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ON OSBORN LOOPS OF ORDER 4N
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ABSTRACT. A new method of constructing Osborn loops of order 4n, n = 4,6 and 12
is presented. The constructed example is found not to satisfy the characteristic
identity for universal Osborn loops, like Moufang loops, VD-loops, CC-loops and
universal WIPLs. Hence, it is a non-universal Osborn loop. Some existing theorems
of product of groups are investigated, and paradigms of them and the conditions for
the existence of such theorems in loops are also stated.
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1. INTRODUCTION

The desire to construct algebraic structures has been of interest to many authors.
Though, it may be challenging but it worth the effort to construct one. A lot
has been revealed through construction of examples and counter examples of some
algebraic structures [12]. Osborn loop is more or less recent and only few examples
are available. The few examples are mostly infinite. The popular finite examples of
Osborn loops are mostly of order 16. (28], [29]) No doubt constructed examples of
Osborn loops are spares. Hence, this work is aimed at developing a new method of
constructing a finite Osborn loop of order 4n, n = 4,6, 12.

The origin of Osborn loop can be traced to the work of J.M. Osborn [30] in 1960
on universal WIPLs. He observed that a universal WIPL obeys identity:

yr - (2Ey-y) = (y-xz)-yforall z,y,2€ G (1)
where E, = LyL,» = R,,' = LyR,L,".
A loop that necessarily and sufficiently satisfies this identity is called an Osborn loop.

Later, in 1968, E.D. Huthnance Jr[16] while carrying out a study on the generalized
Moufang loops, named loops that obeys (1) as generalized Moufang loops and later
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on in the same thesis, he called them M-loops. Also, he called a universal WIPL an
Osborn loop. Basarab[3] in 1979 dubbed a loop (G, -) satisfying the identity.

(2M\y) - 22 = 2(yz - o) (2)

Or
x(yz-x)=(v-yEy) - zz ¥V x,y,2 € G (3)

an Osborn loop where E, = RyRye = (LyL})™' = R, L,R;'L;!

It is to be noted that this type of Basarab’s Osborn loop is not necessarily
a universal WIPL by Huthnance’s definition. However, these two definitions are
rather complimentary than confusing. Osborn loops generalize Moufang loops, and
Moufang loops that are IPLs are universal WIPLs. In other words, a Moufang loop
is a variety of Osborn loops that is universal such that the following properties hold:
power associative, diassociative and inverse properties etc. Hence, a Moufang that
does not obey the properties aforementioned is an Osborn loop. V.O Chiboka [11]
In 1990 adopted the Huthnance definition of an Osborn loop. The later deduced
some properties of Ex relative to (1) Ey = E,» = E,». Jaiyeola and Adeniran in
2009 [26] used these properties to derive two nice identities defining Osborn loop.

0Sy : x(yz-xz) =x(yz* ) 2z (4)

0S5y : z(yz-x) = [z(yx - 2P)] - zx (5)

Using these definitions, they were able to derive two nice identities that characterise
a universal Osborn loop-see [26]. To this end, they were able to answer the fun-
damental part of the question associated with the 2005 open problem of Michael
Kinyon-see [27]. In that note also, the authors were able to establish numerous new
identities for universal Osborn loops like CC-loops, VD-loops and universal weak
inverse property loops[27]. It is to be noted again that the most popularly known
varieties of Osborn loops are CC-loops, Moufang loops, VD-loops and universal
WIPLs. All these four varieties of Osborn loops are universal [27]. This is what
makes non-universal Osborn loops interesting to researchers like Kinyon, Phillips
and others [1],[29]. Therefore, it will be a celebrated effort to be able to construct a
finite Osborn loop that is non-universal.

2. PRELIMINARIES

Definition 1. A loop is a set G with binary operation (denoted here simply by
Juztaposition) such that

e for each a in G, the left multiplication map L, : G — G,z — ax is bijective,
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e for each a in G, the right multiplication map R, : G — G,x — xa is bijective;
and

o (G has a two-sided identity 1.
The order of G is its cardinality |G]|.

