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NEW CLASS OF ANALYTIC FUNCTIONS ASSOCIATED WITH
THE GENERALIZED HYPERGEOMETRIC FUNCTIONS

K.R. ALHINDI AND M. DARUS

ABSTRACT. Using the generalized hypergeometric function, a new generalized
derivative operator KKETAZ (z) is introduced. This operator generalize many well-
known operators studied earlier by different authors. By making use of this new
operator we derive another class of function denoted by S;Zr)\z(n) Coefficient esti-
mate and distortion theorem are investigated. Moreover, the Fekete-Szego functional

lag — da3| for this class is also obtained.
2000 Mathematics Subject Classification: 30C45.

Keywords: Fekete-Szegd functional, Hadamard product, Differential operator,
Coefficient estimate, Distortion theorem.

1. INTRODUCTION

The first time when we are about to study the hypergeometric functions, we refer
to John Wallis. We were taught that he was the first mathematician who used hy-
pergeometric series in his book ” Arithmetica Infinitorum” (1655). Leonhard Euler
was another famously known to use the series. However, the first full systematic
treatment was given by Carl Friedrich Gauss (1813), and thereafter by Ernst Kum-
mer (1836). The importance of the hypergeometric theory is stemmed from its
applications in many subjects such as, numerical analysis, dynamical system and
mathematical physics.
Let A be the class of analytic functions of the form

f(z):z—i—Zakzk ze(U={z€C:|z| <1}) (1)

and S be the subclass of A consisting of univalent functions, and S(«), C(a) (0 <
a < 1) denote the subclasses of A consisting of functions that are starlike of order
« and convex of order « in U, respectively.
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For two analytic functions f(2) = 2+ > "% ag2* and g(2) = 2+ >_"_° br2" in the
open unit disc U= {z € C': |z] < 1}. The Hadamard product (or convolution) f *g
of f and ¢ is defined by

f(2) % g(2) = (f x g)(= —Z+Zakbkz (2)

For complex parameters aq, ..., and f1,...0, (85 # 0,—1,—1,...;j = 1...s), Dziok

and Srivastava [1] defined the generalized hypergeometric function , Fs (o, ..., ap; B, ...

by
. oy N (@) (o) 2°
ng(Oél, "'7aT7617 '“7/8572) — kZ:O (/Bl)k, . (/Bs)k ]{7" (3)
(r<s+LirseNy=NUO0;z el), (4)

where () is the Pochhammer symbol defined, in terms of Gamma function I', by

Lz +k) if k=0,

() = !
R T (@) z(z+1).(z+k—1) if keN,

Dziok and Srivastava [1] defined also the linear operator
H(ala'”va?“;ﬁla' 7/85 _Z+Zrkak‘z (5)

where

(al)k...(aT)k (6)
(B1)ks -5 (Bs )i (K)!
Abbadi and Darus [2] defined the analytic function

I'y =

[e.o]

m 1+)‘1 )) mol k
=2+ 2 R g

where m € Ny = {0,1,2,....} and Aa > \; > 0.
Using the Hadamard product (2), we can derive the generalized derivative oper-
ator K\ as follows

00
m,r, s 1 + )‘1 ))mil k
Kynef(z) =z + ;;—2 W Lragz (8)

where I'j, is as given in (6).
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Remark 1. When (A1 = X2 =0), (A\1 =m =0) or (A2 =0 and m = 1) we get
Dziok-Srivistava operator [1].

Also there are three cases to get the Hohlov operator [3], by giving (A1 = Ao =
O,bi = O,CLj = 0), ()\1 =m = O,bi = O,CLj = 0) or ()\2 = O,m = l,bi = O,CL]' = 0)
where (i =1..r and j = 1...s).

Putting (A1 = Aa = 0,a2 = l,a3 = ... =a, = 0,bp = ... =bs =0), (A =m =
0,a2 =l,a3 =...=a, =0,bg = ... =bs=0) or (A =0,m =1,a9 = l,a3 = ... =
ar =0,ba = ... = by = 0), we obtain the Carlson-Shaffer operator [4].

There are siz cases to get the Ruscheweyh operator [5] as follows: (A1 = Ay =
0,00 =a3 = ...=a, =0,bp =by = ...=0b5=0), A1 =m=0,a2 =ag = .. =
A = O,bl = b2 = ... = bs = 0), ()\2 = O,m = 1,(12 = a3z = ... = Qp = O,bl =
bg = ... = bs = 0),()\1 = /\2 = O,CLQ = a3 = ... = Qp = O,bz = ... = bs = 0),
M=m=0,a2=a3=..=a,=0,bpg=...=bs=0) or (Aa=0,m=1,a2 =az =
we=a, =0,by=...=bs =0).

