PRIME BCK- SUBMODULES OF BCK- MODULES ## N. Motahari and T. Roudbari ABSTRACT. In this paper by considering the notion of BCK-module X, we have introduced prime BCK- submodules and we have proved some results by it. As a result we have shown that if M_1 and M_2 be left BCK- modules over X and ϕ be a BCK- epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 . 2000 Mathematics Subject Classification: 06D99,06F35,08A30. Keywords: BCK- algebra, BCK- module, prime BCK- submodule. ### 1. Introduction Every module is an action of ring on certain group. This is, indeed, a source of motivation to study the action of certain algebraic structures on groups. BCK-module is an action of BCK-algebra on commutative group. In 1994, the notion of BCK-module was introduced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem [2]. They established isomorphism theorems and studied some properties of BCK-modules. The theory of BCK-modules was further developed by Z. Perveen and M. Aslam [9]. Now, in this paper we have introduced the concept of prime BCK-submodules and we have proved some results by it. As a result we have shown that if M_1 and M_2 be left BCK- modules over X and ϕ be a BCK- epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 . #### 2. Preliminaries Let us to begin this section with the definition of a BCK-algebra. **Definition 1.** [8] Let X be a set with a binary operation * and a constant 0. Then (X,*,0) is called a BCK- algebra if it satisfies the following axioms: (BCK1)((x*y)*(x*z))*(z*y)=0, (BCK2) (x * (x * y)) * y = 0, $(BCK3) \ x * x = 0,$ $(BCK_4) \ 0 * x = 0,$ (BCK5) x * y = y * x = 0 imply that x = y, for all $x, y, z \in X$. We can define a partial ordering $\leq by \ x \leq y$ if and only if x * y = 0. If there is an element 1 of a BCK- algebra X, satisfying x * 1 = 0, for all $x \in X$, the element 1 is called unit of X. A BCK- algebra with unit is called to be bounded. **Definition 2.** [8] Let (X, *, 0) be a BCK- algebra and X_0 be a nonempty subset of X. Then X_0 is called to be a subalgebra of X, if for any $x, y \in X_0$, $x * y \in X_0$ i.e., X_0 is closed under the binary operation * of X. **Definition 3.** [8] A BCK- algebra (X, *, 0) is said to be commutative, if it satisfies, x * (x * y) = y * (y * x), for all x, y in X. **Definition 4.** [8] A BCK- algebra (X, *, 0) is called implicative, if x = x * (y * x), for all x, y in X. **Theorem 1.** [8] Every implicative BCK-algebra is a commutative, but its converse may not be true. **Definition 5.** [8] A non-empty subset A of BCK- algebra (X, *, 0) is called an ideal of X if it satisfies the following conditions: - (i) $0 \in A$, - (ii) $(\forall x \in X)(\forall y \in A)$ $(x * y \in A \Rightarrow x \in A)$. **Theorem 2.** [2] Let X be a bounded implicative BCK- algebra and let $x + y = (x * y) \lor (y * x)$, for all $x, y \in X$ then we have: - (i) (X, +) forms a commutative group, - (ii) Any ideal I of X consisting of two elements forms an X- module. **Definition 6.** [8] Suppose A is an ideal of BCK- algebra (X, *, 0). For any x, y in X, we denote $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$. It is easy to see that, \sim is an equivalence relation on X. Denote the equivalence class containing x by C_x and $\frac{X}{A} = \{C_x : x \in X\}$. Also we define $C_x * C_y = C_{x*y}$, for all x, y in X. **Definition 7.** [8] Let X be a lower BCK- semilattice and A be a proper ideal of X. Then A is said to be prime if $a \wedge b = b * (b * a) \in A$ implies that $a \in A$ or $b \in A$, for any a, b in X. **Theorem 3.** [8] In a lower BCK- semilattice (X, *, 0) the following are equivalent: (i) I is a prime ideal, (ii) I is an ideal and satisfies that for any $A, B \in I(X)$, $A \subseteq I$ or $B \subseteq I$ whenever $A \cap B \subseteq I$. **Definition 8.