PRIME BCK- SUBMODULES OF BCK- MODULES

N. Motahari and T. Roudbari

ABSTRACT. In this paper by considering the notion of BCK-module X, we have introduced prime BCK- submodules and we have proved some results by it. As a result we have shown that if M_1 and M_2 be left BCK- modules over X and ϕ be a BCK- epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 .

2000 Mathematics Subject Classification: 06D99,06F35,08A30.

Keywords: BCK- algebra, BCK- module, prime BCK- submodule.

1. Introduction

Every module is an action of ring on certain group. This is, indeed, a source of motivation to study the action of certain algebraic structures on groups. BCK-module is an action of BCK-algebra on commutative group. In 1994, the notion of BCK-module was introduced by M. Aslam, H. A. S. Abujabal and A. B. Thaheem [2]. They established isomorphism theorems and studied some properties of BCK-modules. The theory of BCK-modules was further developed by Z. Perveen and M. Aslam [9]. Now, in this paper we have introduced the concept of prime BCK-submodules and we have proved some results by it. As a result we have shown that if M_1 and M_2 be left BCK- modules over X and ϕ be a BCK- epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 .

2. Preliminaries

Let us to begin this section with the definition of a BCK-algebra.

Definition 1. [8] Let X be a set with a binary operation * and a constant 0. Then (X,*,0) is called a BCK- algebra if it satisfies the following axioms: (BCK1)((x*y)*(x*z))*(z*y)=0,

(BCK2) (x * (x * y)) * y = 0,

 $(BCK3) \ x * x = 0,$

 $(BCK_4) \ 0 * x = 0,$

(BCK5) x * y = y * x = 0 imply that x = y, for all $x, y, z \in X$.

We can define a partial ordering $\leq by \ x \leq y$ if and only if x * y = 0.

If there is an element 1 of a BCK- algebra X, satisfying x * 1 = 0, for all $x \in X$, the element 1 is called unit of X. A BCK- algebra with unit is called to be bounded.

Definition 2. [8] Let (X, *, 0) be a BCK- algebra and X_0 be a nonempty subset of X. Then X_0 is called to be a subalgebra of X, if for any $x, y \in X_0$, $x * y \in X_0$ i.e., X_0 is closed under the binary operation * of X.

Definition 3. [8] A BCK- algebra (X, *, 0) is said to be commutative, if it satisfies, x * (x * y) = y * (y * x), for all x, y in X.

Definition 4. [8] A BCK- algebra (X, *, 0) is called implicative, if x = x * (y * x), for all x, y in X.

Theorem 1. [8] Every implicative BCK-algebra is a commutative, but its converse may not be true.

Definition 5. [8] A non-empty subset A of BCK- algebra (X, *, 0) is called an ideal of X if it satisfies the following conditions:

- (i) $0 \in A$,
- (ii) $(\forall x \in X)(\forall y \in A)$ $(x * y \in A \Rightarrow x \in A)$.

Theorem 2. [2] Let X be a bounded implicative BCK- algebra and let $x + y = (x * y) \lor (y * x)$, for all $x, y \in X$ then we have:

- (i) (X, +) forms a commutative group,
- (ii) Any ideal I of X consisting of two elements forms an X- module.

Definition 6. [8] Suppose A is an ideal of BCK- algebra (X, *, 0). For any x, y in X, we denote $x \sim y$ if and only if $x * y \in A$ and $y * x \in A$. It is easy to see that, \sim is an equivalence relation on X.

Denote the equivalence class containing x by C_x and $\frac{X}{A} = \{C_x : x \in X\}$. Also we define $C_x * C_y = C_{x*y}$, for all x, y in X.

Definition 7. [8] Let X be a lower BCK- semilattice and A be a proper ideal of X. Then A is said to be prime if $a \wedge b = b * (b * a) \in A$ implies that $a \in A$ or $b \in A$, for any a, b in X.

