}),\tag{2}$$

then p is called a solution of the first order differential subordination (2). The univalent function q is called a dominant of the solutions of the differential subordination (2) or, more simply, a dominant if $p \prec q$ for every p satisfying (2). An univalent dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (2) is said to be the best dominant.

Definition 2. (see [9]) Let $\varphi : \mathbb{C}^2 \longrightarrow \mathbb{C}$ and let h be analytic in \mathbb{U} . If p and $\varphi(p(z), zp'(z))$ are univalent in \mathbb{U} and satisfy the differential superordination:

$$h(z) \prec \varphi(p(z), zp'(z)) \quad (z \in \mathbb{U}),$$
 (3)

then p is called a solution of the first order differential superordination (3). An analytic function q is called a subordinant of the solutions of the differential super-ordination (3) or, more simply, a subordinant if $q \prec p$, for all p satisfying (3). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (3) is said to be the best subordinant.

Definition 3. (see [8], Definition 2.2b, p. 21; also see [9], Definition 2, p. 817) We denote by Q the class of functions f that are analytic and injective on $\overline{\mathbb{U}} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial \mathbb{U} : \lim_{z \longrightarrow \zeta} f(z) = \infty \right\},$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{U} \setminus E(f)$.

Let $f, g \in \sum_{p}$, where f is given by (1) and the function g is defined by

$$g(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} b_{k-p} z^{k-p} \quad (p \in \mathbb{N}; z \in \mathbb{U}^*),$$

we define the Hadamard product (or convolution) of f(z) and g(z) by

$$(f*g)(z) = \frac{z^p f(z) \star z^p g(z)}{z^p} = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k-p} b_{k-p} z^{k-p} = (g*f)(z) \quad (z \in \mathbb{U}^*)$$

where \star denotes the usual Hadamard product (or convolution) of analytic functions. Liu and Srivastava [6] defined the function $\phi_p(a,c;z)$ by

$$\phi_p(a,c;z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} \frac{(a)_k}{(c)_k} z^{k-p} \ (z \in \mathbb{U}^*; \ c \in \mathbb{C} \setminus \mathbb{Z}_0^-, \ \mathbb{Z}_0^- := \{0, -1, -2... \cdots \})$$
 (4)

where $(\lambda)_n$ is the Pochhammer symbol (or shifted factorial) given by

$$(\lambda)_n := \begin{cases} 1 & (n=0) \\ \lambda(\lambda+1).....(\lambda+n-1) & (n \in \mathbb{N}). \end{cases}$$

They defined the operator $\mathcal{L}(a,c):\sum_{p}\longrightarrow\sum_{p}$ as

$$\mathcal{L}(a,c)f(z) = \phi_p(a,c;z) * f(z) \quad (z \in \mathbb{U}^*).$$

Corresponding to the function $\phi_p(a, c; z)$, Mishra et al. [10] (see also [11, 12]) defined the function $\phi_p^{\dagger}(a, c; z)$, the generalized multiplicative inverse of $\phi_p(a, c; z)$ given by the relation

$$\phi_p(a,c;z) * \phi_p^{\dagger}(a,c;z) = \frac{1}{z^p(1-z)^{\lambda+p}} \quad (a,c \in \mathbb{C} \setminus \mathbb{Z}_0^-, \lambda > -p; z \in \mathbb{U}^*).$$
 (5)

They defined the operator $\mathcal{L}_p^{\lambda}(a,c): \sum_p \longrightarrow \sum_p$ as

$$\mathcal{L}_p^{\lambda}(a,c)f(z) = \phi_p^{\dagger}(a,c;z) * f(z) \quad (z \in \mathbb{U}^*). \tag{6}$$

Therefore, it follows from (5) and (6) that

$$\mathcal{L}_{p}^{\lambda}(a,c)f(z) = \frac{1}{z^{p}} + \sum_{k=1}^{\infty} \frac{(\lambda+p)_{k}(c)_{k}}{(a)_{k}(1)_{k}} a_{k-p} z^{k-p} \quad (z \in \mathbb{U}^{*}).$$
 (7)

Note that, the holomorphic analogue of the function $\phi_p^{\dagger}(a, c; z)$ and the corresponding transform is popularly known as the Cho-Kwon- Srivastava operator in literature (see[2, 13]).

