LINEAR QUASI-MCCOY RINGS

M.J. NIKMEHR, M. DELDAR, H. DANESHMAND

ABSTRACT. In this paper, we introduce linear quasi-McCoy rings which are a generalization of weak quasi-Armendariz rings. It is shown, for a semiprime ring R, $\frac{R[x]}{(x^n)}$ and R[x] are linear quasi-McCoy. Also, it is shown $M_n(R)$ is linear quasi-McCoy if R is linear quasi-McCoy rings. Various properties of linear quasi-McCoy rings are also observed.

2000 Mathematics Subject Classification: 16S50, 16S99.

Keywords: McCoy rings, linear quasi-McCoy rings, semicommutative rings.

1. Introduction

Throughout this paper R denote an associative ring with identity. Given a ring R, the polynomial ring with an indeterminate x over R is denoted by R[x]. Rege and Chhawchharia [18] introduced the notion of an Armendariz ring. A ring R is an Armendariz if whenever polynomials $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $g(x) = b_0 + b_1x + \cdots + b_mx^m \in R[x]$ satisfy f(x)g(x) = 0, then $a_ib_j = 0$ for all i, j. The name Armendariz ring was chosen because Armendariz (1974) had shown that a reduced ring (i. e., a ring without nonzero nilpotent elements) satisfies this condition. Some properties of Armendariz rings have been studied in [1, 2, 9, 18, 16, 17]. According to Hirano [4], a ring is called quasi-Armendariz if whenever polynomials $f(x) = a_0 + a_1x + \cdots + a_nx^n$, $g(x) = b_0 + b_1x + \cdots + b_mx^m \in R[x]$ satisfy f(x)R[x]g(x) = 0, then $a_iRb_j = 0$ for all i, j.

Recall that a ring R is called reversible if ab=0 implies ba=0, for all $a, b \in R$. R is called semicommutative if for all $a, b \in R$, ab=0 implies aRb=0. In [15] has shown reduced rings are reversible and reversible rings are semicommutative, but the converse is not true in general. According to Nielsen [15], a ring R is called right McCoy (resp., left McCoy) if for any polynomials $f(x), g(x) \in R[x] \setminus \{0\}$, f(x)g(x)=0 implies f(x)r=0 (resp., sg(x)=0) for some $0 \neq r \in R$ (resp., for some $0 \neq s \in R$).

A ring is called McCoy if it is both left and right McCoy. By McCoy [14], commutative rings are McCoy rings. Reduced rings are Armendariz and Armendariz rings are McCoy. In [3] Baser and Kaynarca studied a generalization of quasi Armendariz rings, which is called weak quasi Armendariz.

A ring R is called weak quasi Armendariz if for $f(x) = a_0 + a_1 x$, $g(x) = b_0 + b_1 x \in R[x]$, f(x)R[x]g(x) = 0 implies $a_iRb_j = 0$ for all $0 \le i$, $j \le 1$. They showed $M_n(R)$, $T_n(R)$ and R[x] over a weak quasi-Armendariz ring are too. Motivated by the above results, we investigate a generalization of weak quasi-Armendariz rings which we call a linear quasi-McCoy ring and study several results.

2. Linear Quasi-McCoy Rings

We begin this section by the following definition and also we study properties of linear quasi-McCoy rings.

Definition 1. A ring R is called a right linear quasi-McCoy ring if for $f(x) = a_0 + a_1x$ and $g(x) = b_0 + b_1x$ in R[x], f(x)R[x]g(x) = 0 implies f(x)Rs = 0 for some nonzero $s \in R$. (i. e. $a_iRs = 0$ for $0 \le i \le 1$). Left linear quasi McCoy rings are defined analogously.

The following lemma will be used very frequently in this paper.

Lemma 1. [4, Lemma 2.1] Let f(x) and g(x) be two elements of R[x]. Then f(x)R[x]g(x) = 0 if and only if f(x)Rg(x) = 0.

Clearly, any weak quasi-Armendariz ring is linear quasi-McCoy. In the following, we will see that the converse is not true.

Recall that for a ring R and an (R, R)-bimodule M, the trivial extention of R by M is the ring $T(R, M) = R \oplus M$ with the usual addition and the multiplication $(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2)$. This is isomorphic to the ring of all matrices $\begin{pmatrix} r & m \\ 0 & r \end{pmatrix}$, where $r \in R$, $m \in M$ and the usual matrix operations are used.

