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ON THE FEKETE-SZEGO INEQUALITY FOR CERTAIN CLASS OF
ANALYTIC FUNCTIONS

S. SIVAPRASAD KUMAR, VIRENDRA KUMAR

ABSTRACT. In the present investigation, we introduce Sg'(¢), the class of func-
tions f € A satisfying
LU0 @) | U0 (=20 D0 E) L s

(fxg)(z) — (Fxg9)(z)  (A—a)z(fx9)(2) +alfx9)(2)

where ¢ is a fixed normalized analytic function defined in the unit disk D :=
{z € C:|z| <1}. Recently many authors have discussed Fekete-Szegd inequality
for several classes defined in terms of subordination by taking ¢(ID) symmetric with
respect to the real axis and starlike with respect to ¢(0) = 1 and ¢’(0) > 0. This
paper is dedicated to find the sharp bounds of the Fekete-Szegd functional a3 — pa3]|
for functions in the class Sg(¢), where ¢ is an analytic function with positive real
part in the unit disk D with ¢(0) = 1 and ¢'(0) > 0. Further the Fekete-Szego
inequality for some special classes are derived using our main results.
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1. INTRODUCTION

Let A denote the class of functions of the form
f2) =2+ an2", (1)
n=2

which are analytic in the unit disk D := {z € C : |2| < 1}. Further the subclass of A
consisting of univalent functions is denoted by S. For any two analytic functions f
and g, we say that f is subordinate to g or g is superordinate to f, denoted by f < g,
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if there exists a Schwarz function w with |w(z)| < |z| such that f(z) = g(w(2)). If ¢
is univalent, then f < ¢ if and only if f(0) = ¢(0) and f(D) C g(D).

Let ¢ be an analytic function with positive real part in the unit disc D with
©(0) = 1 and ¢'(0) > 0, which maps the unit disc D onto a region starlike with
respect to 1 and symmetric with respect to the real axis. Let P(y) be the class of
analytic functions p in D with p(0) = 1 and p(D) C ¢(D) or equivalently p < .
Denote by P := P((1 + z)/(1 — 2)), the class of normalized analytic functions
with positive real part in the unit disk D. Let S*(¢) be the class of functions
f € S such that zf/'(2)/f(2) € P(¢) and K(p) be the class of functions f € S
such that 1+ zf”(2)/f'(z) € P(¢). These classes were introduced and studied by
Ma and Minda [9]. The classes S*(¢) and K(p) reduces to several well-known
classes for a suitable choice of ¢. For example consider $*((1 + Az)/(1 + Bz)) =:
S*[A,B] (=1 < B < A < 1), the class of Janowski [5] starlike functions. The classes
S*((14(1-28)2)/(1-2)) = S*(8) and K((1-+(1-28)2)/(1-2)) = K(8) (0 < B < 1)
are the classes of starlike and convex functions of order g8 respectively, for g = 0,
they reduce to the well-known classes of starlike and convex functions respectively.

In geometric function theory, finding bound for the coefficient a,, is an important
problem, as it reveals the geometric properties of the corresponding function. For
example, the bound for the second coefficient ay of functions in the class S gives
the growth and distortion bounds as well as covering theorems. In 1933, Fekete and
Szegd [4] obtained the sharp bound for |ag — pa3| as a function of the real parameter
p and proved that

2
43— pas] < 1+ 2exp (—1“) O<p<)
—

for functions in the class §. Later the problem of finding sharp bound for the
non-linear functional |ag — pa3| of any compact family of functions f € S is identi-
fied as Fekete-Szegd problem. In the recent years several authors have investigated
the Fekete-Szego inequality for various subclasses of analytic functions. For ready
reference one can see [1,3,7,8,11-14,16-18].

For f € A given by (1) and g given by

g(z)=z+ Z bpz", (2)
n=2
the Hadamard product(or convolution) of f and g, denoted by f * g, is defined as

(fxg)(z):=z+ Zanbnzn =:(g* f)(2).
n=2
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In this article ¢ is assumed to be an analytic function with positive real part in the
unit disk D, and has the Taylor’s series expansion of the form

@©(z) =1+ Biz+4 Boz? + B3z + -+ - |
with By > 0 and Bs is any real number.

Definition 1. A function f € A of the form (1) is said to be in the class Sg(p) if
it satisfies
2Afx9)(2) | 2(fx9)"(2) (1—=0a)2®(f*9)"(2) +2(f x9)'(2)

Mo T 000 talf+0)@) W(Z%az(o;).