For $f \in \sum_{p}$ given by (1), set

$$C^0 f(z) = f(z),$$

$$C^{(t,1)}f(z) = (1-t)f(z) + \frac{tz(-f(z))'}{p} = \frac{1}{z^p} + \sum_{k=1}^{\infty} \left(\frac{p-kt}{p}\right) a_{k-p} z^{k-p} := C^t f(z) \quad (t \ge 0)$$

and for $m = 2, 3 \cdots$

$$C^{(t,m)}f(z) = C^t \left(C^{(t,m-1)}f(z) \right) = \frac{1}{z^p} + \sum_{k=1}^{\infty} \left(\frac{p-kt}{p} \right)^m a_{k-p} z^{k-p} \ (z \in \mathbb{U}^*). \tag{8}$$

Similarly, the *n*-times superimpositions of the operator $\mathcal{L}_p^{\lambda}(a,c)$ is defined as follows;

$$\mathcal{L}_p^{(\lambda,0)}(a,c)f(z) = f(z)$$

and for $n = 1, 2, 3 \cdots$

$$\mathcal{L}_{p}^{(\lambda,n)}(a,c)f(z) = \mathcal{L}_{p}^{\lambda}(a,c) \left(\mathcal{L}_{p}^{(\lambda,n-1)}(a,c)f(z) \right) = \frac{1}{z^{p}} + \sum_{k=1}^{\infty} \left(\frac{(\lambda+p)_{k}(c)_{k}}{(a)_{k}(1)_{k}} \right)^{n} a_{k-p} z^{k-p}.$$
(9)

Note that for n = 1 and p = 1, we use the notation

$$\mathcal{L}_{1}^{(\lambda,1)}(a,c)f(z) = \mathcal{L}^{\lambda}(a,c)f(z).$$

Recently, Mishra et al. [10] (see also [11, 12]) introduced and studied the operator

$$\mathcal{I}_{\lambda,p}^{n,m}(a,c): \sum_{p} \longrightarrow \sum_{p} (m,n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}, t \ge 0)$$

as the compsition of the operator $\mathcal{L}_p^{(\lambda,n)}(a,c)$ and $C^{(t,m)}$. Thus, for $f \in \sum_p$ given by (1), we have

$$\mathcal{I}_{\lambda,p}^{n,m}(a,c)f(z) = \mathcal{L}_p^{(\lambda,n)}(a,c)\mathcal{C}^{(t,m)}f(z)
= \frac{1}{z^p} + \sum_{k=1}^{\infty} \left(\frac{(\lambda+p)_k(c)_k}{(a)_k(1)_k}\right)^n \left(\frac{p-kt}{p}\right)^m a_{k-p}z^{k-p}, \quad (10)
(m, n \in \mathbb{N}_0, \ \lambda > -p, \ t \ge 0; \ z \in \mathbb{U}^*)$$

.

The operator $\mathcal{I}_{\lambda,p}^{n,m}(a,c)$ generalizes several previously studied familiar operators and also provides meromorphic analogue for certain well known operators for analytic functions (see, for detail [10, 11]). Very recently, a similar operator for analytic functions has been studied by Srivastava et al. [18].

In the particular case n = 1, we use the notation

$$\mathcal{I}_{\lambda,p}^{1,m}(a,c)f(z) := \mathcal{I}_{\lambda,p}^{m}(a,c)f(z).$$

In the recent years, several authors obtained many interesting results involving various linear and non-linear operators associated with differential subordination and superordination (for detail, see [3, 4, 5, 15, 16, 17]).

The main object of the present paper is to obtain sufficient conditions for the functions $f \in \sum_{p}$ defined by using the operator $\mathcal{I}_{\lambda,p}^{m}(a,c)$ given by (10) such that sandwich relations of the form:

$$q_1(z) \prec \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \prec q_2(z),$$

holds good where q_1 and q_2 are given univalent functions in \mathbb{U} with $q_1(0) = q_2(0) = 1$.

2. Preliminaries

To establish our results, we need the following:

Lemma 1. (see [14]) Let q be a convex univalent function in the open unit disk \mathbb{U} and let $\psi \in \mathbb{C}$, $\gamma \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with $\Re\{1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}\} > 0$. If p(z) is analytic in \mathbb{U} with p(0) = q(0) and

$$\psi p(z) + \gamma z p'(z) \prec \psi q(z) + \gamma z q'(z)$$

then $p \prec q$ and q is the best dominant.