Ifha =0,m =2,a3 = a3 = ... = a, = 0,by = by = ... = by = 0), we get the
generalized Ruscheweyh derivative operator as well [6] .

Moreover, if we put (as = a3 = ... = a, = 0,b = by = ... = bs = 0) or
(ag = a3z = ...=a, =0,by =by = .. =bs =0), we can get Al-Abbadi and Darus
operator [2].

Finally, if Aa=0,m=m+1l,a2 =a3=..=a, =0,by =by = ... =05 =0),

we get the generalized Al-Shagsi and Darus derivative operator [7].

Definition 1. Let f € A. Then f(2) € 87\’ (n) if and only if

m,r,s /
%{W}>n,0§n<l,zeu. (9)
A1,A2
In this present paper we study the characterization properties and distrortion
theorem of the class f(2) € Sy}’ (n) in section 2. And in section 3, we determine
the sharp upper bound for |ag| for the same class. Moreover, we calculate the Fekete-
Szegd functional |az — da3| for it. For this purpose we need the following Lemma:

Lemma 1. [8] Let p € P, that is, p be analytic in U, be given by p(z) = 1 +
>0 1 pnz™ and Rp(z) > 0 for z € U. Then

2 2
p1 1

— <2 - =
|p2 2|_ 9

and |pp| < 2 for alln € N.
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2. GENERAL PROPERTIES OF THE OPERATOR Sy"'\" (1)

Theorem 2. Suppose that f(z) € A. If

> 1 + A (k— 1))t
Tglag] <1 —-n,0<n <1 10
kZQ 14+ Xa(k—1))m o (10)
then f(z) € S:Irs(n). The result (10) is sharp.
Proof. Suppose that (10) holds. Since
> (14 X(k—1))™
l—n > k—mn Fk ar
kZ:Z( ) (14 Aa(k—1))™ ax
| (LM (e —1)m ! (1~|—>\1(k—1))m—1
> r T
> ;277 AT a1 ] klak| — A5 k= 1)" klaxl

we deduce that (g (1))
+A1 (k—1))™—
L+ s [Ny ) Delax] -
(141 (k—1))m—1 ’

L+ 3002, [ 1+;\(2(k )1))) 7 Dkl

thus /
[R5 ()
R [,C%”z] >n0<n<1l,z€el.
Mg (2)
We note that the assertion is (10) sharp, moreover, the extermal function can be
given by
o0
_ Z (1-n) o
N (141 (k—1))m—1 :
= gy Tr

Corollary 3. If the hypotheses of Theorem 2.1 is satisfied. Then

(1—n)
lag| < T (=TT ,Vn > 2. (11)
(k — )[((1+§\(2(k—)1)))m }Fk

We have also this following inclusion result:
Theorem 4. Let 0 < <y < 1. Then 8y 7;\5(171) S;Z&j(?]g)

Proof. By Theorem 2.1.
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Let us introduce the following distrotion theorems.
Theorem 5. If the hypotheses of Theorem 2.1 be satisfied. Then for z € U and
0<n<1

1—mn
m,r,s
KX f ()] = 2] = Gy

and !
)T -1
R ) < Jel 45—

Proof. By using Theorem 2.1, one can verify that

o~ [(L+ Mk — 1)) (1+ A (k — 1))m!
2— r < T <1-
( ");J T+ xa(e— 1y |THo Z T+ Aol — Ly | FHlewl =170
then
= 1+>\ — 1))t 1—n
k=2 2( Ui
Thus we obtain
o
m,r,s (1 + )\1(]-6 1))m71 %
10 <
KRR FE) < kZ:Q[ A D el
(1 + A (k= 1))t )
< r
|| +k222[ (L4 (k= L))" klax||2|
1
< |z|+[2_”]|z|2
The other assertion can be proved as follows:
m,r,s > 1—|—)\1 ))m—l i
1" — F
|}C)\17)\2f(z)| kz +>\2 kf ))m kaE2 |
(1+ A (k— 1))m—1} X
> |zl = Tilagl|z
-3 [ty sl
o~ [(1+ M (K 1))m—1} )
> |z = T'ilagl|z
4 ;2[ (e =Dy | Telenlle
1 —mn
> 1il- g0 e

which completes the proof.
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Theorem 6. Let the assumptions of Theorem 2.1 hold. Then

2(1 —n)(14 X2)™.T(aq)..T(ay).T(By + 2)..(Bs + 2) o2

£ ()| < [z + 2 — )1+ )™ LT(B1)..0(Bs) T(ar + 2)..0(ar + 2)

and

2(1 —n)(1 + Xo)™.I'(ay)...T (o). T (B1 + 2)..T(Bs + 2) N
2 =) 1+ A)™LT(B1)..0(Bs).T(ar + 2)..T (. + 2)