Note that the above class Sg(¢), in fact generalizes several known classes a few
are enlisted below:

Remark 1. For g(z) = z/(1 — z), we have Sg(cp) =:S8*(p) and S;(go) =: K(p).

Remark 2. If we take g(z) = z+ o2 ,n™2", then (f*g)(z) reduces to the Salagean

n=2

[15] differential operator D™ defined by
D"f(z) =2+ ananz”, m€{0,1,2,3,...}.
n=2

Further, if we set p(z) = (14+2)/(1—2) and g = z+>_ .2 o n™2" in the above Defi-
nition 1, then the class Sg'(p) reduces to the class HS}, (), introduced by Raducanu
[14], who investigated the relationship property between the classes HS), (a) and S*

and obtained the Fekete-Szegd inequality for the class HS), (o).

In the present investigation, we derive the Fekete-Szegd inequality for the class
Sy (¢) and deduce the same for some special classes too. The following lemmas
are required in order to prove our main results. Lemma 1 of Ali et al. [2], is a
reformulation of the corresponding result for functions with positive real part due
to Ma and Minda [9].

Let Q be the class of analytic functions w, normalized by the condition w(0) = 0
and satisfying |w(z)| < 1.

Lemma 1. [2] If w(z) == w1z + we2? +--- € Q (2 € D), then

—t (t < _1)7
lwy —tw?| << 1 (=1<t<1), (4)
t o (t>1).
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Fort < =1 ort > 1, equality holds if and only if w(z) = z or one of its rotations. For
—1 < t < 1, equality holds if and only if w(z) = 2% or one of its rotations. Equality
holds for t = —1 if and only if w(z) = z(A+2)/(1 4+ Az) (0 < X < 1) or one of its
rotations, while fort = 1, equality holds if and only if w(z) = —z(A2)/(1+Az) (0 <
A < 1) or one of its rotations. Also the sharp upper bound in the inequality (4) can
be improved as follows when —1 <t < 1:

lwy — tw?| + (1 +t)|w > <1 (=1 <t<0) (5)

and
lwy —twi| + (1 —t)ur > <1 (0<t<1) (6)

Lemma 2. [6] (see also [11]) If w € Q, then, for any complex number t,
lwy — tw?| < max{1;|t|}

and the result is sharp for the functions given by w(z) = 22 or w(z) = z.

2. THE FEKETE-SZEGO INEQUALITY

We begin with the following result for the class of functions in Sg(¢).

Theorem 3. Let g(z) be given by (2) with by, bs non-zero real numbers. Assume
that o > 0 and @(z) = 1+ Biz+Boz? +--- . If f € Sy (¢), then for any real number

o

st (B — R - MR i p<o
las — uag\ < m if o1 <p <oy (7)
Py ((M(_l%a_);)& + 2 %) uzo
where
(1+ «)?b2 By (a?—da—-1)B
= o v (B )
and

. (14 «)?b3 LB (a® —4a —1)By
> 220+ 1)B1bs By (1+ )?

The inequality (7) is sharp.
Further, when o1 < p < o9 the above result can be improved as follows: Let

(1+ a)?b3 By (a? —4a—1)B
2(20( + 1)Blb3 B, (1 + Oé)2

g3 =
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If o1 < p < o3, then

) (14 )3 —4a—1)B;  2u(2a + 1)Bybs )
|as — paz| + 5 55— ) lazl
(2 + 1 Bl|b3| (1+Oé) (1 —1-04) b2
<
- 2(2a—|— 2(20+ 1) |b3|
and if o3 < p < o2, then
(14 )23 (@® —4a—1)B;  2u(2c+ 1)B1bs
2 2
az — pasy| + — a
a3 = (2 + 1) By [bs] < (1+ )2 (1+ a)23 la2]
<
- 2(2a—|— 1)]bs]

Proof. Since f € S'(), there exits an analytic function w(z) = wiz+wez? - €Q
with w(0) = 0 and |w(z)| < 1 such that

Afx9)(2)  2(f*x9)"(=) (- a)2?(f x9)"(2) + 2(f * 9)'(2)
(Fx9)(z)  (Fx9)(z)  (A=a)2(f*9)(2) +alf*9g)(2)

A calculation shows that

- = p(w(2))- (8)

W = 1+ aghpz + [2asbs — a3b3] = + ..,
1 + W =1 + 2&2b22 + [6(13[)3 — 4a%bg]z2 +

and

(1—a)2(f*9)"(2) + 2(f *9)'(2) _

(1= a)z(f * 9)'(2) + af x 9)(2)
Substituting these values in (8), we obtain
(14 a)agby = Byw 9)
and
2(20 + 1)azbs + (a? — 4o — 1)a3b3 = Byws + Bow?. (10)

By using (9) and (10), we have

By

m[ﬂa — tw?], (11)

2
az — pay =

215

14+(2—)agboz+[(6—4a)agbs— (a—2)2adb3] 2%+ - - .