Lemma 2. (see [9]) Let q be convex univalent in the open unit disk \mathbb{U} and $\gamma \in \mathbb{C}$ such that $\Re(\gamma) > 0$. If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$, and $p(z) + \gamma z p'(z)$ is univalent in \mathbb{U} , then

$$q(z) + \gamma z q'(z) \prec p(z) + \gamma z p'(z),$$

then $q \prec p$ and q is the best subordinant.

Lemma 3. Let a and c be complex numbers $(a, c \notin \mathbb{Z}_0^-)$, $n, m \in \mathbb{N}_0, t > 0, \lambda \in \mathbb{R}$ and $\lambda > -p$. Let $f \in \sum_p$. Then the following identities hold.

$$z(\mathcal{I}_{\lambda,p}^{n,m}(a,c)f(z))' = \frac{p}{t}(1-t)\mathcal{I}_{\lambda,p}^{n,m}(a,c)f(z) - \frac{p}{t}\mathcal{I}_{\lambda,p}^{n,m+1}(a,c)f(z), \tag{11}$$

$$z(\mathcal{I}_{\lambda,p}^{m}(a,c)f(z))' = (a-1)\mathcal{I}_{\lambda,p}^{m}(a-1,c)f(z) - (a-1+p)\mathcal{I}_{\lambda,p}^{m}(a,c)f(z),$$
(12)

$$z(\mathcal{I}_{\lambda,p}^{m}(a,c)f(z))' = (\lambda+p)\mathcal{I}_{\lambda+1,p}^{m}(a,c)f(z) - (\lambda+2p)\mathcal{I}_{\lambda,p}^{m}(a,c)f(z), \tag{13}$$

$$z(\mathcal{I}_{\lambda,p}^{m}(a,c)f(z))' = c\mathcal{I}_{\lambda,p}^{m}(a,c+1)f(z) - (c+p)\mathcal{I}_{\lambda,p}^{m}(a,c)f(z). \tag{14}$$

Proof. These identities can be verified by considering series expansions of individual functions involved.

3. Main Results

Unless otherwise mentioned, we assume throughout the sequel that $t > 0, \lambda > -p, p \in \mathbb{N}, m \in \mathbb{N}_0, \eta \in \mathbb{C}^*$ and $0 < \alpha < 1$. The powers are considered as the principal one.

We prove the following.

Theorem 4. Let q be univalent in \mathbb{U} and satisfies

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} + \frac{\alpha}{\eta}\right\} > 0. \tag{15}$$

Suppose $f \in \sum_{p}$ satisfies any one of the following subordination conditions:

$$\left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1} \\
 \qquad \qquad \prec q(z) + \frac{\eta}{\alpha} z q'(z), \quad (16)$$

or

or

Then

$$\left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \prec q(z) \tag{20}$$

and q is the best dominant of (20).

Proof. Define the function $\phi(z)$ by

$$\phi(z) = \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \quad (z \in \mathbb{U}^*).$$
 (21)

Clearly, the function $\phi(z)$ is analytic in \mathbb{U} and $\phi(0) = 1$. Differentiating (21) logarithmically with respect to z followed by applications of the identities (11) to (14) yield respectively

$$\frac{z\phi'(z)}{\phi(z)} = -\frac{p\alpha}{t} \left[1 - \frac{\mathcal{I}_{\lambda,p}^{m+1}(a,c)f(z)}{\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)} \right], \tag{22}$$

$$\frac{z\phi'(z)}{\phi(z)} = (a-1)\alpha \left[1 - \frac{\mathcal{I}_{\lambda,p}^m(a-1,c)f(z)}{\mathcal{I}_{\lambda,p}^m(a,c)f(z)} \right],\tag{23}$$

$$\frac{z\phi'(z)}{\phi(z)} = (\lambda + p)\alpha \left[1 - \frac{\mathcal{I}_{\lambda+1,p}^m(a,c)f(z)}{\mathcal{I}_{\lambda,p}^m(a,c)f(z)} \right], \tag{24}$$

and

$$\frac{z\phi'(z)}{\phi(z)} = c\alpha \left[1 - \frac{\mathcal{I}_{\lambda,p}^{m}(a,c+1)f(z)}{\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)} \right]. \tag{25}$$

Now, the subordination conditions (16) to (19) are equivalent to

$$\phi(z) + \frac{\eta}{\alpha} z \phi'(z) \prec q(z) + \frac{\eta}{\alpha} z q'(z). \tag{26}$$

The assertion of Theorem 4 now follows by an application of Lemma 1 with $\psi = 1$ and $\gamma = \frac{\eta}{\alpha}$. The proof of Theorem 4 is completed.

