ON THE FEKETE-SZEGÖ INEQUALITY FOR CERTAIN CLASS OF ANALYTIC FUNCTIONS

S. SIVAPRASAD KUMAR, VIRENDRA KUMAR

ABSTRACT. In the present investigation, we introduce $S_g^{\alpha}(\varphi)$, the class of functions $f \in \mathcal{A}$ satisfying

$$1 + \frac{z(f*g)'(z)}{(f*g)(z)} + \frac{z(f*g)''(z)}{(f*g)'(z)} - \frac{(1-\alpha)z^2(f*g)''(z) + z(f*g)'(z)}{(1-\alpha)z(f*g)'(z) + \alpha(f*g)(z)} \prec \varphi(z) \quad (\alpha \ge 0)$$

where g is a fixed normalized analytic function defined in the unit disk \mathbb{D} := $\{z \in \mathbb{C} : |z| < 1\}$. Recently many authors have discussed Fekete-Szegö inequality for several classes defined in terms of subordination by taking $\varphi(\mathbb{D})$ symmetric with respect to the real axis and starlike with respect to $\varphi(0) = 1$ and $\varphi'(0) > 0$. This paper is dedicated to find the sharp bounds of the Fekete-Szegö functional $|a_3 - \mu a_2^2|$ for functions in the class $\mathcal{S}_g^{\alpha}(\varphi)$, where φ is an analytic function with positive real part in the unit disk \mathbb{D} with $\varphi(0) = 1$ and $\varphi'(0) > 0$. Further the Fekete-Szegö inequality for some special classes are derived using our main results.

2000 Mathematics Subject Classification: 30C45, 30C80.

Keywords: analytic functions, starlike functions, convex functions, subordination, Fekete-Szegö inequality.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, \tag{1}$$

which are analytic in the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. Further the subclass of \mathcal{A} consisting of univalent functions is denoted by \mathcal{S} . For any two analytic functions f and g, we say that f is subordinate to g or g is superordinate to f, denoted by $f \prec g$,

if there exists a Schwarz function w with $|w(z)| \leq |z|$ such that f(z) = g(w(z)). If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(\mathbb{D}) \subseteq g(\mathbb{D})$.

Let φ be an analytic function with positive real part in the unit disc \mathbb{D} with $\varphi(0)=1$ and $\varphi'(0)>0$, which maps the unit disc \mathbb{D} onto a region starlike with respect to 1 and symmetric with respect to the real axis. Let $\mathcal{P}(\varphi)$ be the class of analytic functions p in \mathbb{D} with p(0)=1 and $p(\mathbb{D})\subset \varphi(\mathbb{D})$ or equivalently $p\prec\varphi$. Denote by $\mathcal{P}:=\mathcal{P}((1+z)/(1-z))$, the class of normalized analytic functions with positive real part in the unit disk \mathbb{D} . Let $\mathcal{S}^*(\varphi)$ be the class of functions $f\in\mathcal{S}$ such that $zf'(z)/f(z)\in\mathcal{P}(\varphi)$ and $\mathcal{K}(\varphi)$ be the class of functions $f\in\mathcal{S}$ such that $1+zf''(z)/f'(z)\in\mathcal{P}(\varphi)$. These classes were introduced and studied by Ma and Minda [9]. The classes $\mathcal{S}^*(\varphi)$ and $\mathcal{K}(\varphi)$ reduces to several well-known classes for a suitable choice of φ . For example consider $\mathcal{S}^*((1+Az)/(1+Bz))=:\mathcal{S}^*[A,B]$ $(-1\leq B< A\leq 1)$, the class of Janowski [5] starlike functions. The classes $\mathcal{S}^*((1+(1-2\beta)z)/(1-z))=:\mathcal{K}(\beta)$ ($0\leq \beta<1$) are the classes of starlike and convex functions of order β respectively, for $\beta=0$, they reduce to the well-known classes of starlike and convex functions respectively.