Theorem 3. [8] In a lower BCK- semilattice (X, *, 0) the following are equivalent: (i) I is a prime ideal,

(ii) I is an ideal and satisfies that for any $A, B \in I(X)$, $A \subseteq I$ or $B \subseteq I$ whenever $A \cap B \subseteq I$.

Definition 8. [1] Let (X, *, 0) be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that

(i) $(x \wedge y) \cdot m = x \cdot (y \cdot m)$,

(ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$,

(iii) $0 \cdot m = 0$,

for all $x, y \in X, m_1, m_2 \in M$, where $x \wedge y = y * (y * x)$. Then M is called a left X-module.

If X is bounded, then the following additional condition holds:

(iv) $1 \cdot m = m$.

A right X-module can be defined similarly.

Theorem 4. [1] Every bounded implicative BCK-algebra forms module over itself. In the sequel X is a BCK-algebra.

Example 1. [1] Let A be a non-empty set and X = P(A) be the power set of A. Then X is a bounded commutative BCK-algebra with $x \wedge y = x \cap y$, for all $x, y \in X$. Define $x + y = (x \cup y) \cap (x \cap y)'$, the symmetric difference. Then M = (X, +) is an abelian group with empty set \emptyset as an identity element and $x + x = \emptyset$. Define $x \cdot m = x \cap m$, for any $x, m \in X$. Then simple calculations show that:

- $(i) (x \wedge y) \cdot m = (x \cap y) \cap m = x \cap (y \cap m) = x \cdot (y \cdot m),$
- (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$,
- (iii) $0 \cdot m = \emptyset \cap m = \emptyset = 0$,
- (iv) $1 \cdot m = A \cap m = m$. Thus X itself is an X-module.

Definition 9. [1] Let M_1, M_2 be X-modules. A mapping $f: M_1 \longrightarrow M_2$ is called a BCK-homomorphism, if for any $m_1, m_2 \in M_1$, we have :

- (i) $f(m_1 + m_2) = f(m_1) + f(m_2)$,
- (ii) $f(x \cdot m_1) = x \cdot f(m_1)$, for all $x \in X$.

Ker(f) and Img(f) have usual meaning.

Definition 10. [4] Let (X, *, 0) be a BCK-algebra, M be an abelian group under + and let $(x, m) \longrightarrow x \cdot m$ be a mapping of $X \times M \longrightarrow M$ such that

- (i) $(x \wedge y) \cdot m = x \cdot (y \cdot m)$,
- (ii) $x \cdot (m_1 + m_2) = x \cdot m_1 + x \cdot m_2$,
- (iii) $0 \cdot m = 0$,
- $(iv) (x \lor y).m = x.m + (y * x).m.$

then M is called an extended BCK-module.

Definition 11. Let M be a left BCK- module over X, and N be a BCK- submodule of M, then we define $Ann_X(M) = \{x \in X \mid x \cdot m = 0, \text{ for all } m \in M\}$. M is called faithful if $Ann_X(M) = 0$.

Theorem 5. [2] Any ideal consisting of two elements in a bounded commutative BCK- algebra X forms an X- module under the binary operations $x.m = x \wedge m$.

Example 2. [4] Let X be a non-empty set. Then (P(X), -) is a bounded BCKalgebras, $Z(integer\ set)$ with the followings operations is a P(X)-module, $x_0 \in X$ $and \cdot : P(X) \times Z \rightarrow Z \text{ such that }$

$$A.n = \begin{cases} n & \text{if } x_0 \in A \\ 0 & \text{if } x_0 \notin A \end{cases}$$

3. Prime BCK- submodule

The notion of BCK-module was introduced by Abujabal, Aslam and Thaheem [1]. A BCK-module is an action of a BCK-algebra on abelian group (M, +). In this section we have defined prime BCK-submoduls and have obtained some theorems.

