IDEAL CONVERGENT SEQUENCE SPACES DEFINED BY MUSIELAK-ORLICZ FUNCTION OVER N-NORMED SPACES

KULDIP RAJ AND SUNIL K. SHARMA

ABSTRACT. In the present paper we introduce sequence spaces using ideal convergence and Musielak-Orlicz function $\mathcal{M} = (M_k)$ over *n*-normed spaces and examine some properties of the resulting sequence spaces.

2000 Mathematics Subject Classification: 40A05, 46A45, 46B70.

Keywords: paranorm space, I-convergence, difference sequence space, Orlicz function, Musielak-Orlicz function, n-normed space

1. Introduction and Preliminaries

The notion of ideal convergence was first introduced by P. Kostyrko [8] as a generalization of statistical convergence which was further studied in topological spaces by Das, Kostyrko, Wilczynski and Malik [2]. More applications of ideals can be seen in ([2], [3]). The concept of 2-normed spaces was initially developed by Gähler[4] in the mid of 1960's, while that of n-normed spaces one can see in Misiak[11]. As an interesting non linear generalization of a normed linear space which was subsequently studied by many others ([5],[17]) and references therein. Recently a lot of activities have been started to study sumability, sequence spaces and related topics in these non linear spaces (see [6],[18]). In particular Sahiner [18] combined these two concepts and investigated ideal sumability in these spaces and introduced certain sequence spaces using 2-norm.

We continue in this direction, by using Musielak-Orlicz function, generalized sequences and also ideals we introduce I-convergence of generalized sequences with respect to Musielak-Orlicz function in n-normed spaces.

Let $n \in \mathbb{N}$ and X be a real linear space of dimension d, where $d \geq n \geq 2$. A real valued function $||\cdot, \cdots, \cdot||$ on X^n satisfying the following four conditions:

- 1. $||x_1, x_2, \dots, x_n|| = 0$ if and only if x_1, x_2, \dots, x_n are linearly dependent in X;
- 2. $||x_1, x_2, \dots, x_n||$ is invariant under permutation;

- 3. $||\alpha x_1, x_2, \cdots, x_n|| = |\alpha| \ ||x_1, x_2, \cdots, x_n||$ for any $\alpha \in \mathbb{R}$, and
- 4. $||x + x', x_2, \dots, x_n|| \le ||x, x_2, \dots, x_n|| + ||x', x_2, \dots, x_n||$

is called an *n*-norm on X, and the pair $(X, ||\cdot, \dots, \cdot||)$ is called an *n*-normed space. For example, we may take $X = \mathbb{R}^n$ being equipped with the *n*-norm $||x_1, x_2, \dots, x_n||_E$ = the volume of the *n*-dimensional parallelopiped spanned by the vectors x_1, x_2, \dots, x_n which may be given explicitly by the formula

$$||x_1, x_2, \cdots, x_n||_E = |\det(x_{ij})|,$$

where $x_i = (x_{i1}, x_{i2}, \dots, x_{in}) \in \mathbb{R}^n$ for each $i = 1, 2, \dots, n$. Let $(X, ||\cdot, \dots, \cdot||)$ be an n-normed space of dimension $d \ge n \ge 2$ and $\{a_1, a_2, \dots, a_n\}$ be linearly independent set in X. Then the following function $||\cdot, \dots, \cdot||_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, \cdots, x_{n-1}||_{\infty} = \max\{||x_1, x_2, \cdots, x_{n-1}, a_i|| : i = 1, 2, \cdots, n\}$$

defines an (n-1)-norm on X with respect to $\{a_1, a_2, \dots, a_n\}$.

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to converge to some $L \in X$ if

$$\lim_{k \to \infty} ||x_k - L, z_1, \dots, z_{n-1}|| = 0$$
 for every $z_1, \dots, z_{n-1} \in X$.