S. Sivaprasad Kumar, Virendra Kumar — Fekete-Szego inequality. . .

where
By (a® —4a—1)B; = 2u(2a + 1)Bibs

t = ——
By * (1+ «a)? (14 «)2b3

(12)
If t < —1, then

B N (@® —4a—1)B;  2u(2a+ 1)B1bs
B (14 @) (1+ @)2b3

S _17

which implies

(1+a)’05 (By (o —4a—-1)B D
H'=902a+1)Bibs \ By 1+ )2 o

Now an application of Lemma 1 gives

B By (a?—4a—1)B;  u(2a+1)Bibs
— uall < 1 (22 — <
a3 = el < S Tl <31 1+ a)? (1+ )26 (n< o),

which is nothing but the first part of assertion (7).
Next, if t > 1, then

B " (052 — 4o — 1)B1 2,[1,(20[ + 1)Blb3
By (14 a)? (14 )23

Which implies

212 2 _ _
b (1+ «a)°bs5 (1+B2 (o — 4o 1)Bl> .

2(20 + 1) Bybs B, (1+a)?

applying Lemma 1, we have

jas — paj3| <

By <(a2 — 4o — 1)B1 ,u(2o¢ + 1)311)3 B
= 202a+ 1))

1+ a)? * (1+ a)2b3 By

which is essentially the third part of assertion (7).
Finally if —1 <t <1, then

Bg (a2 — 4o — 1)31 2/1(204 + 1)Blb3

1< ==
STE T 1teZ 0 (raR

<1

Which shows that o1 < u < g9. Thus by an application of Lemma 1, we obtain

B
lag — paj| < o - (01 < p < o9)

2a0 + 1)’1)3’
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which is the second part of assertion (7). The sharpness of the result is a direct
consequence of Lemma 1.

Further when o1 < u < o9 the above result can be improved as follows:
If -1 <t <0, then

By | (@®—4a—1)B1  2u(2a+1)Bibs
B (14 a)? (14 a)?b3

<0

which implies that o1 < p < o3, where

S (1+ a)?b3 By (a? —4a—1)B
57 220+ 1)Bibs \ By (1+ )?

Now using (5), (11) and (12), we have

2(204 + 1)b3
By

By (a?—4a—1)B;  2u(2a+1)Bib
2 2 1 H 103 2
_ 1— L <1

a3 = a3 ( B (1+«)? (14 )23 on | <
(13)

Substituting the value of w? from (9) in (13) and simplifying, we have

(14 «)?b3 _ By N (@2 —da—1)By  2u(2a +1)Bbs o)
(20+1)Bifbs| \" By (1+a)? (1+a)?b3 ’
By

< -7
= 2(2a + 1)|bs]

|az — pa3| + 5
(0'1 <p< 03).

Further if 0 < ¢ < 1, then 03 < u < 02. Now a similar computation using (6), (9)
(11) and (12) gives

(1 + Q)Qb% < By (a2 — 4o — 1)Bl 2:“’(205 + 1)Blb3> ‘a ’2

(20 + 1) By |3 B

— 2 _—
la5 = pazl + 5 B, 1+ a)? (1+ )22

By
< —
= 20a+ 1))

This completes the proof.

Remark 3. If we set a« =1 and g(z) = z/(1 — z) in Theorem 3, then we have the
result [9, Theorem 3] of Ma and Minda.

Remark 4. By setting « = 0 and g(z) = z/(1 — z) in Theorem 3, we obtain the
result of Murugusundaramoorthy et al. [10, Corollary 2.2].

Using Lemma 2 and equation (11), we deduce the following:
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Theorem 4. Let g(z) be given by (2) with bz, b3 non zero real numbers. Assume
that « > 0 and @(2) = 14+ Byz + Boz? +--- . If f € Sg (), then for any complex
number p

Corollary 5. Let g(z) be given by (2) with ba,bs non zero real numbers. Assume
that « > 0 and =1 < D < C < 1. If f € SF((1+ Cz2)/(1 + Dz)), then for any real
number p

B, ma {1 2M(20{ + 1)B1b3 (042 — 4o — 1)B1 By
= X< : _ =
~ 2(2a+ 1)|bs| (14 )23 (1+w)? By