** [1] Let (X, *, 0) be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that (i) $(x \wedge y) \cdot m = x \cdot (y \cdot m)$, (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$, (iii) $0 \cdot m = 0$, for all $x, y \in X, m_1, m_2 \in M$, where $x \wedge y = y * (y * x)$. Then M is called a left X-module. If X is bounded, then the following additional condition holds: (iv) $1 \cdot m = m$. A right X-module can be defined similarly. **Theorem 4.** [1] Every bounded implicative BCK-algebra forms module over itself. In the sequel X is a BCK-algebra. **Example 1.** [1] Let A be a non-empty set and X = P(A) be the power set of A. Then X is a bounded commutative BCK-algebra with $x \wedge y = x \cap y$, for all $x, y \in X$. Define $x + y = (x \cup y) \cap (x \cap y)'$, the symmetric difference. Then M = (X, +) is an abelian group with empty set \emptyset as an identity element and $x + x = \emptyset$. Define $x \cdot m = x \cap m$, for any $x, m \in X$. Then simple calculations show that: - $(i) (x \wedge y) \cdot m = (x \cap y) \cap m = x \cap (y \cap m) = x \cdot (y \cdot m),$ - (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$, - (iii) $0 \cdot m = \emptyset \cap m = \emptyset = 0$, - (iv) $1 \cdot m = A \cap m = m$. Thus X itself is an X-module. **Definition 9.** [1] Let M_1, M_2 be X-modules. A mapping $f: M_1 \longrightarrow M_2$ is called a BCK-homomorphism, if for any $m_1, m_2 \in M_1$, we have : - (i) $f(m_1 + m_2) = f(m_1) + f(m_2)$, - (ii) $f(x \cdot m_1) = x \cdot f(m_1)$, for all $x \in X$. Ker(f) and Img(f) have usual meaning. **Definition 10.** [4] Let (X, *, 0) be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that - (i) $(x \wedge y) \cdot m = x \cdot (y \cdot m)$, - (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$, - (iii) $0 \cdot m = 0$, - $(iv) (x \lor y).m = x.m + (y * x).m.$ then M is called an extended BCK-module. **Definition 11.** Let M be a left BCK- module over X, and N be a BCK- submodule of M, then we define $Ann_X(M) = \{x \in X \mid x \cdot m = 0, \text{ for all } m \in M\}$. M is called faithful if $Ann_X(M) = 0$. **Theorem 5.** [2] Any ideal consisting of two elements in a bounded commutative BCK- algebra X forms an X- module under the binary operations $x.m = x \wedge m$. **Example 2.** [4] Let X be a non-empty set. Then (P(X), -) is a bounded BCKalgebras, $Z(integer\ set)$ with the followings operations is a P(X)-module, $x_0 \in X$ $and \cdot : P(X) \times Z \rightarrow Z \text{ such that }$ $$A.n = \begin{cases} n & \text{if } x_0 \in A \\ 0 & \text{if } x_0 \notin A \end{cases}$$ #### 3. Prime BCK- submodule The notion of BCK-module was introduced by Abujabal, Aslam and Thaheem [1]. A BCK-module is an action of a BCK-algebra on abelian group (M, +). In this section we have defined prime BCK-submoduls and have obtained some theorems. **Definition 12.** Let M be a left BCK- module over X and N be a submodule of M. Then N is said to be prime BCK-submodule of M, if $N \neq M$ and $x \cdot m \in N$, implies that $m \in N$ or $x.M \subseteq N$, for any x in X and any m in M. **Example 3.** Let $X = P(A = \{1, 2, ..., n\}), B_i = \{1, 2, ..., n\} - \{i\}, for i \in$ $\{1,2,...,n\}$. Then $P(B_i)$ is a prime BCK-submodule of P(A), because we can $P(A) \times P(A) \times P(B_i) \longrightarrow P(B_i)$. It is easy to see that $P(B_i)$ is a BCK-submodule of P(A). Now we show that $P(B_i)$ is a prime BCK-submodule. Let for subsets C and D of A, $C \cap D \subseteq P(B_i)$, $D \notin P(B_i)$ and $C \cap P(A) \not\subseteq P(B_i)$. Then $i \in D$ and there exists $K \subseteq A$ such that $C \cap K \not\subseteq B_i$. Since $B_i = \{1, 2, ..., n\} - \{i\}$, therefore $i \in C \cap K$. So $i \in D \cap C \cap K \subseteq D \cap C \subseteq B_i$ and this is a contradiction. Then $P(B_i)$ is a prime BCK- submodule of P(A). **Theorem 6.