A sequence (x_k) in a *n*-normed space $(X, ||\cdot, \cdots, \cdot||)$ is said to be Cauchy if

$$\lim_{k, n \to \infty} ||x_k - x_p, z_1, \dots, z_{n-1}|| = 0 \text{ for every } z_1, \dots, z_{n-1} \in X.$$

If every cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the n-norm. Any complete n-normed space is said to be n-Banach space.

Let $(X, ||\cdot, \dots, \cdot||)$ be a n-normed space. Recall that a sequence $(x_n)_{n \in \mathbb{N}}$ of elements of X is called statistically convergent to $x \in X$ if the set $A(\epsilon) = \{n \in \mathbb{N} : ||x_n - x|| \ge \epsilon\}$ has natural density zero for each $\epsilon > 0$.

A family $\mathcal{I} \subset 2^Y$ of subsets of a non empty set Y is said to be an ideal in Yif

- 1. $\phi \in \mathcal{I}$
- 2. $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$
- 3. $A \in \mathcal{I}, B \subset A \text{ imply } B \in \mathcal{I},$

while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$ see [5]. Given $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non trivial ideal in \mathbb{N} . A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be I-convergent to $x \in X$, if for each $\epsilon > 0$ the set $A(\epsilon) = \{n \in \mathbb{N} : ||x_n - x|| \ge \epsilon\}$ belongs to \mathcal{I} see [8].

Let X be a linear metric space. A function $p: X \to \mathbb{R}$ is called paranorm, if

- 1. $p(x) \ge 0$, for all $x \in X$,
- 2. p(-x) = p(x), for all $x \in X$,
- 3. $p(x+y) \le p(x) + p(y)$, for all $x, y \in X$,
- 4. if (λ_n) is a sequence of scalars with $\lambda_n \to \lambda$ as $n \to \infty$ and (x_n) is a sequence of vectors with $p(x_n x) \to 0$ as $n \to \infty$, then $p(\lambda_n x_n \lambda x) \to 0$ as $n \to \infty$.

A paranorm p for which p(x) = 0 implies x = 0 is called total paranorm and the pair (X, p) is called a total paranormed space. It is well known that the metric of any linear metric space is given by some total paranorm (see [19], Theorem 10.4.2, P-183).

An orlicz function M is a function, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \longrightarrow \infty$ as $x \longrightarrow \infty$.

Lindenstrauss and Tzafriri [9] used the idea of Orlicz function to define the following sequence space. Let w be the space of all real or complex sequences $x = (x_k)$, then

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}$$

which is called as an Orlicz sequence space. The space ℓ_M is a Banach space with the norm

$$||x|| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1 \right\}.$$

It is shown in [9] that every Orlicz sequence space ℓ_M contains a subspace isomorphic to $\ell_p(p \ge 1)$. The Δ_2 -condition is equivalent to $M(Lx) \le kLM(x)$ for all values of x > 0, and for L > 1.

A sequence $\mathcal{M}=(M_k)$ of Orlicz function is called a Musielak-Orlicz function see ([10],[14]). A sequence $\mathcal{N}=(N_k)$ defined by

$$N_k(v) = \sup\{|v|u - M_k(u) : u \ge 0\}, k = 1, 2, \cdots$$

is called the complementary function of a Musielak-Orlicz function \mathcal{M} . For a given Musielak-Orlicz function \mathcal{M} , the Musielak-Orlicz sequence space $t_{\mathcal{M}}$ and its subspace

 $h_{\mathcal{M}}$ are defined as follows

$$t_{\mathcal{M}} = \left\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for some } c > 0 \right\},$$

$$h_{\mathcal{M}} = \Big\{ x \in w : I_{\mathcal{M}}(cx) < \infty \text{ for all } c > 0 \Big\},$$

where $I_{\mathcal{M}}$ is a convex modular defined by

$$I_{\mathcal{M}}(x) = \sum_{k=1}^{\infty} M_k(x_k), x = (x_k) \in t_{\mathcal{M}}.$$