Proof. From Theorem 2.1, one can write

1f(2)] = [2| =

2 (1+ Ag)™ F(al)...F(ar) T8 + 2 BS +2) & h

3 (14 M (k — )) m—1
SkZ(k_n)[ (1+ Mg(k— 1)) |Tklar] <1—p
then

o0

Z‘a‘<2(1 n)(1+ Xa(k — 1))"T(e1)..T (o) T(B1 +2)..T(8s +2)
2= T =) (T AT (B () D(an +2)-Tar +2)

Thus we obtain

& = 2+ Y a2t
—k

n=oo

< e+ ) Jagllzl?
n=~k
< 24 2(1 = 1)1+ Ao)™.T(v)..T () D (B1 +2)..0(Bs +2) P

2 — 7)1+ \)™L.L(51)..0(B,).D(ar + 2)..0(ay + 2)

The other assertion can be proved as follows

F@ = 12t S ae
n=k

n=oo
>zl = ) |z
n=~k

2(1 = n)(1 + Ao)™ T(a)...T(ar).T(Br +2)..T(Bs + 2) .
@ =)L+ A)" T (). T(Be) T(ar + 2).. ey +2)

This completes the proof.

> |z =
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3. FEKETE-SZEGO FOR THE CLAss K}"'}° f(2)
A1,A2

In this section we obtain sharp upper bound of |ag| and of the Fekete-Szegd func-
tional |az — daj| for the class Sy"'\" ().

Theorem 7. Let the hypothesis of Theorem 2.1 be satisfied. Then

40 = n)(1+ 22)"T (B + 2)..0(Bs + 2T ()T (a,)
1+ A\)™ 1 T(ag +2)..0(ay + 2)T(B1)...L0(5s)

and the following bound is sharp

las] <

|CL3 — 5&%‘ ~

max{l,

forall 6 € C

3
2

(1+2X2)™ T(B1 + 3)..1(Bs + 3)I (). (ur )(1_ )
(1+20)™ L (a1 +3)..0(cr +3)0(51)..0(Bs =

A (2P 20" (DB +2)P. (T (B, + 2T (). .T(a)
3T+ A)2(m — D1+ 200)™ (D(aq + 2))2...(C(ay + 2)20(51)-.L(Bs)

(g +3)..(ar + 3)
(81 +3)L(Bs + 3)

14+2(1—n)

Proof. Since f € 87\"(n) then the following condition is satisfied

(KNS (=)
R—Frar—— ¢ >n,0<n<1,z€lU.
{ IC>\1,)\2f(z)

We can write
ARSI = KL I e +n0 < <1z e

for some p(z) = 1+ p1z + p2z? +p3z® + ...
By calculating coeflicients we can write:

az = A(L —n)p1,as = B[(1 —n)*pT + (1 — n)p2]

where

21+ M)™D(Br +2)..D(Bs + 2)[ (o). ()
(14 M) I (g + 2)..T (o +2)0(B1)...T'(Bs)

and 3(1+ 2X0)™T(B1 + 3)...T(Bs + 3)T(a1)...T ()

T (14 20)" T(oq +3)..T(ay + 3)T(B1)-.T(Bs)
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Moreover, for

§A%(1 —n
)

1
C=D5+{1-n)
by applying Lemma 1 we have
D
L(z) =2D + (C — E)xQ,wherex = |p1| < 2.

Consequently, we obtain

|a3 — 5@%‘ < {
Equality holds for functions given by

dIFE] 142201 - 2p)

L(0)=2D if

C
L(2)=4C if C

IV IA
SUSENS

IC;anAzf(z) 1—22
and
KNS FE)] 1421 - 2n)
Kﬁ’;’\if(z) N 1—2 ’
respectively.

Putting n = 0 we can get the following corollary.
Corollary 8. Let the hypothesis of Theorem 3.1 be satisfied. Then for n =10
4(1+ )™ (1 + 2)..T(Bs + 2)T'()...T'(avr)

2] < G " Ty + 2). (e £ 2)T (1) T (5.)
and
o — 52| < 3 (LE 20" T(B1+3). DB, + 3 (). T e)
SR =9l (T 20)m T T(ay + 3)..T(ar + 3)T(B1)..0 (B,

1_% (1 4+ X2)2m(1+22)™ L (T(B1 +2))2...(T(Bs + 2)°T(ay)..T (v

142

371+ A0)2(m — 1)(1+ 2X2)™ (D(a1 + 2))2...(C(ay + 2)20(B1)...T(Bs)

s
}
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