Example 1. The commutative rings are linear quasi-McCoy but need not be weak quasi Armendariz. Consider the polynomial $f(x) = (\overline{4}, \overline{0}) + (\overline{4}, \overline{1})x$ over the ring $\frac{\mathbb{Z}}{8\mathbb{Z}} \oplus \frac{\mathbb{Z}}{8\mathbb{Z}}$. The square of this polynomial is zero but the product $(\overline{4}, \overline{0})(\overline{4}, \overline{1}) = (\overline{0}, \overline{4})$ is not zero

By [3, Theorem 2.7], if R is a semiprime ring, then R, R[x], $S_n(R)$, R[x], $\frac{R[x]}{(x^n)}$ and $V_n(R)$ (for $n \ge 2$) are weak quasi-Armendariz rings, and so linear quasi-McCoyrings.

Proposition 1. Let R be a ring and Δ be a multiplicative closed subset of R consisting of central regular elements. Then R is linear quasi-McCoy if and only if $\Delta^{-1}R$ is linear quasi-McCoy.

Proof. Let $S = \Delta^{-1}R$. Assume that S is linear quasi-McCoy. Let $f(x) = a_0 + a_1x$ and $g(x) = b_0 + b_1x \in R[x]$ such that f(x)Rg(x) = 0. For any $r \in R$ with $w \in \Delta$, $0 = w^{-1}f(x)rg(x) = f(x)(w^{-1}r)g(x)$. So we have f(x)Sg(x) = 0. Since S is linear quasi-McCoy, $a_iSu^{-1}c = 0$ for some nonzero $u^{-1}c \in S$ $(0 \le i \le 1)$, and so $a_iRc = 0$. Therefore, R is linear quasi-McCoy.

Conversely, suppose that R is linear quasi-McCoy. Let $F(x) = \alpha_0 + \alpha_1 x$ and $G(x) = \beta_0 + \beta_1 x \in S[x]$ such that F(x)SG(x) = 0, where $\alpha_i = u^{-1}a_i$ and $\beta_j = v^{-1}b_j$ with $a_i, b_j \in R$ and regular elements $u, v \in R$. Since Δ is contained in the center of R and F(x)SG(x) = 0, for any $w^{-1}r \in S$, we have

$$0 = u^{-1}(a_0 + a_1x)(w^{-1}r)v^{-1}(b_0 + b_1x) = (uvw)^{-1}(a_0 + a_1x)r(b_0 + b_1x).$$

Let $f(x) = a_0 + a_1 x$ and $g(x) = b_0 + b_1 x$. Then f(x), $g(x) \in R[x]$ with f(x)Rg(x) = 0. Since R is linear quasi-McCoy, $a_iRc = 0$ for some nonzero $c \in R$ ($0 \le i \le 1$).

This shows that $\alpha_i S v^{-1} c = 0$ ($0 \le i \le 1$). Therefore, S is linear quasi-McCoy.

Corollary 2. Let R be a ring. Then R[x] is linear quasi-McCoy if and only if $R[x; x^{-1}]$ is linear quasi-McCoy.

Proof. It follows directly from since $\Delta = \{1, x, x^2, \dots\}$ is clearly a multiplicatively closed subset of R[x] and $R[x, x^{-1}] = \Delta^{-1}R[x]$.

Proposition 2. Let e be a central idempotent of a ring R. If eR and (1-e)R are linear quasi-McCoy, then R is linear quasi-McCoy.

Proof. Suppose that both eR and (1-e)R are linear quasi-McCoy. Let $f(x) = a_0 + a_1x$ and $g(x) = b_0 + b_1x \in R[x]$ with f(x)R[x]g(x) = 0. Then for any $r \in R$, 0 = e(f(x)rg(x)) = ef(x)(er)eg(x), (ef(x) = f(x), g(x)e = g(x)) and (1-e)f(x)((1-e)r)(1-e)g(x) = 0, and so ef(x)(eR)[x]eg(x) = 0 and (1-e)f(x)((1-e)R)[x](1-e)g(x) = 0.