We consider $t_{\mathcal{M}}$ equipped with the Luxemburg norm

$$||x|| = \inf\left\{k > 0 : I_{\mathcal{M}}\left(\frac{x}{k}\right) \le 1\right\}$$

or equipped with the Orlicz norm

$$||x||^0 = \inf \left\{ \frac{1}{k} \left(1 + I_{\mathcal{M}}(kx) \right) : k > 0 \right\}.$$

The notion of difference sequence spaces was introduced by Kizmaz [7], who studied the difference sequence spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_o(\Delta)$. The notion was further generalized by Et and Colak [1] by introducing the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_o(\Delta^n)$. Let m, n be non-negative integers, then for Z = c, c_0 and l_{∞} , we have sequence spaces

$$Z(\Delta_m^n) = \{x = (x_k) \in w : (\Delta_m^n x_k) \in Z\}$$

for $Z = c, c_0$ and l_{∞} where $\Delta_m^n x = (\Delta_m^n x_k) = (\Delta_m^{n-1} x_k - \Delta_m^{n-1} x_{k+m})$ and $\Delta_m^0 x_k = x_k$ for all $k \in \mathbb{N}$, which is equivalent to the following binomial representation

$$\Delta_m^n x_k = \sum_{v=0}^n (-1)^v \binom{n}{v} x_{k+mv}.$$

Taking m=1, we get the spaces $l_{\infty}(\Delta^n)$, $c(\Delta^n)$ and $c_0(\Delta^n)$ studied by Et and Colak [1]. Taking m=n=1, we get the spaces $l_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz [7]. For more details about sequence spaces(see [12],[13],[15], [16]) and references therein.

Let $\Lambda = (\lambda_n)$ be non-decreasing sequence of positive numbers tending to infinity such that $\lambda_{n+1} \geq \lambda_n + 1$, $\lambda_1 = 0$. Let I be an admissible ideal of \mathbb{N} , $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function and $(X, ||\cdot, \cdots, \cdot||)$ is a n-normed space. Further, suppose $p = (p_k)$ is a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. By S(n - X) we denote the space of all sequences

defined over $(X, ||\cdot, \cdots, \cdot||)$. Now we define the following sequence spaces in this paper:

$$\begin{split} W^I\Big(\lambda,\mathcal{M},\Delta^m,u,p,||\cdot,\cdots,\cdot||\Big) &= \\ \Big\{x \in S(n-X): \forall \, \epsilon > 0, \ \, \Big\{n \in \mathbb{N}: \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \Big[M_k\Big(||\frac{\Delta^m x_k - L}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k} \\ &\geq \epsilon \Big\} \in I \text{ for some } \ \, \rho > 0 \ \, L \in X \text{ and each } z_1,\cdots,z_{n-1} \in X \Big\}, \\ W^I_0\Big(\lambda,\mathcal{M},\Delta^m,u,p,||\cdot,\cdots,\cdot||\Big) &= \\ \Big\{x \in S(n-X): \forall \, \epsilon > 0, \ \, \Big\{n \in \mathbb{N}: \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \Big[M_k\Big(||\frac{\Delta^m x_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k} \geq \epsilon \Big\} \in I \\ & \text{for some } \ \, \rho > 0 \text{ and each } z_1,\cdots,z_{n-1} \in X \Big\}, \\ W_\infty\Big(\lambda,\mathcal{M},\Delta^m,u,p,||\cdot,\cdots,\cdot||\Big) &= \\ \Big\{x \in S(n-X): \exists \, K > 0 \text{ such that } \sup_{n \in \mathbb{N}} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \Big[M_k\Big(||\frac{\Delta^m x_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k} \\ &\leq K \text{ for some } \ \, \rho > 0 \text{ and each } z_1,\cdots,z_{n-1} \in X \Big\}, \\ \text{and } W^I_\infty\Big(\lambda,\mathcal{M},\Delta^m,u,p,||\cdot,\cdots,\cdot||\Big) &= \\ \Big\{x \in S(n-X): \exists \, K > 0 \text{ such that } \Big\{n \in \mathbb{N}: \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \Big[M_k\Big(||\frac{\Delta^m x_k}{\rho},z_1,\cdots,z_{n-1}||\Big)\Big]^{p_k} \\ &\geq K \Big\} \in I \text{ for some } \ \, \rho > 0 \text{ and each } z_1,\cdots,z_{n-1} \in X \Big\}. \end{split}$$