** Let M be a left BCK-module over X. Then P is a prime BCKsubmodule of M containing N if and only if $\frac{P}{N}$ is a prime BCK-submodule of $\frac{M}{N}$. *Proof.* Necessity. First we show that $\frac{P}{N} \neq \frac{M}{N}$. Since P is a prime BCK-submodule of M, then $N \neq M$ therefore there exists $m \in M - P$, so $m + N \in \frac{M}{N} - \frac{P}{N}$. In fact if $m+N\in \frac{P}{N}$, then $m+N=p_1+N$ for some $p_1\in P$, hence $m-p_1\in N\subseteq P$ and so $m \in P$, which is a contradiction. Let $(x, m+N) \longrightarrow x \cdot m + N$ be a mapping of $X \times \frac{M}{N} \longrightarrow \frac{M}{N}$. Now let $x \in X$ and $m \in M$ such that $x \cdot (m+N) \in \frac{P}{N}$ i.e. $x \cdot m + N \in \frac{P}{N}$, then $x \cdot m + N = p_1 + N$, for some $p_1 \in P$, $x \cdot m - p_1 \in N \subseteq P$. So $x \cdot m \in P$. Since P is a prime BCK- submodule P we get that $m \in P$ or $x \cdot M \subseteq P$. If $m \in P$, then $m+N \in \frac{P}{N}$ and the proof is complete. If $x \cdot M \subseteq P$, then for all $m \in M, x \cdot m+N \in \frac{P}{N}$ i.e. $x \cdot (m+N) \in \frac{P}{N}$. Hence $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$. Sufficiency. First we show that $P \neq M$. we have $\frac{P}{N} \neq \frac{M}{N}$, so there exists $m \in M$, such that $m + N \notin \frac{P}{N}$. We claim $m \notin P$. If $m \in P$, hence $m + N \in \frac{P}{N}$, and this is a contradiction. Now let $x \in X$ and $m \in M$ such that $x \cdot m \in P$, clearly $x \cdot m + N \in \frac{P}{N}$, for all $m \in M$. Since $\frac{P}{N}$ is a prime BCK- submodule of $\frac{M}{N}$. So $m + N \in \frac{P}{N}$ or $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$. If $m + N \in \frac{P}{N}$, then $m + N = p_1 + N$, for some $p_1 \in P$, hence $m - p_1 \in N \subseteq P$, then $m \in P$ and the proof is complete. If $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$, then $x \cdot (m + N) \in \frac{P}{N}$ for all $m \in M$, so $x \cdot m + N \in \frac{P}{N}$. Since $N \subseteq P$, we get that $x \cdot m \in P$, for all $m \in M$ i.e. $x \cdot M \subseteq P$. Therefore the proof is complete. **Theorem 7.** In Example 1, let I be a prime ideal of X. Then P(I) is a prime BCK-submodule of P(X). *Proof.* Since $I \neq X$, then $P(I) \neq P(X)$. Now let K and N be subsets of X and $K \wedge N = K \cap N \in P(I)$. Since I is a prime ideal of X, then $K \subseteq I$ or $N \subseteq I$. If $N \subseteq I$, the proof is complete. If $K \subseteq I$, we have for all $C \subseteq X, K \cap C \subseteq K \subseteq I$ i.e. $K \cap C \subseteq I$ and this complete the proof. In the sequel X is a BCK-algebra. **Definition 13.** A left BCK-module M over X, will be called fully faithful, if every nonzero BCK- submodule of M is faithful. **Remark 1.** Let M be a left BCK- module over X and N be a BCK- submodule of M. Then we define $(N:M) = \{x \in X \mid x \cdot M \subseteq N\}$. **Theorem 8.** Let X be a bounded implicative BCK- algebra and M be an extended X-module. BCK- submodule N of M, is prime if and only if, P = (N : M) is a prime ideal of X and the left $\frac{X}{P}$ - module $\frac{M}{N}$ is fully faithful. *Proof.