In geometric function theory, finding bound for the coefficient a_n is an important problem, as it reveals the geometric properties of the corresponding function. For example, the bound for the second coefficient a_2 of functions in the class S gives the growth and distortion bounds as well as covering theorems. In 1933, Fekete and Szegö [4] obtained the sharp bound for $|a_3 - \mu a_2^2|$ as a function of the real parameter μ and proved that

$$|a_2^2 - \mu a_3| \le 1 + 2 \exp\left(-\frac{2\mu}{1-\mu}\right) \quad (0 \le \mu \le 1),$$

for functions in the class S. Later the problem of finding sharp bound for the non-linear functional $|a_3 - \mu a_2^2|$ of any compact family of functions $f \in S$ is identified as Fekete-Szegö problem. In the recent years several authors have investigated the Fekete-Szegö inequality for various subclasses of analytic functions. For ready reference one can see [1, 3, 7, 8, 11-14, 16-18].

For $f \in \mathcal{A}$ given by (1) and g given by

$$g(z) = z + \sum_{n=2}^{\infty} b_n z^n, \tag{2}$$

the Hadamard product (or convolution) of f and g, denoted by f * g, is defined as

$$(f * g)(z) := z + \sum_{n=2}^{\infty} a_n b_n z^n =: (g * f)(z).$$

In this article φ is assumed to be an analytic function with positive real part in the unit disk \mathbb{D} , and has the Taylor's series expansion of the form

$$\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$$

with $B_1 > 0$ and B_2 is any real number.

Definition 1. A function $f \in \mathcal{A}$ of the form (1) is said to be in the class $\mathcal{S}_g^{\alpha}(\varphi)$ if it satisfies

Note that the above class $S_g^{\alpha}(\varphi)$, in fact generalizes several known classes a few are enlisted below:

Remark 1. For g(z) = z/(1-z), we have $\mathcal{S}_g^0(\varphi) =: \mathcal{S}^*(\varphi)$ and $\mathcal{S}_g^1(\varphi) =: \mathcal{K}(\varphi)$.

Remark 2. If we take $g(z) = z + \sum_{n=2}^{\infty} n^m z^n$, then (f*g)(z) reduces to the Sălăgean [15] differential operator \mathcal{D}^m defined by

$$\mathcal{D}^m f(z) = z + \sum_{n=2}^{\infty} n^m a_n z^n, \quad m \in \{0, 1, 2, 3, \ldots\}.$$

Further, if we set $\varphi(z) = (1+z)/(1-z)$ and $g = z + \sum_{n=2}^{\infty} n^m z^n$ in the above Definition 1, then the class $\mathcal{S}_g^{\alpha}(\varphi)$ reduces to the class $\mathcal{HS}_m^*(\alpha)$, introduced by Răducanu [14], who investigated the relationship property between the classes $\mathcal{HS}_m^*(\alpha)$ and \mathcal{S}^* and obtained the Fekete-Szegö inequality for the class $\mathcal{HS}_m^*(\alpha)$.

In the present investigation, we derive the Fekete-Szegö inequality for the class $S_g^{\alpha}(\varphi)$ and deduce the same for some special classes too. The following lemmas are required in order to prove our main results. Lemma 1 of Ali *et al.* [2], is a reformulation of the corresponding result for functions with positive real part due to Ma and Minda [9].

Let Ω be the class of analytic functions w, normalized by the condition w(0) = 0 and satisfying |w(z)| < 1.

Lemma 1. [2] If $w(z) := w_1 z + w_2 z^2 + \cdots \in \Omega \ (z \in \mathbb{D})$, then

$$|w_2 - tw_1^2| \le \begin{cases} -t & (t \le -1), \\ 1 & (-1 \le t \le 1), \\ t & (t \ge 1). \end{cases}$$

$$(4)$$

For t < -1 or t > 1, equality holds if and only if w(z) = z or one of its rotations. For -1 < t < 1, equality holds if and only if $w(z) = z^2$ or one of its rotations. Equality holds for t = -1 if and only if $w(z) = z(\lambda + z)/(1 + \lambda z)$ $(0 \le \lambda \le 1)$ or one of its rotations, while for t = 1, equality holds if and only if $w(z) = -z(\lambda + z)/(1 + \lambda z)$ $(0 \le \lambda \le 1)$ or one of its rotations. Also the sharp upper bound in the inequality (4) can be improved as follows when -1 < t < 1:

$$|w_2 - tw_1^2| + (1+t)|w_1|^2 \le 1 \quad (-1 < t \le 0)$$
(5)

and

$$|w_2 - tw_1^2| + (1 - t)|w_1|^2 \le 1 \quad (0 \le t < 1)$$
 (6)