The following inequality will be used throughout the paper. If $0 \le p_k \le \sup p_k = H$, $D = \max(1, 2^{H-1})$ then

$$|a_k + b_k|^{p_k} \le D\{|a_k|^{p_k} + |b_k|^{p_k}\}\tag{1}$$

for all k and $a_k, b_k \in \mathbb{C}$. Also $|a|^{p_k} \leq \max(1, |a|^H)$ for all $a \in \mathbb{C}$.

The main purpose of this paper is to introduce some sequence spaces using ideal convergence for Musielak-Orlicz function $\mathcal{M} = (M_k)$ over n-normed spaces. We study some relevant algebraic and topological properties. Further some inclusion relations among these spaces are also examined.

2. Main Results

Theorem 1. Let $\mathcal{M} = (M_k)$ be Musielak-Orlicz function, $p = (p_k)$ be a bounded sequence of positive real numbers, $u = (u_k)$ be a sequence of strictly positive real numbers and I be an admissible ideal of \mathbb{N} . Then $W^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$, $W_0^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||), W_\infty(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ and $W^I_{\infty}(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ are linear spaces over the real field \mathbb{R} .

Proof. Let $x = (x_k), y = (y_k) \in W^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ and $\alpha, \beta \in \mathbb{R}$. Then there exist positive integers ρ_1 and ρ_2 such that

$$\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{\Delta^m x_k - L}{\rho_1}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \ge \epsilon \right\} \in I$$

and

$$\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{\Delta^m y_k - L}{\rho_2}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \ge \epsilon \right\} \in I.$$

Since
$$||\cdot, \cdots, \cdot||$$
 is a n -norm and $\mathcal{M} = (M_k)$ be a Musielak-Orlicz function.
$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{\Delta^m (\alpha x_k + \beta y_k - L)}{|\alpha| \rho_1 + |\beta| \rho_2}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k}$$

$$\leq D \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[\frac{\rho_{1} |\alpha|}{(|\alpha|\rho_{1} + |\beta|\rho_{2})} M_{k} \left(||\frac{\Delta^{m} x_{k} - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1}|| \right) \right]^{p_{k}}$$

$$+ D \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[\frac{\rho_{2} |\beta|}{(|\alpha|\rho_{1} + |\beta|\rho_{2})} M_{k} \left(||\frac{\Delta^{m} y_{k} - L}{\rho_{2}}, z_{1}, \cdots, z_{n-1}|| \right) \right]^{p_{k}}$$

$$\leq DF \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[M_{k} \left(||\frac{\Delta^{m} x_{k} - L}{\rho_{1}}, z_{1}, \cdots, z_{n-1}|| \right) \right]^{p_{k}}$$

$$+ DF \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[M_{k} \left(||\frac{\Delta^{m} y_{k} - L}{\rho_{2}}, z_{1}, \cdots, z_{n-1}|| \right) \right]^{p_{k}},$$

where
$$F = \max\left[1, \left(\frac{\rho_1|\alpha|}{(|\alpha|\rho_1+|\beta|\rho_2)}\right)^H, \left(\frac{\rho_2|\beta|}{(|\alpha|\rho_1+|\beta|\rho_2)}\right)^H\right]$$
. From the above inequality, we get $\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(||\frac{\Delta^m(\alpha x_k + \beta y_k) - L}{|\alpha|\rho_1 + |\beta|\rho_2}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k} \ge \epsilon\right\}$