From Theorem 3, we deduce the following result:

lag — pajy |

a?—4oa— — «@ — y
aD_CIb3| (D+( da—1)(C=D) | 2u(20+1)(C D)b3> if u<oi;

2(2a+1) (1+a)? (14)2b32
las—pa3] < s@ariim] if o1 <p<oy;
C—D (a?2—4a—1)(C-D) 2u(2a+1)(C—D)b. .
2(2a+1)|bs] D+ (1+a)? + (T+a)?b2 3) Zf W= o2,
where 22 )
1 —4a—1 - D
o1 = (1+0)7; 1+D+(a 2 )(20 )
22a+1)(D — C)bs (1+ )
and

09 =

(1+ a)?b3 (a® —4a —1)(C — D)
2(2a+ 1)(C —213)193 (1 b= (1+ )2 ) '

The result is sharp.
The above result can be improved when o1 < p < o9 as follows:

Let
‘ (14 «)?b3 D (a? —4a —1)(C — D)
2(2a+1)(D — C)bs < (1+«)? > '
If o1 < p < o3, then

g3 1=

2 2
, (1+ 202 (@2 —4da—1)(C' = D)  2u(2a+1)(C — D)bs
- D
a3 = ol + 5507 c D)lbsl ( TP 11a)y 11 )22
<
= 2<2a+ >\b3\
and if o5 < p < o9, then
2 2
5 (1+ «)?b; —4a—-1)(C—=D) 2u(2a+1)(C — D)bs
— - D— —
a3 = ol + 5507 c D)|bs ( 1+ a)? 1+ a)262
__C-D
= 2(20+ 1)[bs|

218

) laal?

) laal?



S. Sivaprasad Kumar, Virendra Kumar — Fekete-Szego inequality. . .

By taking D = —1 and C' =1 in the above Corollary 5, we obtain the following:

Example 1. Let o > 0 and g(z) be given by (2) with ba,bs non zero real numbers.

If fe Sg‘(}fi), then for any real number p

1 (3+10a—a2 _ 4ub3) if 1< o
— )

(1+a)2bs3] 2a+1 b3
las — na3| < 4 Garmm if o1 <p<oy;
(1+a1)2|b3| <a2501¢3a1_3 + %) if p> o9,
where (1+4a — a2)b2 (Ba + l)b2
o1 = 320 + 1)bs 2 and o9 = m.

The result can be improved when o1 < u < o9 as follows: Let

(3 4+ 10a — a?)b3
4(2a—|— 1)b3

03 =

If o1 < p < o3, then

b2 2_4a—1 2ub 1
lag — pa3| + == <a - MS)’ |2§(

s\ 2011 B2 %0 1 1)[bs]

and if o5 < p < o9, then

b2 (3a+1  pbs 1

2 2 2

az — pas| + -2 A I P S G —
a3 2 <2a+1 b2 jaf” = (20 + 1) b3

The result is sharp.

Remark 5. If we take g(z) = 2+ ;" ,n™z" (m €{0,1,2,3,...}) in Ezample 1

n=2

it reduces to the result [14, Theorem 2] of Raducanu.

Taking p(z) = (1+Cz)/(1 + Dz),—1 < D < C < 1 in Theorem 4, we deduce
the following result:

Corollary 6. Let a > 0 and g(z) be given by (2) with ba, bs non zero real numbers.

If [ € & (}ig‘z), then for any complexr number p

C—-D
lag—pa3| < |bg|max{1;

21(2a +1)(C — D)bs  (a®? —4a —1)(C — D)
= 2@2a+1) : +DH'

(14 )23 (1+ @)
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Remark 6. If we take g(z) = z+ Y o on™z", D = —1 and C = 1 in the above

Corollary 6, we have the following result [14, Theorem 3] of Raducanu:
Let o > 0. If f € HS},(«), then for any complex number u

g — el < ——— max 4 1; 22m71(a? — 10a — 3) + 2.3™(1 + 2a) |
2= 3m(1+ 2a) ’ 22m—1(1 4 )2 .

Remark 7. If we set D =—1,C =1 and g(z) = z/(1 — z) in Corollary 6, then for
a =0, we have the following result [6, Theorem 1](see also [16]):
Let f € §*. Then for any complex number

|ag — pa3| < max {1; 4 — 3[} .

Setting « = 1,D = —1,C =1 and g(z) = z/(1 — 2z) in Corollary 6, we obtain
the following result [6, Corollary 1] due to Keogh and Merkes: Let f € IC, then for
any complex number

1
lag — pad] < max{B;m— u}.
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