Lemma 2. [6] (see also [11]) If $w \in \Omega$, then, for any complex number t,

$$|w_2 - tw_1^2| \le \max\{1; |t|\}$$

and the result is sharp for the functions given by $w(z) = z^2$ or w(z) = z.

2. The Fekete-Szegö Inequality

We begin with the following result for the class of functions in $\mathcal{S}_q^{\alpha}(\varphi)$.

Theorem 3. Let g(z) be given by (2) with b_2, b_3 non-zero real numbers. Assume that $\alpha \geq 0$ and $\varphi(z) = 1 + B_1 z + B_2 z^2 + \cdots$. If $f \in \mathcal{S}_g^{\alpha}(\varphi)$, then for any real number μ

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{B_{1}}{2(2\alpha+1)|b_{3}|} \left(\frac{B_{2}}{B_{1}} - \frac{(\alpha^{2}-4\alpha-1)B_{1}}{(1+\alpha)^{2}} - \frac{2\mu(2\alpha+1)B_{1}b_{3}}{(1+\alpha)^{2}b_{2}^{2}} \right) & \text{if } \mu \leq \sigma_{1}; \\ \frac{B_{1}}{2(2\alpha+1)|b_{3}|} & \text{if } \sigma_{1} \leq \mu \leq \sigma_{2}; \\ \frac{B_{1}}{2(2\alpha+1)|b_{3}|} \left(\frac{(\alpha^{2}-4\alpha-1)B_{1}}{(1+\alpha)^{2}} + \frac{2\mu(2\alpha+1)B_{1}b_{3}}{(1+\alpha)^{2}b_{2}^{2}} - \frac{B_{2}}{B_{1}} \right) & \text{if } \mu \geq \sigma_{2}, \end{cases}$$
 (7)

where

$$\sigma_1 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(\frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} - 1 \right)$$

and

$$\sigma_2 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(1 + \frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} \right).$$

The inequality (7) is sharp.

Further, when $\sigma_1 < \mu < \sigma_2$ the above result can be improved as follows: Let

$$\sigma_3 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(\frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} \right).$$

If $\sigma_1 < \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1|b_3|} \left(1 - \frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha+1)B_1b_3}{(1+\alpha)^2 b_2^2} \right) |a_2|^2$$

$$\leq \frac{B_1}{2(2\alpha+1)|b_3|}$$

and if $\sigma_3 \leq \mu < \sigma_2$, then

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1|b_3|} \left(1 + \frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} - \frac{2\mu(2\alpha+1)B_1b_3}{(1+\alpha)^2 b_2^2} \right) |a_2|^2$$

$$\leq \frac{B_1}{2(2\alpha+1)|b_3|}.$$

Proof. Since $f \in \mathcal{S}_g^{\alpha}(\varphi)$, there exits an analytic function $w(z) = w_1 z + w_2 z^2 + \cdots \in \Omega$ with w(0) = 0 and |w(z)| < 1 such that

$$1 + \frac{z(f * g)'(z)}{(f * g)(z)} + \frac{z(f * g)''(z)}{(f * g)'(z)} - \frac{(1 - \alpha)z^2(f * g)''(z) + z(f * g)'(z)}{(1 - \alpha)z(f * g)'(z) + \alpha(f * g)(z)} = \varphi(w(z)). \tag{8}$$