Definition 12. Let M be a left BCK- module over X and N be a submodule of M. Then N is said to be prime BCK-submodule of M, if $N \neq M$ and $x \cdot m \in N$, implies that $m \in N$ or $x.M \subseteq N$, for any x in X and any m in M.

Example 3. Let $X = P(A = \{1, 2, ..., n\}), B_i = \{1, 2, ..., n\} - \{i\}, for i \in$ $\{1,2,...,n\}$. Then $P(B_i)$ is a prime BCK-submodule of P(A), because we can

 $P(A) \times P(A) \times P(B_i) \longrightarrow P(B_i)$. It is easy to see that $P(B_i)$ is a BCK-submodule of P(A). Now we show that $P(B_i)$ is a prime BCK-submodule. Let for subsets C and D of A, $C \cap D \subseteq P(B_i)$, $D \notin P(B_i)$ and $C \cap P(A) \not\subseteq P(B_i)$. Then $i \in D$ and there exists $K \subseteq A$ such that $C \cap K \not\subseteq B_i$. Since $B_i = \{1, 2, ..., n\} - \{i\}$, therefore $i \in C \cap K$. So $i \in D \cap C \cap K \subseteq D \cap C \subseteq B_i$ and this is a contradiction. Then $P(B_i)$ is a prime BCK- submodule of P(A).

Theorem 6. Let M be a left BCK-module over X. Then P is a prime BCKsubmodule of M containing N if and only if $\frac{P}{N}$ is a prime BCK-submodule of $\frac{M}{N}$.

Proof. Necessity. First we show that $\frac{P}{N} \neq \frac{M}{N}$. Since P is a prime BCK-submodule of M, then $N \neq M$ therefore there exists $m \in M - P$, so $m + N \in \frac{M}{N} - \frac{P}{N}$. In fact if $m+N\in \frac{P}{N}$, then $m+N=p_1+N$ for some $p_1\in P$, hence $m-p_1\in N\subseteq P$ and so $m \in P$, which is a contradiction.

Let $(x, m+N) \longrightarrow x \cdot m + N$ be a mapping of $X \times \frac{M}{N} \longrightarrow \frac{M}{N}$. Now let $x \in X$ and $m \in M$ such that $x \cdot (m+N) \in \frac{P}{N}$ i.e. $x \cdot m + N \in \frac{P}{N}$, then $x \cdot m + N = p_1 + N$, for some $p_1 \in P$, $x \cdot m - p_1 \in N \subseteq P$. So $x \cdot m \in P$. Since P

is a prime BCK- submodule P we get that $m \in P$ or $x \cdot M \subseteq P$. If $m \in P$, then $m+N \in \frac{P}{N}$ and the proof is complete. If $x \cdot M \subseteq P$, then for all $m \in M, x \cdot m+N \in \frac{P}{N}$ i.e. $x \cdot (m+N) \in \frac{P}{N}$. Hence $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$.

Sufficiency. First we show that $P \neq M$. we have $\frac{P}{N} \neq \frac{M}{N}$, so there exists $m \in M$, such that $m + N \notin \frac{P}{N}$. We claim $m \notin P$. If $m \in P$, hence $m + N \in \frac{P}{N}$, and this is a contradiction. Now let $x \in X$ and $m \in M$ such that $x \cdot m \in P$, clearly $x \cdot m + N \in \frac{P}{N}$, for all $m \in M$. Since $\frac{P}{N}$ is a prime BCK- submodule of $\frac{M}{N}$. So $m + N \in \frac{P}{N}$ or $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$.

If $m + N \in \frac{P}{N}$, then $m + N = p_1 + N$, for some $p_1 \in P$, hence $m - p_1 \in N \subseteq P$, then $m \in P$ and the proof is complete. If $x \cdot \frac{M}{N} \subseteq \frac{P}{N}$, then $x \cdot (m + N) \in \frac{P}{N}$ for all $m \in M$, so $x \cdot m + N \in \frac{P}{N}$. Since $N \subseteq P$, we get that $x \cdot m \in P$, for all $m \in M$ i.e. $x \cdot M \subseteq P$. Therefore the proof is complete.