$$\subseteq \left\{n \in \mathbb{N} : DF \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(||\frac{\Delta^m x_k - L}{\rho_1}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k} \ge \frac{\epsilon}{2}\right\}$$

$$\cup \left\{n \in \mathbb{N} : DF \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(||\frac{\Delta^m y_k - L}{\rho_2}, z_1, \cdots, z_{n-1}||\right)\right]^{p_k} \ge \frac{\epsilon}{2}\right\}.$$

Two sets on the right hand side belong to I and this completes the proof.

Similarly, we can prove that $W_0^I \Big(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \Big)$, $W_\infty \Big(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \Big)$ and $W_\infty^I \Big(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \Big)$ are linear spaces.

Theorem 2. Let $\mathcal{M} = (M_k)$ be Musielak-Orlicz function and $p = (p_k)$ be a bounded sequence of positive real numbers and $u = (u_k)$ be a sequence of strictly positive real numbers. For any fixed $n \in \mathbb{N}$, $W_{\infty}(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ is a paranormed space with

$$g_n(x) = \inf \left\{ \rho^{\frac{p_n}{H}} : \rho > 0 : \sup_k \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \le 1,$$

$$\forall z_1, \cdots, z_{n-1} \in X \right\}.$$

Proof. It is clear that $g_n(x) = g_n(-x)$. Since $M_k(0) = 0$, we get $\inf\{\rho^{\frac{p_n}{H}}\} = 0$ for x = 0 therefore, $g_n(0) = 0$. For $x = (x_k)$, $y = (y_k) \in W_{\infty}(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$. Let

$$B(x) = \Big\{ \rho > 0 : \sup_{k} \frac{1}{\lambda_n} \sum_{k \in I} u_k \Big[M_k \Big(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \le 1, \forall z_1, \cdots, z_{n-1} \in X \Big\},$$

$$B(y) = \Big\{ \rho > 0 : \sup_{k} \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \Big[M_k \Big(|| \frac{\Delta^m y_k}{\rho}, z_1, \cdots, z_{n-1} || \Big) \Big]^{p_k} \le 1, \forall z_1, \cdots, z_{n-1} \in X \Big\}.$$

Suppose $\rho_1 \in B(x)$ and $\rho_2 \in B(y)$. If $\rho = \rho_1 + \rho_2$, then we have

$$\sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m}(x_{k} + y_{k})}{\rho}, z_{1}, \cdots, z_{n-1} || \Big) \\
\leq \Big(\frac{\rho_{1}}{\rho_{1} + \rho_{2}} \Big) \sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m} x_{k}}{\rho_{1}}, z_{1}, \cdots, z_{n-1} || \Big) \\
+ \Big(\frac{\rho_{2}}{\rho_{1} + \rho_{2}} \Big) \sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m} y_{k}}{\rho_{2}}, z_{1}, \cdots, z_{n-1} || \Big).$$
Thus,
$$\sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m}(x_{k} + y_{k})}{\rho_{1} + \rho_{2}}, z_{1}, \cdots, z_{n-1} || \Big)^{p_{k}} \leq 1 \text{ and}$$

$$g_{n}(x + y) \leq \inf_{k \in I_{n}} \Big\{ (\rho_{1} + \rho_{2})^{\frac{p_{n}}{H}} : \rho_{1} \in B(x), \ \rho_{2} \in B(y) \Big\} \\
\leq \inf_{k \in I_{n}} \Big\{ \rho_{1}^{\frac{p_{n}}{H}} : \rho_{1} \in B(x) \Big\} + \inf_{k \in I_{n}} \Big\{ \rho_{2}^{\frac{p_{n}}{H}} : \rho_{2} \in B(y) \Big\} \\
= g_{n}(x) + g_{n}(y).$$