Since eR and (1-e)R are linear quasi-McCoy, for all i we have $ea_i(eR)ec = 0$ and $(1-e)a_i((1-e)R)(1-e)t = 0$ for some $s, t \in R$. Thus, $e(a_iRc) = 0$ and $(1-e)(a_iRt) = 0$ for all i, and hence $a_iRct = (1-e)a_iRct + e(a_iRct) = 0$. Therefore, R is linear quasi -McCoy.

For a nonempty subset S of a ring R, we write $r_R(S) = \{c \in R | Sc = 0\}$ and $\ell_R(S) = \{c \in R | cS = 0\}$, which are called the right and left annihilators of S in R, respectively.

Proposition 3. If R is a linear quasi-McCoy and the one-sided annihilator A of a nonempty subset in R is a two-sided ideal of R, then R/A is linear quasi-McCoy.

Proof. Let $A = r_R(S)$ be a two -sided ideal of a linear quasi-McCoy ring R for $\emptyset \neq S \subseteq R$. Let $\overline{a} = a + A$ for $a \in R$. Suppose $f(x) = \overline{a_o} + \overline{a_1}x$ and $g(x) = \overline{b_0} + \overline{b_1}x \in (R/A)[x]$ with $f(x)(R/A)[x]g(x) = \overline{0}$. From $f(x)(R/A)[x]g(x) = \overline{0}$, we get $f(x)\overline{r}g(x) = \overline{0}$ for any $\overline{r} \in R/A$. Hence, a_0rb_0 , $a_0rb_1 + a_1rb_0$, $a_1rb_1 \in A$, and so $sa_0rb_0 = 0$, $s(a_0rb_1 + a_1rb_0) = 0$ and $sa_1rb_1 = 0$ for any $r \in R$ and $s \in S$. Thus, $(sa_0 + sa_1x)R[x](b_0 + b_1x) = 0$. Since R is linear quasi-McCoy, we have $s(a_iRt) = \overline{0}$ for some $t \in R$, for any i and $s \in S$, and hence $a_iRt \subseteq A$. Thus $\overline{a_i}(R/A)\overline{t} = \overline{0}$ for any i, and therefore R/A is linear quasi-McCoy.

In the following we will show that $M_n(R)$ and $T_n(R)$ over a linear quasi-McCoyring R are linear quasi-McCoy.

Proposition 4. For a ring R, we consider the following conditions:

- 1. R is linear quasi-McCoy.
- 2. $M_n(R)$ is linear quasi-McCoy for any $n \geq 1$.
- 3. $M_n(R)$ is linear quasi-McCoy for some $n \geq 1$.

Then $(1) \Rightarrow (2) \Rightarrow (3)$.

Proof. (1) \Rightarrow (2) Let R be a linear quasi-McCoy ring. Note that $M_n(R)[x] \cong M_n(R[x])$. We let $f(x) = \sum_{i=0}^1 A_i x^i$, $g(x) = \sum_{i=0}^1 B_j x^j \in M_n(R[x])$ with $A_i = (a^i_{st})$ and $B_j = (b^j_{vw})$. We write $f(x) = (f_{st})$, $g(x) = (g_{vw}) \in M_n(R[x])$ with $f_{st} = \sum_{i=0}^1 a^i_{st} x^i$ and $g_{vw} = \sum_{i=0}^1 b^j_{vw} x^j$. Put $f(x) M_n(R)[x] g(x) = 0$, then equivalently, $f(x) M_n(R[x]) g(x) = 0$. Let E_{ij} denote the matrix unit with (i,j)-entry 1 and zero elsewhere. From $f(x) (RE_{hk}) g(x) = 0$, we get $f_{\alpha h} Rg_{k\beta} = 0$ for all $1 \leq \alpha, \beta \leq n$. Since R is linear quasi-McCoy, we have $a^i_{st} Rc_{st} = 0$ for some $c_{st} \in R$ and for all i and $1 \leq s$, $t \leq n$. Let

$$S = \begin{pmatrix} \prod_{i=1}^{n} c_{1i} & 0 & \cdots & 0 \\ 0 & \prod_{i=1}^{n} c_{2i} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \prod_{i=1}^{n} c_{ni} \end{pmatrix}.$$

It then follows that $A_iM_n(R)S = 0$ for all i, concluding that $M_n(R)$ is linear quasi-McCov.

 $(2) \Rightarrow (3)$ is obvious.

Corollary 3. Let R be a ring. If R is linear quasi-McCoy then $T_n(R)$ is linear quasi McCoy.