A calculation shows that

$$\frac{z((f*g)'(z))}{(f*g)(z)} = 1 + a_2b_2z + [2a_3b_3 - a_2^2b_2^2]z^2 + \dots,$$

$$1 + \frac{z(f * g)''(z)}{(f * g)'(z)} = 1 + 2a_2b_2z + [6a_3b_3 - 4a_2^2b_2^2]z^2 + \cdots$$

and

$$\frac{(1-\alpha)z^2(f*g)''(z)+z(f*g)'(z)}{(1-\alpha)z(f*g)'(z)+\alpha(f*g)(z)}=1+(2-\alpha)a_2b_2z+[(6-4\alpha)a_3b_3-(\alpha-2)^2a_2^2b_2^2]z^2+\cdots$$

Substituting these values in (8), we obtain

$$(1+\alpha)a_2b_2 = B_1w_1 (9)$$

and

$$2(2\alpha+1)a_3b_3 + (\alpha^2 - 4\alpha - 1)a_2^2b_2^2 = B_1w_2 + B_2w_1^2.$$
(10)

By using (9) and (10), we have

$$a_3 - \mu a_2^2 = \frac{B_1}{2(2\alpha + 1)b_3} [w_2 - tw_1^2], \tag{11}$$

where

$$t := -\frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2}.$$
 (12)

If $t \leq -1$, then

$$-\frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2} \le -1,$$

which implies

$$\mu \le \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(\frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} - 1 \right) := \sigma_1.$$

Now an application of Lemma 1 gives

$$|a_3 - \mu a_2^2| \le \frac{B_1}{2(2\alpha + 1)|b_3|} \left(\frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1 + \alpha)^2} - \frac{\mu(2\alpha + 1)B_1b_3}{(1 + \alpha)^2b_2^2} \right) \quad (\mu \le \sigma_1),$$

which is nothing but the first part of assertion (7).

Next, if $t \geq 1$, then

$$-\frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2} \ge 1.$$

Which implies

$$\mu \ge \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(1 + \frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} \right) =: \sigma_2,$$

applying Lemma 1, we have

$$|a_3 - \mu a_2^2| \le \frac{B_1}{2(2\alpha + 1)|b_3|} \left(\frac{(\alpha^2 - 4\alpha - 1)B_1}{(1 + \alpha)^2} + \frac{\mu(2\alpha + 1)B_1b_3}{(1 + \alpha)^2b_2^2} - \frac{B_2}{B_1} \right) \quad (\mu \ge \sigma_2),$$

which is essentially the third part of assertion (7).

Finally if $-1 \le t \le 1$, then

$$-1 \le -\frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2} \le 1.$$

Which shows that $\sigma_1 \leq \mu \leq \sigma_2$. Thus by an application of Lemma 1, we obtain

$$|a_3 - \mu a_2^2| \le \frac{B_1}{2(2\alpha + 1)|b_3|} \quad (\sigma_1 \le \mu \le \sigma_2)$$

which is the second part of assertion (7). The sharpness of the result is a direct consequence of Lemma 1.

Further when $\sigma_1 < \mu < \sigma_2$ the above result can be improved as follows: If $-1 < t \le 0$, then

$$-1 < -\frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2} \le 0$$

which implies that $\sigma_1 < \mu \leq \sigma_3$, where

$$\sigma_3 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1 b_3} \left(\frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} \right).$$

Now using (5), (11) and (12), we have

$$\frac{2(2\alpha+1)b_3}{B_1}|a_3-\mu a_2^2| + \left(1 - \frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha+1)B_1b_3}{(1+\alpha)^2b_2^2}\right)|w_1|^2 \le 1.$$
(13)

Substituting the value of w_1^2 from (9) in (13) and simplifying, we have

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1|b_3|} \left(1 - \frac{B_2}{B_1} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} + \frac{2\mu(2\alpha+1)B_1b_3}{(1+\alpha)^2 b_2^2} \right) |a_2|^2$$

$$\leq \frac{B_1}{2(2\alpha+1)|b_3|} \quad (\sigma_1 < \mu \leq \sigma_3).$$

Further if $0 \le t < 1$, then $\sigma_3 \le \mu < \sigma_2$. Now a similar computation using (6), (9) (11) and (12) gives

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)B_1|b_3|} \left(1 + \frac{B_2}{B_1} - \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} - \frac{2\mu(2\alpha+1)B_1b_3}{(1+\alpha)^2 b_2^2} \right) |a_2|^2$$

$$\leq \frac{B_1}{2(2\alpha+1)|b_3|}.$$

This completes the proof.