Definition 2. Consider (G,-) and (H,o) being two distinct groupoids (quasigroups,
loops). Let A, B and C be three distinct non-equal bijective mappings (permutations),
that map G onto H. The triple « = (A, B,C) is called an isotopism of (G,-) onto
(H,o) if and only if

zAoyB = (z-y)C V¥V z,y € G. (6)

So, (H,o) is called a groupoid(quasigroup, loop) isotope of (G,-).
Similarly, the triple
ol =(4,B,0)" = (a7, B7,CT) (7)

is an isotopism from (H,o) onto (G,-) so that (G,-) is also called a groupoid (quasi-
group, loop) isotope of (H,o). Here, both are said to be isotopic to each other ([8],

[9], [15], [27]).

Definition 3. A property is said to be isotopic invariance if such property is true
with a loop as well as its isotopes. ([9]). Such property is called a universal property.

Isotopic invariance of types and varieties of quasigroups and loops described by
one or more equivalent identities, especially those that in the class of Bol- Mon-
fang type loops as first named by Fenyves [13] and [14] in the 1960’s and recently
considered by Phillips and Vojtechovsky [33], [34], [10],[28] have been studied (see
126]).

Definition 4. An Osborn loop is said to be universal if every isotope of an Osborn
loop is Osborn. Otherwise it is said to be non-universal.

Theorem 1. (Kinyon [29]) The smallest order for which proper(non-Moufang and
non-CC) Osborn loops with non-trivial nucleus exists is 16.
There are two of such loops.

e Fach of the two is a G-loop.
e FEach contains as a subgroup, the dihedral group (Dy) of order 8.
e For each loop, the center coincides with the nucleus and has order 2. The

quotient by the center is a non-associative CC-loop of order 8.
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o The second center is Zo X 7Z, and the quotient is Z4.

e One loop satisfies Lt = R = I, the other does not.
AIP Osborn loops include:

o commutative Moufang loops and

e AIP CC-loops

Lemma 2. (Jaiyeola and Adeniran[27]) Let (Q,-,\,/) be a left universal Osborn
loop. The following identities are satisfied:

v-vv =vM\v-v and v - VY = fu)‘\(vvv) ‘v
Corollary 3. A simple universal Osborn loop is a Moufang loop.

A simple loop is a loop that has no non-trivial normal subloop. Vojtechovsky
[33],[34], studied simple Moufang loops.

Theorem 4. (Basarab [5])
A generalized Moufang loop (Q,-) is a VD-loop if and only if x* € N(Q)V x € Q.

Theorem 5. (Basarab [4])
An Osborn loop Q(-) in which x*> € N for each x € Q is a G-loop.

Theorem 6. (Basarab [5])
Each VD-loop is an Osborn loop.

Theorem 7. (Basarab)
Each CC-loop is an Osborn loop.

Some recent studies on universal Osborn loops can be found in Jaiyéola [18, 20],
Jaiyéold and Adéniran [21], Jaiyéold et. al. [22, 25, 23, 24].

3. MAIN RESULTS

We started by investigating the existing theorems in product of groups [6], [7]. The
conditions for existence of such theorems in loops are presented.

Suppose G and H are loops. Then, the set G x H of ordered pair (g,h) with g € G
and h € H is a loop when equipped with appropriately defined operations.

Lemma 8. Let G and H be two distinct loops. Then, the set G x H under the binary
operation '+’ defined as (g1, h1)* (g2, h2) = (9192, h1h2) ¥ g1,92 € Gand hy,ho € H
s a loop, called the product of the loops G and H.
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Proof. Suppose (G,-) and (H, o) are loops. Then consider ((G x H),*) given as
(91, h1) * (g2, h2) = (g1 - g2, hi 0 ho) = (¢°,h°) V g° € G, h® € H.

then G x H is closed with respect to '¥’. Next, (g1,h1) * (g,h) = (g2, h2) * (g, h).
Then (g1 - g,h1 0o h) = (g2 - g, he o h) implies that g1 - g = g2 - g implies that g1 =
g2 and hy o h = hg o h implies that h; = ha. Obviously, (eq,en) € (G x H),*).
Hence, G x H is a loop.