Proposition 5. Finite direct product of linear quasi-McCoy rings is linear quasi-McCoy.

Proof. Let R_1, R_2, \ldots, R_n be linear quasi McCoy rings and $R = \prod_{k=1}^n R_k$. Suppose that $f(x) = \sum_{i=0}^1 a_i x^i$, $g(x) = \sum_{j=0}^1 b_j x^j \in R[x] \setminus \{0\}$, such that f(x)R[x]g(x) = 0, where $a_i = (a_{i1}, a_{i2}, \ldots, a_{in}), b_j = (b_{j1}, b_{j2}, \ldots, b_{jn}) \in R$. Set

$$f_k(x) = \sum_{i=0}^{1} a_{ik} x^i, \ g_k(x) = \sum_{j=0}^{1} b_{jk} x^j,$$

for each $1 \le k \le n$. Since $f_k(x)R[x]g_k(x) = 0$ and R_k is linear quasi-McCoy, there exists $s_k \in R_k$ such that $a_{ik}Rs_k = 0$. Let $s = (s_1, s_2, \ldots, s_n)$ then $a_iRs = 0$. Therefore R is linear quasi-McCoy.

Acknowledgments. The authors would like to thank the anonymous referee for his/her helpful comments that have improved the presentation of results in this article.

References

- [1] D. D. Anderson. V. Camilo, Armendariz rings and Gaussian rings, Comm. Algebra 26, 7 (1998), 2265-2272.
- [2] E. P. Armendariz, A note on extensions of Baer and p.p-ring, J. Austral. Math. Soc. 18 (1974), 470-473.
- [3] M. Baser, T. K. Kwak, Y. Lee, F. Kaynarca, Weak Quasi -Armendariz Rings, Algebra Colloquium 18, 4 (2011), 541-552.
- [4] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, 1 (2002), 25-42.
- [5] C. Y. Hong, N. K. Kim, T. K. Kwak, *On skew Armendariz rings*, Comm. Algebra 31, 1 (2003), 103-122.
- [6] C. Y. Hong, N. K. Kim, T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
- [7] C. Y. Hong, T. K. Kwak. S. T. Rizvi, Extensions of generalized Armendariz rings, Algebra Colloquium 13, 2 (2006), 253-266.
 - [8] I. Kaplansky, Rings of Operators, New York: Benjamin (1965).

- [9] N. K. Kim, Y. Lee, Armendariz rings and reduced rings, J. Algebra 223, 2 (2000), 477-488.
- [10] N. K. Kim, Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185, 1-3 (2003), 207-223.
- [11] J. Krempa, Some examples of reduced rings, Algebra Colloquium 3, 4 (1996), 289-300.
- [12] T. K. Lee, Y. Zhou, *Armendariz and reduced rings*, Comm. Algebra 32, 6 (2004), 2287-2299.
- [13] Z. K. Liu, R. Y. Zhao, *On weak Armendariz rings*, Comm. Algebra 34, 7 (2006), 2607-2616.
- [14] N. H. McCoy, $Remarks\ on\ divisors\ of\ zero,$ Amer. Math. monthly. 49 (1942), 286-295.
- [15] P. P. Nielsen, Semicommutativity and the McCoy condition, J. Algebra 298 (2006), 134-141.
- [16] M. J. Nikmehr, F. Fatahi and H. Amraei, Nil-Armendariz Rings with Applications to a Monoid, World Applied Sciences J. 13, 12 (2011), 2509-2514.
- [17] M. J. Nikmehr, A. Nejati and M. Deldar, Weak α -skew MacCoy rings, Publications de L'Institut Mathematique 95, 109 (2014), 221-228.
- [18] M. B. Rege, S. Chhawchharia, *Armendariz rings*, Proc. Japan Acad. 73, A (1997), 14-17.
- [19] C. Zhang, J. Chen, Weak α -skew Armendariz rings, J. Korean Math. Soc. 47, 3 (2010), 455-466.

Mohammad Javad Nikmehr Department of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315 – 1618, Tehran, Iran email: nikmehr@kntu.ac.ir

Mansoureh Deldar Department of Mathematics, Islamic Azad University, Central Tehran Branch, Iran email: Man.Deldar@iauctb.ac.ir

Hosein Daneshmand Shamsipour Technical College, Technical and Vocational University, Tehran, Iran