Remark 3. If we set $\alpha = 1$ and g(z) = z/(1-z) in Theorem 3, then we have the result [9, Theorem 3] of Ma and Minda.

Remark 4. By setting $\alpha = 0$ and g(z) = z/(1-z) in Theorem 3, we obtain the result of Murugusundaramoorthy et al. [10, Corollary 2.2].

Using Lemma 2 and equation (11), we deduce the following:

Theorem 4. Let g(z) be given by (2) with b_2, b_3 non zero real numbers. Assume that $\alpha \geq 0$ and $\varphi(z) = 1 + B_1 z + B_2 z^2 + \cdots$. If $f \in \mathcal{S}_g^{\alpha}(\varphi)$, then for any complex number μ

$$|a_3 - \mu a_2^2| \le \frac{B_1}{2(2\alpha + 1)|b_3|} \max \left\{ 1; \left| \frac{2\mu(2\alpha + 1)B_1b_3}{(1+\alpha)^2b_2^2} + \frac{(\alpha^2 - 4\alpha - 1)B_1}{(1+\alpha)^2} - \frac{B_2}{B_1} \right| \right\}.$$

From Theorem 3, we deduce the following result:

Corollary 5. Let g(z) be given by (2) with b_2, b_3 non zero real numbers. Assume that $\alpha \geq 0$ and $-1 \leq D < C \leq 1$. If $f \in \mathcal{S}_g^{\alpha}((1+Cz)/(1+Dz))$, then for any real number μ

$$|a_{3}-\mu a_{2}^{2}| \leq \begin{cases} \frac{D-C}{2(2\alpha+1)|b_{3}|} \left(D + \frac{(\alpha^{2}-4\alpha-1)(C-D)}{(1+\alpha)^{2}} + \frac{2\mu(2\alpha+1)(C-D)b_{3}}{(1+\alpha)^{2}b_{2}^{2}}\right) & \text{if } \mu \leq \sigma_{1}; \\ \frac{C-D}{2(2\alpha+1)|b_{3}|} & \text{if } \sigma_{1} \leq \mu \leq \sigma_{2}; \\ \frac{C-D}{2(2\alpha+1)|b_{3}|} \left(D + \frac{(\alpha^{2}-4\alpha-1)(C-D)}{(1+\alpha)^{2}} + \frac{2\mu(2\alpha+1)(C-D)b_{3}}{(1+\alpha)^{2}b_{2}^{2}}\right) & \text{if } \mu \geq \sigma_{2}, \end{cases}$$

where

$$\sigma_1 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)(D-C)b_3} \left(1+D+\frac{(\alpha^2-4\alpha-1)(C-D)}{(1+\alpha)^2}\right)$$

and

$$\sigma_2 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)(C-D)b_3} \left(1 - D - \frac{(\alpha^2 - 4\alpha - 1)(C-D)}{(1+\alpha)^2}\right).$$

The result is sharp.

The above result can be improved when $\sigma_1 < \mu < \sigma_2$ as follows:

Let

$$\sigma_3 := \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)(D-C)b_3} \left(D + \frac{(\alpha^2 - 4\alpha - 1)(C-D)}{(1+\alpha)^2} \right).$$

If $\sigma_1 < \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)(C-D)|b_3|} \left(1 + D + \frac{(\alpha^2 - 4\alpha - 1)(C-D)}{(1+\alpha)^2} + \frac{2\mu(2\alpha+1)(C-D)b_3}{(1+\alpha)^2 b_2^2}\right) |a_2|^2 \\ \leq \frac{C-D}{2(2\alpha+1)|b_3|}$$

and if $\sigma_3 \leq \mu < \sigma_2$, then

$$|a_3 - \mu a_2^2| + \frac{(1+\alpha)^2 b_2^2}{2(2\alpha+1)(C-D)|b_3|} \left(1 - D - \frac{(\alpha^2 - 4\alpha - 1)(C-D)}{(1+\alpha)^2} - \frac{2\mu(2\alpha+1)(C-D)b_3}{(1+\alpha)^2 b_2^2}\right) |a_2|^2 \\ \leq \frac{C-D}{2(2\alpha+1)|b_3|}.$$