Taking $q(z) = \frac{1+Az}{1+Bz}$ (-1 \le B < A \le 1) and $q(z) = \left(\frac{1+z}{1-z}\right)^{\gamma}$ (0 < \gamma \le 1) in Theorem 4, we have the following results (Corollaries 16 and 17 below.)

Corollary 5. Let $\Re\{\frac{1-Bz}{1+Bz} + \frac{\alpha}{\eta}\} > 0$ $(z \in \mathbb{U})$. Suppose the function $f \in \sum_p$ satisfying any one of the following conditions:

or

$$[1+\eta(a-1)] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(a-1) z^p \mathcal{I}_{\lambda,p}^m(a-1,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

$$\prec \frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2},$$

or

$$\begin{split} \left[1+\eta(\lambda+p)\right] \left(\frac{1}{z^p \mathcal{I}^m_{\lambda,p}(a,c) f(z)}\right)^{\alpha} - &\eta(\lambda+p) z^p \mathcal{I}^m_{\lambda+1,p}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}^m_{\lambda,p}(a,c) f(z)}\right)^{\alpha+1} \\ &\prec \frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2}, \end{split}$$

or

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$
$$\prec \frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2}.$$

Then

$$\left(\frac{1}{z^p \mathcal{I}^m_{\lambda,p}(a,c) f(z)}\right)^{\alpha} \prec \frac{1 + Az}{1 + Bz}$$
 (27)

and $\frac{1+Az}{1+Bz}$ is the best dominant of (27).

Corollary 6. Let $\Re\{\frac{1+2\gamma z+z^2}{1-z^2}+\frac{\alpha}{\eta}\}>0$ $(z\in\mathbb{U})$. Suppose the function $f\in\sum_p$ satisfies any one of the following subordination conditions:

or

or

$$[1 + \eta(\lambda + p)] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(\lambda + p) z^p \mathcal{I}_{\lambda+1,p}^m(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

$$\prec \left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\gamma\eta}{\alpha} z \frac{(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}},$$

or

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

$$\prec \left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\gamma \eta}{\alpha} z \frac{(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}}.$$

Then

$$\left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \prec \left(\frac{1+z}{1-z}\right)^{\gamma} \tag{28}$$

and $\left(\frac{1+z}{1-z}\right)^{\gamma}$ is the best dominant of (28).

Taking p=t=1 and m=0 in Theorem 4, we obtain the following results (Corollary 7 below).

Corollary 7. Let q be univalent in \mathbb{U} and (15) holds. Suppose the function $f \in \sum (\equiv \sum_1)$ satisfies the following subordination:

$$[1-\eta] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)} \right)^{\alpha} - \eta \frac{\left(\mathcal{L}^{\lambda}(a,c)f(z) \right)'}{z^{\alpha-1}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)} \right)^{\alpha+1} \prec q(z) + \frac{\eta}{\alpha} z q'(z),$$

or

$$[1 + \eta(\lambda + 1)] \left(\frac{1}{z\mathcal{L}^{\lambda}(a, c)f(z)}\right)^{\alpha} - \eta(\lambda + 1) \frac{\mathcal{L}^{\lambda + 1}(a, c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c)f(z)}\right)^{\alpha + 1}$$

$$\prec q(z) + \frac{\eta}{\alpha} z q'(z),$$

or

$$[1+\eta c] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta c \frac{\mathcal{L}^{\lambda}(a,c+1)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1} \prec q(z) + \frac{\eta}{\alpha} z q'(z).$$

Then

$$\left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} \prec q(z) \tag{29}$$

and q(z) is the best dominant of (29).