Theorem 7. In Example 1, let I be a prime ideal of X. Then P(I) is a prime BCK-submodule of P(X).

Proof. Since $I \neq X$, then $P(I) \neq P(X)$. Now let K and N be subsets of X and $K \wedge N = K \cap N \in P(I)$. Since I is a prime ideal of X, then $K \subseteq I$ or $N \subseteq I$. If $N \subseteq I$, the proof is complete. If $K \subseteq I$, we have for all $C \subseteq X, K \cap C \subseteq K \subseteq I$ i.e. $K \cap C \subseteq I$ and this complete the proof.

In the sequel X is a BCK-algebra.

Definition 13. A left BCK-module M over X, will be called fully faithful, if every nonzero BCK- submodule of M is faithful.

Remark 1. Let M be a left BCK- module over X and N be a BCK- submodule of M. Then we define $(N:M) = \{x \in X \mid x \cdot M \subseteq N\}$.

Theorem 8. Let X be a bounded implicative BCK- algebra and M be an extended X-module. BCK- submodule N of M, is prime if and only if, P = (N : M) is a prime ideal of X and the left $\frac{X}{P}$ - module $\frac{M}{N}$ is fully faithful.

Proof. Necessity. Suppose N is a prime BCK- submodule of M. Now we prove that (N:M) is a prime ideal of X. By primitivity N, we have $(N:M) \neq X$, because $1 \in X$, but $1 \notin (N:M)$. Now we show that (N:M) is a prime ideal. Let $(x \wedge y) \in (N:M)$, for all $x,y \in X$, so $(x \wedge y) \cdot M \subseteq N$, therefore $(x \wedge y) \cdot m = x \cdot (y \cdot m) \in N$, for all $m \in M$. Since $x \in X$ and N is a prime BCK- submodule of M, then $y \cdot m \in N$ or $x \cdot M \subseteq N$.

If $x \cdot M \subseteq N$, then $x \in (N : M)$.

If $x \cdot M \not\subseteq N$, we show that $y \cdot M \subseteq N$.

Because if $y \cdot M \not\subseteq N$, then there exists $m_1 \in M$ such that $y \cdot m_1 \not\in N$. Since

 $x \cdot (y \cdot m) \in N$, for all $m \in M$, then $x \cdot (y \cdot m_1) \in N$. By primitivity N, we get $x \cdot M \subseteq N$, this is a contradiction. Hence $y \cdot M \subseteq N$. So P = (N : M) is a prime ideal of X. Since N is prime, then $N \neq M$. So there exists $m_0 \in M - N$. Now we show that the left $\frac{X}{P}$ -module $\frac{M}{N}$ is fully faithful. Since x.m + N = N for all $m \in M$, then $x.m \in N$. So $x.m_0 \in N$. By primitivity N, $m_0 \in N$ or $x.M \subseteq N$. Since $m_0 \notin N$, then $x.M \subseteq N$. Hence $x \in (N : M) = P$. Then every submodule of $\frac{M}{N}$ is faithful. So $\frac{X}{P}$ -module $\frac{M}{N}$ is fully faithful.

Sufficiency. let for any $x \in X$ and $m \in M$, $x \cdot m \in N$. Then it is easy to see that $\frac{\langle m \rangle + N}{N}$, is $\frac{X}{P}$ - BCK- submodule of $\frac{M}{N}$. Since $\frac{M}{N}$ is a fully faithful $\frac{X}{P}$ module and $(x+P) \cdot (\langle m \rangle + N) = x \cdot \langle m \rangle + N = N$, then x+P=P i.e. $x \in P=(N:M)$. Hence $x \cdot M \subseteq N$. Therefore N is a prime BCK- submodule of M.