By taking D = -1 and C = 1 in the above Corollary 5, we obtain the following:

Example 1. Let $\alpha \geq 0$ and g(z) be given by (2) with b_2, b_3 non zero real numbers. If $f \in \mathcal{S}_g^{\alpha}(\frac{1+z}{1-z})$, then for any real number μ

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{1}{(1+\alpha)^2|b_3|} \left(\frac{3+10\alpha - \alpha^2}{2\alpha + 1} - \frac{4\mu b_3}{b_2^2} \right) & \text{if } \mu \le \sigma_1; \\ \frac{1}{(2\alpha + 1)|b_3|} & \text{if } \sigma_1 \le \mu \le \sigma_2; \\ \frac{1}{(1+\alpha)^2|b_3|} \left(\frac{\alpha^2 - 10\alpha - 3}{2\alpha + 1} + \frac{4\mu b_3}{b_2^2} \right) & \text{if } \mu \ge \sigma_2, \end{cases}$$

where

$$\sigma_1 := \frac{(1+4\alpha-\alpha^2)b_2^2}{2(2\alpha+1)b_3}$$
 and $\sigma_2 := \frac{(3\alpha+1)b_2^2}{(2\alpha+1)b_3}$.

The result can be improved when $\sigma_1 \leq \mu \leq \sigma_2$ as follows: Let

$$\sigma_3 := \frac{(3+10\alpha-\alpha^2)b_2^2}{4(2\alpha+1)b_3}.$$

If $\sigma_1 \leq \mu \leq \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{b_2^2}{2|b_3|} \left(\frac{\alpha^2 - 4\alpha - 1}{2\alpha + 1} + \frac{2\mu b_3}{b_2^2} \right) |a_2|^2 \le \frac{1}{(2\alpha + 1)|b_3|}$$

and if $\sigma_3 \leq \mu \leq \sigma_2$, then

$$|a_3 - \mu a_2^2| + \frac{b_2^2}{|b_3|} \left(\frac{3\alpha + 1}{2\alpha + 1} - \frac{\mu b_3}{b_2^2} \right) |a_2|^2 \le \frac{1}{(2\alpha + 1)|b_3|}.$$

The result is sharp.

Remark 5. If we take $g(z) = z + \sum_{n=2}^{\infty} n^m z^n$ $(m \in \{0, 1, 2, 3, ...\})$ in Example 1 it reduces to the result [14, Theorem 2] of Răducanu.

Taking $\varphi(z) = (1 + Cz)/(1 + Dz), -1 \le D < C \le 1$ in Theorem 4, we deduce the following result:

Corollary 6. Let $\alpha \geq 0$ and g(z) be given by (2) with b_2, b_3 non zero real numbers. If $f \in \mathcal{S}_g^{\alpha}\left(\frac{1+Cz}{1+Dz}\right)$, then for any complex number μ

$$|a_3 - \mu a_2^2| \le \frac{C - D}{2(2\alpha + 1)|b_3|} \max \left\{ 1; \left| \frac{2\mu(2\alpha + 1)(C - D)b_3}{(1 + \alpha)^2 b_2^2} + \frac{(\alpha^2 - 4\alpha - 1)(C - D)}{(1 + \alpha)^2} + D \right| \right\}.$$

Remark 6. If we take $g(z) = z + \sum_{n=2}^{\infty} n^m z^n$, D = -1 and C = 1 in the above Corollary 6, we have the following result [14, Theorem 3] of Răducanu:

Let $\alpha \geq 0$. If $f \in \mathcal{HS}_m^*(\alpha)$, then for any complex number μ

$$|a_3 - \mu a_2^2| \le \frac{1}{3^m (1 + 2\alpha)} \max \left\{ 1; \frac{\left| 2^{2m-1} (\alpha^2 - 10\alpha - 3) + 2.3^m (1 + 2\alpha)\mu \right|}{2^{2m-1} (1 + \alpha)^2} \right\}.$$