Theorem 8. Let the function q be univalent convex in \mathbb{U} . Further, let us assume that

$$\Re(\eta) > 0 \tag{30}$$

and

$$\left(\frac{1}{z^p \mathcal{I}_{\lambda, p}^m(a, c) f(z)}\right)^{\alpha} \in \mathcal{H}[q(0), 1)] \cap Q.$$

Suppose the function f and q satisfy any one of the following pair of conditions:

$$\left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$
(31)

is univalent in \mathbb{U}

and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1},$$
(32)

$$[1+\eta(a-1)]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}-\eta(a-1)z^p\mathcal{I}_{\lambda,p}^m(a-1,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$
(33)

is univalent in \mathbb{U} and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left[1 + \eta(a-1)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(a-1) z^p \mathcal{I}_{\lambda,p}^m(a-1,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}, \quad (34)$$

or

$$[1 + \eta(\lambda + p)] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(\lambda + p) z^p \mathcal{I}_{\lambda+1,p}^m(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

$$(35)$$

is univalent in \mathbb{U} and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left[1 + \eta(\lambda + p)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(\lambda + p) z^p \mathcal{I}_{\lambda+1,p}^m(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}, \tag{36}$$

or

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$
(37)

is univalent in \mathbb{U} and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec [1 + \eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}.$$
(38)

Then

$$q(z) \prec \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha}$$
 (39)

and q is the best dominant of (39).

Proof. Differentiating logarithmically with respect to z of the function

$$\phi(z) = \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \quad (z \in \mathbb{U}^*),$$

followed by application of the identities (11) to (14) give (22) to (25) respectively. Hence the subordination conditions (32), (34), (36) and (38) are equivalent to

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \phi(z) + \frac{\eta}{\alpha} z \phi'(z).$$

The assertion (39) of Theorem 8 follows by an application of Lemma 2. The proof of Theorem 8 is thus completed.

Taking $q(z) = \frac{1+Az}{1+Bz} \ (-1 \le B < A \le 1)$ and $q(z) = \left(\frac{1+z}{1-z}\right)^{\gamma} \ (0 < \gamma \le 1)$ in Theorem 8 we get the following results (Corollaries 9 and 10).

Corollary 9. Assume that (30) holds and $\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha} \in \mathcal{H}[1,1] \cap Q$. Suppose the function $f \in \sum_p$ satisfies any one of the following pair of the conditions:

$$\left[1-\frac{\eta p}{t}\right]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}+\frac{\eta p}{t}z^p\mathcal{I}_{\lambda,p}^{m+1}(a,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2} \prec \left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

or

$$[1+\eta(a-1)]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}-\eta(a-1)z^p\mathcal{I}_{\lambda,p}^m(a-1,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in $\mathbb U$

and

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2} \prec \left[1+\eta(a-1)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha} \\
-\eta(a-1)z^p \mathcal{I}_{\lambda,p}^m(a-1,c)f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

or

$$[1+\eta(\lambda+p)]\left(\frac{1}{z^p\mathcal{I}^m_{\lambda,p}(a,c)f(z)}\right)^{\alpha}-\eta(\lambda+p)z^p\mathcal{I}^m_{\lambda+1,p}(a,c)f(z)\left(\frac{1}{z^p\mathcal{I}^m_{\lambda,p}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2} \prec \left[1+\eta(\lambda+p)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}$$
$$-\eta(\lambda+p)z^p \mathcal{I}_{\lambda+1,p}^m(a,c)f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

or

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\alpha} \frac{(A-B)z}{(1+Bz)^2} \prec [1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1)f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}.$$

Then

$$\frac{1+Az}{1+Bz} \prec \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \tag{40}$$

and $\frac{1+Az}{1+Bz}$ is the best subordinant of (40).

Corollary 10. Assume that (30) holds and $\left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha} \in \mathcal{H}[1,1] \cap Q$. Suppose the function $f \in \sum_p$ satisfies any one of the following pair of the conditions:

$$\left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

is univalent in $\mathbb U$

and

$$\left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\eta\gamma}{\alpha} \frac{z(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}} \prec \left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^{p} \mathcal{I}_{\lambda,p}^{m}(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^{p} \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^{p} \mathcal{I}_{\lambda,p}^{m}(a,c) f(z)}\right)^{\alpha+1}$$

or

$$[1+\eta(a-1)]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}-\eta(a-1)z^p\mathcal{I}_{\lambda,p}^m(a-1,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$\left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\eta\gamma}{\alpha} \frac{z(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}} \prec \left[1+\eta(a-1)\right] \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha} \\
- \eta(a-1)z^{p}\mathcal{I}_{\lambda,p}^{m}(a-1,c)f(z) \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha+1}$$

or

$$[1+\eta(\lambda+p)]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}-\eta(\lambda+p)z^p\mathcal{I}_{\lambda+1,p}^m(a,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$\left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\eta\gamma}{\alpha} \frac{z(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}} \prec \left[1+\eta(\lambda+p)\right] \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha} \\
- \eta(\lambda+p)z^{p}\mathcal{I}_{\lambda+1,p}^{m}(a,c)f(z) \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha+1}$$