Let $\sigma^s \to \sigma$ where $\sigma, \sigma^s \in \mathbb{C}$ and $g_n(x^s - x) \to 0$ as $s \to \infty$. We show that $g_n(\sigma^s x^s - \sigma x) \to 0$ as $s \to \infty$. For

$$B(x^{s}) = \left\{ \rho_{s} > 0 : \sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[M_{k} \left(\left| \left| \frac{\Delta^{m}(x_{k}^{s})}{\rho_{s}}, z_{1}, \cdots, z_{n-1} \right| \right) \right]^{p_{k}} \le 1, \right.$$

$$\forall z_{1}, \cdots, z_{n-1} \in X \right\},$$

$$B(x^{s} - x) = \left\{ \rho'_{s} > 0 : \sup_{k} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} \left[M_{k} \left(\left| \left| \frac{\Delta^{m}(x_{k}^{s} - x_{k})}{\rho'_{s}}, z_{1}, \cdots, z_{n-1} \right| \right) \right]^{p_{k}} \le 1, \right.$$

$$\forall z_{1}, \cdots, z_{n-1} \in X \right\}.$$

If $\rho_s \in B(x^s)$ and $\rho_s' \in B(x^s - x)$ then we observe that

$$\begin{split} &\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m}(\sigma^{s} x_{k}^{s} - \sigma x_{k})}{\rho_{s} |\sigma^{s} - \sigma| + \rho'_{s} |\sigma|}, z_{1}, \cdots, z_{n-1} || \Big) \\ & \leq & \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m}(\sigma^{s} x_{k}^{s} - \sigma x_{k}^{s})}{\rho_{s} |\sigma^{s} - \sigma| + \rho'_{s} |\sigma|}, z_{1}, \cdots, z_{n-1} || \\ & + & || \frac{(\sigma x_{k}^{s} - \sigma x_{k})}{\rho_{s} |\sigma^{s} - \sigma| + \rho'_{s} |\sigma|}, z_{1}, \cdots, z_{n-1} || \Big) \\ & \leq & \frac{|\sigma^{s} - \sigma| \rho_{s}}{\rho_{s} |\sigma^{s} - \sigma| + \rho'_{s} |\sigma|} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{(\Delta^{m} x_{k}^{s})}{\rho_{s}}, z_{1}, \cdots, z_{n-1} || \Big) \\ & + & \frac{|\sigma| \rho'_{s}}{\rho_{s} |\sigma^{s} - \sigma| + \rho'_{s} |\sigma|} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} u_{k} M_{k} \Big(|| \frac{\Delta^{m}(x_{k}^{s} - x_{k})}{\rho'_{s}}, z_{1}, \cdots, z_{n-1} || \Big). \end{split}$$

From the above inequality, it follows that

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left(M_k \left(\left| \left| \frac{\Delta^m (\sigma^s x_k^s - \sigma x_k)}{\rho_s |\sigma^s - \sigma| + \rho_s' |\sigma|}, z_1, \cdots, z_{n-1} \right| \right) \right)^{p_k} \le 1$$

and consequently,

$$g_{n}(\sigma^{m}x^{s} - \sigma x) \leq \inf \left\{ \left(\rho_{s} | \sigma^{s} - \sigma| + \rho_{s}^{'} | \sigma| \right)^{\frac{p_{n}}{H}} : \rho_{s} \in B(x^{s}), \rho_{s}^{'} \in B(x^{s} - x) \right\}$$

$$\leq (|\sigma^{s} - \sigma|)^{\frac{p_{n}}{H}} \inf \left\{ \rho^{\frac{p_{n}}{H}} : \rho_{s} \in B(x^{s}) \right\}$$

$$+ (|\sigma|)^{\frac{p_{n}}{H}} \inf \left\{ (\rho_{s}^{'})^{\frac{p_{n}}{H}} : \rho_{s}^{'} \in B(x^{s} - x) \right\}$$

$$\longrightarrow 0 \text{ as } s \longrightarrow \infty.$$

This completes the proof.