Remark 7. If we set D = -1, C = 1 and g(z) = z/(1-z) in Corollary 6, then for $\alpha = 0$, we have the following result [6, Theorem 1](see also [16]):

Let $f \in \mathcal{S}^*$. Then for any complex number μ

$$|a_3 - \mu a_2^2| \le \max\{1; |4\mu - 3|\}.$$

Setting $\alpha=1, D=-1, C=1$ and g(z)=z/(1-z) in Corollary 6, we obtain the following result [6, Corollary 1] due to Keogh and Merkes: Let $f \in \mathcal{K}$, then for any complex number μ

$$|a_3 - \mu a_2^2| \le \max\left\{\frac{1}{3}; |\mu - 1|\right\}.$$

Acknowledgements. The work presented here is supported by a Senior Research Fellowship from Delhi Technological University, New Delhi, INDIA.

References

- [1] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramaniam, *The Fekete-Szegö coefficient functional for transforms of analytic functions*, Bull. Iranian Math. Soc. 35 (2009), no. 2, 119–142.
- [2] R. M. Ali, V. Ravichandran and N. Seenivasagan, Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), no. 1, 35–46.
- [3] M. Darus, The Fekete-Szegö theorem for close-to-convex functions of the class $K_{\rm sh}(\alpha,\beta)$, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18 (2002), no. 1, 13–18.
- [4] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte funktionen, J. Londan Math. Soc. 8 (1933), 85–89.
- [5] W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math. 23 (1970/1971), 159–177.
- [6] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- [7] S. Sivaprasad Kumar and V. Kumar, Fekete-Szegö problem for a class of analytic functions defined by convolution, Tamkang J. Math. 44 (2013), no. 2, 187–195.

- [8] S. Sivaprasad Kumar and V. Kumar, Fekete-Szegö problem for a class of analytic functions, Stud. Univ. Babes-Bolyai Math. 58 (2013), no. 2, 181–188.
- [9] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis (Tianjin, 1992)*, 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA.
- [10] G. Murugusundaramoorthy, S. Kavitha and T. Rosy, On the Fekete-Szegö problem for some subclasses of analytic functions defined by convolution, Proc. Pakistan Acad. Sci. 44 (4), 249–254, 2007.
- [11] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacet. J. Math. Stat. 34 (2005), 9–15.
- [12] V. Ravichandran, A. Gangadharan and M. Darus, Fekete-Szegő inequality for certain class of Bazilevic functions, Far East J. Math. Sci. (FJMS) 15 (2004), no. 2, 171–180.
- [13] V. Ravichandran, M. Darus, M. H. Khan and K. G. Subramanian, Fekete-Szego inequality for certain class of analytic functions, Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 4, 7 pp.
- [14] D. Răducanu, On a subclass of analytic functions defined by a differential operator, Bull. Transilv. Univ. Braşov Ser. III 2(51) (2009), 223–229.
- [15] G. Şălăgean, Subclasses of univalent functions, in *Complex analysis—fifth Romanian-Finnish seminar*, *Part 1 (Bucharest, 1981)*, 362–372, Lecture Notes in Math., 1013 Springer, Berlin.
- [16] H. M. Srivastava, A. K. Mishra and M. K. Das, *The Fekete-Szegö problem for a subclass of close-to-convex functions*, Complex Variables Theory Appl. 44 (2001), no. 2, 145–163.
- [17] Y. Sun, W.-P. Kuang and Z.-G. Wang, Coefficient inequalities for certain classes of analytic functions involving Salagean operator, Acta Univ. Apulensis Math. Inform., no. 21 (2010), 105–112.
- [18] N. Tuneski and M. Darus, Fekete-Szegö functional for non-Bazilevič functions, Acta Math. Acad. Paedagog. Nyházi. (N.S.) 18 (2002), no. 2, 63–65.

S. Sivaprasad Kumar Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India email: spkumar@dce.ac.in Virendra Kumar Department of Applied Mathematics, Delhi Technological University, Delhi-110042, India email: vktmaths@yahoo.in

222