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U} and

$$\left(\frac{1+z}{1-z}\right)^{\gamma} + \frac{2\eta\gamma}{\alpha} \frac{z(1+z)^{\gamma-1}}{(1-z)^{\gamma+1}} \prec \left[1+\eta c\right] \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha} - \eta cz^{p}\mathcal{I}_{\lambda,p}^{m}(a,c+1)f(z) \left(\frac{1}{z^{p}\mathcal{I}_{\lambda,p}^{m}(a,c)f(z)}\right)^{\alpha+1}.$$

Then

$$\left(\frac{1+z}{1-z}\right)^{\gamma} \prec \left(\frac{1}{z^{p} \mathcal{I}_{\lambda,p}^{m}(a,c) f(z)}\right)^{\alpha} \tag{41}$$

and $\left(\frac{1+z}{1-z}\right)^{\gamma}$ is the best subordinant of (41).

Taking p=t=1 and m=0 in Theorem 8, we obtain the following result (Corollary 11 below).

Corollary 11. Let $f \in \sum_{p}$ and q be univalent convex function in \mathbb{U} satisfying the condition $\Re(\eta) > 0$ and $\left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} \in \mathcal{H}[1,1] \cap Q$. Suppose any one of the following pair of the conditions is satisfied:

$$(1 - \eta) \left(\frac{1}{z\mathcal{L}^{\lambda}(a, c)f(z)}\right)^{\alpha} - \eta \frac{\left(\mathcal{L}^{\lambda}(a, c)f(z)\right)'}{z^{\alpha - 1}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c)f(z)}\right)^{\alpha + 1}$$

is univalent in \mathbb{U} and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec (1 - \eta) \left(\frac{1}{z \mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha} - \eta \frac{\left(\mathcal{L}^{\lambda}(a, c) f(z) \right)'}{z^{\alpha - 1}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha + 1}$$

or

$$[1+\eta(a-1)] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(a-1) \frac{\mathcal{L}^{\lambda}(a-1,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U} ,

and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left[1 + \eta(a-1)\right] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(a-1) \frac{\mathcal{L}^{\lambda}(a-1,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

$$[1+\eta(\lambda+1)]\left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha}-\eta(\lambda+1)\frac{\mathcal{L}^{\lambda+1}(a,c)f(z)}{z^{\alpha}}\left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U} ,

and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left[1 + \eta(\lambda + 1)\right] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(\lambda + 1) \frac{\mathcal{L}^{\lambda + 1}(a,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha + 1} + \frac{\eta}{\alpha} z q'(z) + \frac{\eta}{\alpha} z q'(z)$$

$$(1+\eta c)\left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha}-\eta c\frac{\mathcal{L}^{\lambda}(a,c+1)f(z)}{z^{\alpha}}\left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U} ,

and

$$q(z) + \frac{\eta}{\alpha} z q'(z) \prec \left(1 + \eta c \left(\frac{1}{z \mathcal{L}^{\lambda}(a,c) f(z)}\right)^{\alpha} - \eta c \frac{\mathcal{L}^{\lambda}(a,c+1) f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c) f(z)}\right)^{\alpha+1}.$$

Then

$$q(z) \prec \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha}$$
 (42)

and q(z) is the best subordinant of (42).

Combining Theorem 4 and Theorem 8 we get the following sandwich theorem.

Theorem 12. Let q_1 be univalent convex and q_2 be univalent in \mathbb{U} . Suppose q_1 and q_2 satisfy the conditions (30) and (15) respectively.