Theorem 9. Let M_1 and M_2 be left BCK- modules over X and ϕ be a BCK-epimorphism from M_1 to M_2 . Also N be a prime BCK- submodule of M_2 . Then $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 .

Proof. It is immediate that $\phi^{-1}(N) \neq M_1$, now we show that $\phi^{-1}(N)$ is a prime BCK- submodule of M_1 . Let $x \in X$ and $m \in M_1$ such that $x \cdot m \in \phi^{-1}(N)$, so $\phi(x \cdot m) \in N$, hence $x \cdot \phi(m) \in N$, since N is a prime BCK- submodule of M. Therefore $x \cdot M_2 \subseteq N$ or $\phi(m) \in N$. If $x \cdot M_2 \subseteq N$, then it is easy to see that $x \cdot M_1 \subseteq \phi^{-1}(N)$, also if $\phi(m) \in N$, so $m \in \phi^{-1}(N)$. This complete the proof.

In above theorem, it may be N a prime BCK- submodule of M_1 , but $\phi(N)$ is not a prime BCK- submodule of M_2 . Consider the following example:

Example 4. In Example 3, let $A = \{1, 2\}$ and $B = \{1\}$, and let $\lambda : P(A) \longrightarrow P(A)$ such that $\lambda(T) = \emptyset$, for any T in P(A). It is clear that λ is BCK-homomorphism and P(B) is a prime BCK-submodule of P(A), but $\lambda(P(B)) = \emptyset$ is not a prime BCK-submodule of P(A), because if $x = \{1\}$ and $y = \{2\}$, then x and y are subsets of A and $x \cap y = \emptyset$ whereas $x \neq \emptyset$ and $y \cap P(A) = \{2\} \neq \emptyset$.

Let X be a lower semilattice BCK- algebra. Then N(X) will denote the intersection of all prime ideals of X.

Theorem 10. Let P be a prime ideal of a lower semilattice X containing I. Then $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$.

Proof. First we show $\frac{P}{I} \neq \frac{X}{I}$. If $\frac{P}{I} = \frac{X}{I}$, then X = P, because $x \in X$, implies that $C_x \in \frac{X}{I} = \frac{P}{I}$ i.e. $C_x = C_{p_1}$, for some $p_1 \in P$. So $x * p_1 \in I \subseteq P$. Hence $x \in P$. Therefore X = P, this is a contradiction. Now let $(C_x) \wedge (C_y) \in \frac{P}{I}$. Then $C_{x \wedge y} \in \frac{P}{I}$. It is easy to see that $x \wedge y \in P$. By primitivity P, we get that $C_x \in \frac{P}{I}$ or $C_y \in \frac{P}{I}$. Therefore $\frac{P}{I}$ is a prime ideal of BCK- algebra $\frac{X}{I}$.

Theorem 11. Let M be a left BCK- module over X such that $hom(M, \frac{X}{N(X)}) \neq 0$. Then M contains a prime BCK- submodule.

Proof. Since hom $(M, \frac{X}{N(X)}) \neq 0$, there exists a BCK- homomorphism v such that $v(m_0) \neq N(X)$, for some $m_0 \in M$. In the other hand there exists $x_0 \in X$ such that $v(m_0) = C_{x_0}$ and $C_{x_0} \neq C_0$, hence $x_0 \notin N(X)$. i.e. there exists a prime ideal P_0 of X such that $x_0 \notin P_0$.

Since $C_{x_0} \not\in C_{P_0}$, we get that $v(M) \not\subseteq C_{P_0}$. By theorem 10 C_{P_0} is a prime ideal of $\frac{X}{N(X)}$. So by Theorem 9 $v^{-1}(C_{P_0})$ is a prime BCK- submodule of M.

Theorem 12. Let A be an ideal of X and M be a left BCK- module over X. Then there exists a proper BCK- submodule N of M such that A = (N : M) if and only if $A \cdot M \neq M$ and $A = (A \cdot M : M)$.