Theorem 3. Let $\mathcal{M}=(M_k)$, $\mathcal{M}'=(M_k')$, $\mathcal{M}''=(M_k'')$ are Musielak-Orlicz functions. Then we have

(i)
$$W_0^I \left(\lambda, \mathcal{M}', \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \right) \subseteq W_0^I \left(\lambda, \mathcal{M} \circ \mathcal{M}', \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \right)$$
 provided that $H_0 = \inf p_k > 0$.

that
$$H_0 = \inf p_k > 0$$
.
 $(ii)W_0^I \left(\lambda, \mathcal{M}', \Delta^m, u, p, ||\cdot, \cdots, \cdot||\right) \cap W_0^I \left(\lambda, \mathcal{M}'', \Delta^m, u, p, ||\cdot, \cdots, \cdot||\right)$

$$\subseteq W_0^I(\lambda, \mathcal{M}' + \mathcal{M}'', \Delta^m, u, p, ||\cdot, \cdot \cdot \cdot, \cdot||).$$

Proof. (i) For given $\epsilon > 0$, first choose $\epsilon_0 > 0$ such that $\max\{\epsilon_0^H, \epsilon_0^{H_0}\} < \epsilon$. Now using the continuity of (M_k) . Choose $0 < \delta < 1$ such that $0 < t < \delta$, this implies that $M_k(t) < \epsilon_0$. Let $x = (x_k) \in W_0(\lambda, \mathcal{M}', \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$. Now from the definition

$$B(\delta) = \left\{ n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M'_k \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} \ge \delta^H \right\} \in I.$$

Thus, if
$$n \notin B(\delta)$$
 then
$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \delta^H.$$

$$\Rightarrow \sum_{k \in I_n} u_k \left[M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \lambda_n \delta^H.$$

$$\Rightarrow u_k \left[M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right]^{p_k} < \delta^H \text{ for all } k \in I_n.$$
Thus,
$$u_k \left[M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right] < \delta \text{ for all } k \in I_n. \text{ Hence,}$$

$$u_k M_k \left(M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) < \epsilon_0 \ \forall \ k \in I_n.$$

which consequently implies that

$$\sum_{k \in I_n} u_k \left[M_k \left(M_k' \left(\left| \left| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right) \right]^{p_k} < \lambda_n \max\{\epsilon_0^H, \epsilon_0^{H_0}\} < \lambda_n \epsilon.$$

Thus,

$$\frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} < \epsilon.$$

This shows that

$$\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} || \right) \right) \right]^{p_k} \ge \epsilon \right\} \subset B(\delta)$$

and thus belongs to I. This proves the result.

$$\begin{aligned} &(ii) \text{ Let } x = (x_k) \in W_0^I \left(\lambda, \mathcal{M}', \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \right) \cap W_0^I \left(\lambda, \mathcal{M}'', \Delta^m, u, p, ||\cdot, \cdots, \cdot|| \right). \\ &\text{Then the fact,} \\ &\frac{1}{\lambda_n} u_k \left[(M_k' + M_k'') \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \\ &\leq D \frac{1}{\lambda_n} u_k \left[M_k' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} + D \frac{1}{\lambda_n} u_k \left[M_k'' \left(|| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1}|| \right) \right]^{p_k} \\ &\text{completes the proof of the theorem.} \end{aligned}$$

Theorem 4. The sequence spaces $W_0^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ and $W_{\infty}^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ are solid.