Further, assume that $\left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha} \neq 0 \in \mathcal{H}[q_1(0),1] \cap Q$. Suppose the function $f \in \sum_p$ satisfies any one of the following pair of conditions:

$$\left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^p \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

is univalent in U

and

$$q_{1}(z) + \frac{\eta}{\alpha} z q_{1}'(z) \prec \left[1 - \frac{\eta p}{t}\right] \left(\frac{1}{z^{p} \mathcal{I}_{\lambda,p}^{m}(a,c) f(z)}\right)^{\alpha} + \frac{\eta p}{t} z^{p} \mathcal{I}_{\lambda,p}^{m+1}(a,c) f(z) \left(\frac{1}{z^{p} \mathcal{I}_{\lambda,p}^{m}(a,c) f(z)}\right)^{\alpha+1} \prec q_{2}(z) + \frac{\eta}{\alpha} z q_{2}'(z)$$

or

$$[1+\eta(a-1)]\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha}-\eta(a-1)z^p\mathcal{I}_{\lambda,p}^m(a-1,c)f(z)\left(\frac{1}{z^p\mathcal{I}_{\lambda,p}^m(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U} and

$$q_1(z) + \frac{\eta}{\alpha} z q_1'(z) \prec \left[1 + \eta(a-1)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(a-1) z^p \mathcal{I}_{\lambda,p}^m(a-1,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1} \prec q_2(z) + \frac{\eta}{\alpha} z q_2'(z)$$

or

$$[1+\eta(\lambda+p)]\left(\frac{1}{z^p\mathcal{I}^m_{\lambda,p}(a,c)f(z)}\right)^{\alpha}-\eta(\lambda+p)z^p\mathcal{I}^m_{\lambda+1,p}(a,c)f(z)\left(\frac{1}{z^p\mathcal{I}^m_{\lambda,p}(a,c)f(z)}\right)^{\alpha+1}$$

 $is \ univalent \ in \ \mathbb{U} \\ and$

$$q_1(z) + \frac{\eta}{\alpha} z q_1'(z) \prec \left[1 + \eta(\lambda + p)\right] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta(\lambda + p) z^p \mathcal{I}_{\lambda+1,p}^m(a,c) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1} \prec q_2(z) + \frac{\eta}{\alpha} z q_2(z)$$

or

$$[1+\eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$q_1(z) + \frac{\eta}{\alpha} z q_1'(z) \prec [1 + \eta c] \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)} \right)^{\alpha} - \eta c z^p \mathcal{I}_{\lambda,p}^m(a,c+1) f(z) \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)} \right)^{\alpha+1} \prec q_2(z) + \frac{\eta}{\alpha} z q_2(z)$$

Then

$$q_1(z) \prec \left(\frac{1}{z^p \mathcal{I}_{\lambda,p}^m(a,c) f(z)}\right)^{\alpha} \prec q_2(z)$$

where q_1 and q_2 are the best subordinant and the best dominant respectively.

Taking p = t = 1 and m = 0 in Theorem 12 we obtain the following result.

Corollary 13. Let q_1 be univalent convex and q_2 be univalent in \mathbb{U} satisfying the conditions (30) and (15) respectively. Let

$$\left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} \neq 0 \in \mathcal{H}[q_1(0),1] \cap Q.$$

Suppose the function $f \in \sum_{p}$ satisfies any one of the following pair of conditions:

$$[1 - \eta] \left(\frac{1}{z \mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha} - \eta \frac{\left(\mathcal{L}^{\lambda}(a, c) f(z) \right)'}{z^{\alpha - 1}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha + 1}$$

is univalent in \mathbb{U}

$$q_{1}(z) + \frac{\eta}{\alpha} z q_{1}'(z) \quad \prec \quad [1 - \eta] \left(\frac{1}{z \mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha} + \eta \alpha \frac{\left(\mathcal{L}^{\lambda}(a, c) f(z) \right)'}{z^{\alpha - 1}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c) f(z)} \right)^{\alpha + 1}$$

$$\prec \quad q_{2}(z) + \frac{\eta}{\alpha} z q_{2}'(z)$$

or

$$[1 + \eta(a-1)] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(a-1)\frac{\mathcal{L}^{\lambda}(a-1,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in U

and

$$q_1(z) + \frac{\eta}{\alpha} z q_1'(z) \prec \left[1 + \eta(a-1)\right] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(a-1) \frac{\mathcal{L}^{\lambda}(a-1,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1} \prec q_2(z) + \frac{\eta}{\alpha} z q_2'(z)$$

$$[1+\eta(\lambda+1)] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(\lambda+1) \frac{\mathcal{L}^{\lambda+1}(a,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$q_1(z) + \frac{\eta}{\alpha} z q_1'(z) \prec \left[1 + \eta(\lambda + 1)\right] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta(\lambda + 1) \frac{\mathcal{L}^{\lambda+1}(a,c)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1} \prec q_2(z) + \frac{\eta}{\alpha} z q_2'(z)$$