Proof. The sufficiency is clear.

Conversely, suppose that A = (N : M), for some proper BCK- submodule N of M, since $A \cdot M \subseteq N$, we have $A \cdot M \neq M$.

Moreover clearly $A \subseteq (A \cdot M : M)$, it is sufficient to show that $(A \cdot M : M) \subseteq A$. Let $x \in (A \cdot M : M)$. Then $x \cdot M \subseteq A \cdot M$, so $x \cdot M \subseteq N$ i.e. $x \in (N : M)$.

Let M be a left BCK- module over lower semilattice X and P be a prime ideal of X. Then we shall denote by M(P) the following subset of M:

 $M(P) = \{ m \in M \mid A \cdot m \subseteq P \cdot M, \text{ for some ideal } A \not\subseteq P \}.$

It is clear that M(P) is a BCK- submodule of M and $P \cdot M \subseteq M(P)$.

Note the following fact about M(P).

Theorem 13. Let P be a prime ideal of a lower semilattice X and M be a left BCK-module over X such that there exists a prime BCK-submodule K of M with (K:M) = P. Then $M(P) \subseteq K$.

Proof. Let $m \in M(P)$. Then there is an ideal A of X such that $A \nsubseteq P$ and $A \cdot m \subseteq P \cdot M$.

Since $P \cdot M \subseteq K$, then we have $A \cdot m \subseteq K$ and $A \not\subseteq P$, so $a_1 \not\in P$, for some $a_1 \in A$. In the other hand, $A \cdot m \subseteq K$, hence $a_1 \cdot m \in K$. By primitivity K, we have $m \in K$ or $a_1 \cdot M \subseteq K$. If $a_1 \cdot M \subseteq K$, then we have $a_1 \in (K : M) = P$, therefore $a_1 \in P$. This is a contradiction. So $m \in K$. The proof is complete.

Acknowledgements. The authors are extremely grateful to the referees for giving them many valuable comments and helpful suggestions which helped to improve the presentation of this paper.

References

- [1] H.A.S. Abujabal, M. Aslam, A. B. Thaheem, On actions of BCK- algebras on groups, Panamerican Mathematical Journal 4(3)(1994), 43-48.
- [2] H. A. S. Abujabal, M. A. obaid, Jeddab and A. B. Thaheem, *On annihilators of BCK-algebras*, Czechoslovak Mathematical Journal, 45(120) 1995.
- [3] M. Bakhshi, M. M. Zahedi, R. A. Borzooei, Fuzzy (positive, weak implicative) hiper BCK-ideal, Iranian Journal of fuzzy system, Vol.1, No.2 (2004), PP 63-79.
- [4] R. A. Borzooei, J. Shohani and M. Jafari, *Extended BCK-module*, World Applied Sciences Journal 14(2011), 1843-1850.
- [5] Y. Imai, K. Iseki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
- [6] B. Imran and M. aslam, On certain BCK- modules, CSouthest Asian Bulletin of Mathematics, (2010) 34, 1-10.
- [7] K. Iseki, An algebraic related with a propositional calculus, Proc. Japan Acad. 42(1966), 26-29.
 - [8] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa Co, Korea, 1994.
- [9] Z. Perveen, M. aslam and A. B. Thaheem, *On BCK- module*, Southeast Asian Bulletin of Mathematics (2006) 30, 317-329.
- [10] R. F. Reftery, On prime ideal and subdirect decompositions of BCK-algebras, Math. Japonica, 32(1987) 811-818.

N. Motahari Department of Mathematics, Islamic Azad University, Kahnooj Branch, Kerman, Iran email: narges.motahari@yahoo.com

T. Roudbari Lor Department of Mathematics, Islamic Azad University, Kerman Branch, Kerman, Iran email: T.Roodbarylor@yahoo.com