* Necessity. Suppose N is a prime BCK- submodule of M. Now we prove that (N:M) is a prime ideal of X. By primitivity N, we have $(N:M) \neq X$, because $1 \in X$, but $1 \notin (N:M)$. Now we show that (N:M) is a prime ideal. Let $(x \wedge y) \in (N:M)$, for all $x,y \in X$, so $(x \wedge y) \cdot M \subseteq N$, therefore $(x \wedge y) \cdot m = x \cdot (y \cdot m) \in N$, for all $m \in M$. Since $x \in X$ and N is a prime BCK- submodule of M, then $y \cdot m \in N$ or $x \cdot M \subseteq N$. If $x \cdot M \subseteq N$, then $x \in (N : M)$. If $x \cdot M \not\subseteq N$, we show that $y \cdot M \subseteq N$. Because if $y \cdot M \not\subseteq N$, then there exists $m_1 \in M$ such that $y \cdot m_1 \not\in N$. Since $x \cdot (y \cdot m) \in N$, for all $m \in M$, then $x \cdot (y \cdot m_1) \in N$. By primitivity N, we get $x \cdot M \subseteq N$, this is a contradiction. Hence $y \cdot M \subseteq N$. So P = (N : M) is a prime ideal of X. Since N is prime, then $N \neq M$. So there exists $m_0 \in M - N$. Now we show that the left $\frac{X}{P}$ -module $\frac{M}{N}$ is fully faithful. Since x.m + N = N for all $m \in M$, then $x.m \in N$. So $x.m_0 \in N$. By primitivity N, $m_0 \in N$ or $x.M \subseteq N$. Since $m_0 \notin N$, then $x.M \subseteq N$. Hence $x \in (N : M) = P$. Then every submodule of $\frac{M}{N}$ is faithful. So $\frac{X}{P}$ -module $\frac{M}{N}$ is fully faithful. Sufficiency. let for any $x \in X$ and $m \in M$, $x \cdot m \in N$. Then it is easy to see that $\frac{\langle m \rangle + N}{N}$, is $\frac{X}{P}$ - BCK- submodule of $\frac{M}{N}$. Since $\frac{M}{N}$ is a fully faithful $\frac{X}{P}$ module and $(x+P) \cdot (\langle m \rangle + N) = x \cdot \langle m \rangle + N = N$, then x+P=P i.e. $x \in P=(N:M)$. Hence $x \cdot M \subseteq N$. Therefore N is a prime BCK- submodule of M. **Theorem 9.** Let M_1 and M_2 be left BCK- modules over X and ϕ be a BCK-epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 . Proof. It is immediate that $\phi^{-1}(N) \neq M_1$, now we show that $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 . Let $x \in X$ and $m \in M_1$ such that $x \cdot m \in \phi^{-1}(N)$, so $\phi(x \cdot m) \in N$, hence $x \cdot \phi(m) \in N$, since N is a prime BCK- submodule of M. Therefore $x \cdot M_2 \subseteq N$ or $\phi(m) \in N$. If $x \cdot M_2 \subseteq N$, then it is easy to see that $x \cdot M_1 \subseteq \phi^{-1}(N)$, also if $\phi(m) \in N$, so $m \in \phi^{-1}(N)$. This complete the proof. In above theorem, it may be N a prime BCK- submodule of M_1 , but $\phi(N)$ is not a prime BCK- submodule of M_2 . Consider the following example: **Example 4.** In Example 3, let $A = \{1, 2\}$ and $B = \{1\}$, and let $\lambda : P(A) \longrightarrow P(A)$ such that $\lambda(T) = \emptyset$, for any T in P(A). It is clear that λ is BCK-homomorphism and P(B) is a prime BCK-submodule of P(A), but $\lambda(P(B)) = \emptyset$ is not a prime BCK-submodule of P(A), because if $x = \{1\}$ and $y = \{2\}$, then x and y are subsets of A and $x \cap y = \emptyset$ whereas $x \neq \emptyset$ and $y \cap P(A) = \{2\} \neq \emptyset$. Let X be a lower semilattice BCK- algebra. Then N(X) will denote the intersection of all prime ideals of X. **Theorem 10.** Let P be a prime ideal of a lower semilattice X containing I. Then $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$. Proof. First we show $\frac{P}{I} \neq \frac{X}{I}$. If $\frac{P}{I} = \frac{X}{I}$, then X = P, because $x \in X$, implies that $C_x \in \frac{X}{I} = \frac{P}{I}$ i.e. $C_x = C_{p_1}$, for some $p_1 \in P$. So $x * p_1 \in I \subseteq P$. Hence $x \in P$. Therefore X = P, this is a contradiction. Now let $(C_x) \wedge (C_y) \in \frac{P}{I}$. Then $C_{x \wedge y} \in \frac{P}{I}$. It is easy to see that $x \wedge y \in P$. By primitivity P, we get that $C_x \in \frac{P}{I}$ or $C_y \in \frac{P}{I}$. Therefore $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$. **Theorem 11.** Let M be a left BCK- module over X such that $hom(M, \frac{X}{N(X)}) \neq 0$. Then M contains a prime BCK- submodule. *Proof.