Proof. Let $x=(x_k)\in W_0^I\Big(\lambda,\mathcal{M},\Delta^m,u,p,||\cdot,\cdots,\cdot||\Big)$, let (α_k) be a sequence of scalars such that $|\alpha_k|\leq 1$ for all $k\in\mathbb{N}$. Then we have

$$\left\{n \in \mathbb{N} : \frac{1}{\lambda_n} \sum_{k \in I_n} u_k \left[M_k \left(\left| \left| \frac{\Delta^m(\alpha_k x_k)}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \right\}$$

$$\subset \left\{n \in \mathbb{N} : \frac{C}{\lambda_n} \sum_{k \in I} u_k \left[M_k \left(\left| \left| \frac{\Delta^m x_k}{\rho}, z_1, \cdots, z_{n-1} \right| \right| \right) \right]^{p_k} \ge \epsilon \right\} \in I,$$

where $C = \max\{1, |\alpha_k|^H\}$. Hence $(\alpha_k x_k) \in W_0^I \left(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||\right)$ for all sequences of scalars α_k with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$ whenever $(x_k) \in W_0^I \left(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||\right)$.

Similarly, we can prove that $W^I_{\infty}(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ is a solid space.

Theorem 5. The sequence spaces $W_0^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ and $W_\infty^I(\lambda, \mathcal{M}, \Delta^m, u, p, ||\cdot, \cdots, \cdot||)$ are monotone.

Proof. It is obvious.

References

- [1] M. Et and R. Colak, On some generalized difference sequence spaces, Soochow J. Math., **21**(1995), 377-386.
- [2] P. Das, P. Kostyrko, W. Wilczynski and P. Malik, *I and I* convergence of double sequences*, Math. Slovaca, 58 (2008), 605-620.
- [3] P. Das and P.Malik, On the statistical and I- variation of double sequences, Real Anal. Exchange, 33 (2007-2008), 351-364.
- [4] S. Gahler, 2- metrische Raume und ihre topologishe Struktur, Math. Nachr., 26 (1963), 115-148.
- [5] H. Gunawan and M. Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27 (2001), 321-329.
- [6] M. Gurdal, and S. Pehlivan, *Statistical convergence in 2-normed spaces*, Southeast Asian Bull. Math., 33 (2009), 257-264.

- [7] H. Kizmaz, On certain sequence spaces, Cand. Math. Bull., 24 (1981), 169-176.
- [8] P. Kostyrko, T. Salat and W. Wilczynski, *I-Convergence*, Real Anal. Exchange, 26 (2000), 669-686.
- [9] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math; 10(1971), 345-355.
- [10] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.
- [11] A. Misiak, n-inner product spaces, Math. Nachr., 140 (1989), 299-319.
- [12] M. Mursaleen, Matrix transformation between some new sequence spaces, Houston J. Math., 9(1983), 505-509.
- [13] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford 34 (1983), 77 86.
- [14] J. Musielak, *Orlicz spaces and modular spaces*, Lecture Notes in Mathematics, **1034** (1983).
- [15] K. Raj, S. K. Sharma and A. K. Sharma, Some new sequence spaces defined by a sequence of modulus function in n-normed spaces, Int. J. of Math. Sci. & Engg. Appls., 5 (2011), 395-403.
- [16] K. Raj, S. K. Sharma and A. K. Sharma, Difference sequence spaces in n-normed spaces defined by Musielak-Orlicz functions, Armen. J. Math., 3 (2010), 127-141.
- [17] W. Raymond, Y. Freese, and J. Cho, Geometry of linear 2-normed spaces, N. Y. Nova Science Publishers, Huntington, 2001.
- [18] A. Sahiner, M. Gurdal, S. Saltan and H. Gunawan, *Ideal Convergence in 2-normed spaces*, Taiwanese J. Math., 11 (2007), 1477-1484.
- [19] A. Wilansky, Summability through Functional Analysis, North-Holland Math. stud. 85(1984).

Kuldip Raj and Sunil K. Sharma School of Mathematics Shri Mata Vaishno Devi University Katra-182320, J&K, India

email: kuldipraj68@qmail.com, sunilksharma42@yahoo.co.in