or

$$[1 + \eta c] \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} - \eta c \frac{\mathcal{L}^{\lambda}(a,c+1)f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha+1}$$

is univalent in \mathbb{U}

and

$$q_{1}(z) + \frac{\eta}{\alpha} z q_{1}'(z) \quad \prec \quad [1 + \eta c] \left(\frac{1}{z \mathcal{L}^{\lambda}(a, c) f(z)}\right)^{\alpha} - \eta c \frac{\mathcal{L}^{\lambda}(a, c + 1) f(z)}{z^{\alpha}} \left(\frac{1}{\mathcal{L}^{\lambda}(a, c) f(z)}\right)^{\alpha + 1}$$

$$\prec \quad q_{2}(z) + \frac{\eta}{\alpha} z q_{2}'(z)$$

Then

$$q_1(z) \prec \left(\frac{1}{z\mathcal{L}^{\lambda}(a,c)f(z)}\right)^{\alpha} \prec q_2(z)$$

where q_1 and q_2 are the best subordinant and the best dominant respectively.

References

- [1] T. Bulboacã, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca., 2005.
- [2] N. E. Cho, O. S. Kwon and H. M. Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal. Appl. 292 (2004), 470-483.
- [3] N. E. Cho and H. M. Srivastava, A class of nonlinear integral operators preserving subordination and superordination, Integral Transforms Spec. Funct. 18 (2007), 95-107.
- [4] N. E. Cho, O. S. Kwon, S. Owa and H. M. Srivastava, A class of integral operators preserving subordination and superordination for meromorphic functions, Appl. Math. Comput. 193 (2007), 463-474.

- [5] G. Murugusundaramoorthy and N. Magesh, Differential subordinations and superordinations for analytic functions defined by the Dziok-Srivastava linear operator, J. Inequal. Pure Appl. Math. 7(4) (2006), 1-9.
- [6] J.- L. Liu and H. M. Srivastava, A linear operator and associated families of meromorphically multivalent functions, J. Math. Anal. Appl. 259 (2001), 566-581.
- [7] S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J. 28 (1981), 157-171.
- [8] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York and Basel, 2000.
- [9] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Elliptic Equ. 48 (2003), 815–826.
- [10] A. K. Mishra, T. Panigrahi and R. K. Mishra, Subordiantion and inclusion theorems for subclasses of meromorphic functions with applications to electromagnetic cloaking, Math. Comput. Modelling 57 (2013), 945-962.
- [11] T. Panigrahi, On Some Families of Analytic Functions Defined Through Subordination and Hypergeometric Functions, Ph.D. Thesis, Berhampur University, Berhampur, 2011.
- [12] T. Panigrahi, Convolution properties of multivalent meromorphic functions associated with Cho-Kwon-Srivastava operator, Southeast Asian Bull. Math. (to appear).
- [13] J. Patel, N. E. Cho and H. M. Srivastava, Certain subclasses of multivalent functions associated with a family of linear operators, Math. Comput. Modelling 43 (2006), 320-338.
- [14] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sand-wich theorems for some subclasses of analytic functions, Austral. J. Math. Anal. Appl. 3 (2006), 1-11.
- [15] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Internat. J. Math. Math. Sci. (2006), 1-13, Article ID 29684.
- [16] T. N. Shanmugam, S. Sivasubramanian and H. M. Srivastava, Differential sand-wich theorems for certain subclasses of analytic functions involving multiplier transformations, Integral Transforms Spec. Funct. 17, 12 (2006), 889-899.
- [17] H. M. Srivastava, D.-G. Yang and N.-E. Xu, Subordination for multivalent analytic functions associated with the Dziok-Srivastava operator, Integral Transforms Spec. Funct. 20 (2009), 581-606.

[18] H. M. Srivastava, A. K. Mishra and S. N. Kund, Certain classes of analytic functions associated with iterations of the Owa-Srivastava fractional derivative operator, Southeast Asian Bull. Math. 37 (2013), 413-435.

Trailokya Panigrahi Department of Mathematics, School of Applied Sciences, KIIT University, Bhubaneswar -751024, Odisha, India email: trailokyap6@gmail.com