* Since hom $(M, \frac{X}{N(X)}) \neq 0$, there exists a BCK- homomorphism v such that $v(m_0) \neq N(X)$, for some $m_0 \in M$. In the other hand there exists $x_0 \in X$ such that $v(m_0) = C_{x_0}$ and $C_{x_0} \neq C_0$, hence $x_0 \notin N(X)$. i.e. there exists a prime ideal P_0 of X such that $x_0 \notin P_0$. Since $C_{x_0} \not\in C_{P_0}$, we get that $v(M) \not\subseteq C_{P_0}$. By theorem 10 C_{P_0} is a prime ideal of $\frac{X}{N(X)}$. So by Theorem 9 $v^{-1}(C_{P_0})$ is a prime BCK- submodule of M. **Theorem 12.** Let A be an ideal of X and M be a left BCK- module over X. Then there exists a proper BCK- submodule N of M such that A = (N : M) if and only if $A \cdot M \neq M$ and $A = (A \cdot M : M)$. *Proof.* The sufficiency is clear. Conversely, suppose that A = (N : M), for some proper BCK- submodule N of M, since $A \cdot M \subseteq N$, we have $A \cdot M \neq M$. Moreover clearly $A \subseteq (A \cdot M : M)$, it is sufficient to show that $(A \cdot M : M) \subseteq A$. Let $x \in (A \cdot M : M)$. Then $x \cdot M \subseteq A \cdot M$, so $x \cdot M \subseteq N$ i.e. $x \in (N : M)$. Let M be a left BCK- module over lower semilattice X and P be a prime ideal of X. Then we shall denote by M(P) the following subset of M: $M(P) = \{ m \in M \mid A \cdot m \subseteq P \cdot M, \text{ for some ideal } A \not\subseteq P \}.$ It is clear that M(P) is a BCK- submodule of M and $P \cdot M \subseteq M(P)$. Note the following fact about M(P). **Theorem 13.** Let P be a prime ideal of a lower semilattice X and M be a left BCK-module over X such that there exists a prime BCK-submodule K of M with (K:M) = P. Then $M(P) \subseteq K$. *Proof.* Let $m \in M(P)$. Then there is an ideal A of X such that $A \nsubseteq P$ and $A \cdot m \subseteq P \cdot M$. Since $P \cdot M \subseteq K$, then we have $A \cdot m \subseteq K$ and $A \not\subseteq P$, so $a_1 \not\in P$, for some $a_1 \in A$. In the other hand, $A \cdot m \subseteq K$, hence $a_1 \cdot m \in K$. By primitivity K, we have $m \in K$ or $a_1 \cdot M \subseteq K$. If $a_1 \cdot M \subseteq K$, then we have $a_1 \in (K : M) = P$, therefore $a_1 \in P$. This is a contradiction. So $m \in K$. The proof is complete. **Acknowledgements.** The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which helped to improve the presentation of this paper. ## References - [1] H.A.S. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK- algebras on groups, Panamerican Mathematical Journal 4(3)(1994), 43-48. - [2] H. A. S. Abujabal, M. A. obaid, Jeddab and A. B. Thaheem, *On annihilators of BCK-algebras*, Czechoslovak Mathematical Journal, 45(120) 1995. - [3] M. Bakhshi, M. M. Zahedi, R. A. Borzooei, Fuzzy (positive, weak implicative) hiper BCK-ideal, Iranian Journal of fuzzy system, Vol.1, No.2 (2004), PP 63-79. - [4] R. A. Borzooei, J. Shohani and M. Jafari, *Extended BCK-module*, World Applied Sciences Journal 14(2011), 1843-1850. - [5] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22. - [6] B. Imran and M. aslam, On certain BCK- modules, CSouthest Asian Bulletin of Mathematics, (2010) 34, 1-10. - [7] K. Iseki, An algebraic related with a propositional calculus, Proc. Japan Acad. 42(1966), 26-29. - [8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994. - [9] Z. Perveen, M. aslam and A. B. Thaheem, *On BCK- module*, Southeast Asian Bulletin of Mathematics (2006) 30, 317-329. - [10] R. F. Reftery, On prime ideal and subdirect decompositions of BCK-algebras, Math. Japonica, 32(1987) 811-818. # N. Motahari Department of Mathematics, Islamic Azad University, Kahnooj Branch, Kerman, Iran email: narges.motahari@yahoo.com T. Roudbari Lor Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran email: T.Roodbarylor@yahoo.com