Corollary 9. Let G = Gy X ... x Gy, be a product of any finite sequence of loops with
a binary operation defined as (g1, ..., gn) * (95, -, 95) = (9195, .-, gng%). Then G is a
loop, and will be abelian, if and only if every factor G; is abelian.

Proof. Let ((G1 X ... x Gy),*) be defined as above. From Lemma 3.1, ((G X ... X
Gr),*) is closed. now

(917 ,gn) * (dla ey dn) = (gfv 79701) * (db ,dn)

(gldh -~-ygndn) = (gfdh E3) g?id’ﬂ)
implies
g1dy = gida, ..., gndn = gpdn

then,
91 =01, 9n = Gn

and the presence of (ey, ...,e,) in ((G1 X ... X Gy,),*) makes it a loop. And ((G; x
... X Gp),*) is abelian iff every G; is abelian. Consider

(9155 9n) *x (975 - 9n) = (9191, - GnGn) = (9191, -+, 9 gn) = (97, -, 9) * (g1 -5 Gn)

Since every G is abelian

(9195 -+, 9ngn) = (91915 > Gngn) = (91, -, ) * (91, -+, Gn)
The proof is complete.

Lemma 10. Let G and H be two distinct power associative loops. Suppose m and n
are relatively prime, then the order of (g, h) in (G x H) is the least common multiple
of m and n, the orders g € G and h € H respectively.

Proof. The identity element e of G x H is given as (eg,ep). where e € G and
e € H (the identity elements of G and H). Suppose g™ = e¢ and h" = ep, if mn
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n

are relatively prime, then (g, h)™" = e, mn being the least common multiple of m

and n.

(g,h)™ =( g..g , h..h )=(99..9 ... g9...9 , hh..h ... hh..h)

mn—times Mn—times m—times m—times N—times  n—times
Vv

Ve .
n—times m—times

= (eg...ec; ...6@...6@) e (eg,eg).
——— N —
m—times n—times

The lemma follows.

Proposition 1. Let G be a (qusaigroup, loop). Suppose g1, ..., g, are elements from
the center of G of orders ny,...,n, respectively. Let Z,, X ... x Zp, be defined by
binary operation

<k, ok >x <y, Ll >=<ky 1,0 ke 1>
Then the map
G Ty X oo X Zy, — G given by (< ky,y .oy by >) = g’fl...gfr

is an isomorphism of G onto the G' (subloop of G) generated by g1, ..., gr.

k

Proof. If the order of g is n, g¥g' = ¢**! where the addition in the exponent is

performed modulo n. Thus

G(< Kty ook > % < L1yl >) =

(<hki411, ke + 1, >) = ghtTh ghrtlr = ghigh | ghrgl —

(950 g8) (G eg) = G(< Kty e >) - S(< L1y by >)

Therefore, ¢ is a homomorphism. Since ¢(< 0,...,1,...,0 >) = g; when the 1 is
in the ith place, the image of ¢ contains each g; and thus is G'. Implies ¢(g;)
G'Vi=1,2,..,r. Therefore, ¢ is onto

. Next, let

O(< ki, kr >) = @(< U1, ..., [ >),implies (glfl...gfr) = (gil...gff).

Then,

-1 k1—U kr—1lp

k ky ! Iy o _
(0197 ) (g gr) == (g7 gy ) = (9°).

Thus, k1 —1; =0,....,k.—1, = 0. So, k1 =4, ..., k. = l.. Therefore, < k1,...,k, >=<
l1,...,l, >. ¢ is injective, and so ¢ is an isomorphism.
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4. OSBORN LOOPS

The class of Bol-Moufang type of loops play an important role in the theory of
quasigroups and in their applications in other branches of mathematics [13]. In
what follows, we give 14 possible non-trivial identities, each defining an Osborn
loop. Most of these identities are stated by various authors as will be indicated.
Effort is being made here to outline the relationship of some of these identities and
also state these as equivalent identities for Osborn loops.

(i) (y-x2)-y=yx- (2B -y) [30]
(if) y(zz-y) = (y-2Ey) -2y

Ey=LyLy =R, R'=L,R,L 'R,

(iii) z(yz-2) = (- yEy) - zz [3]
(iv) (z-zy)z =2z (yEy - z)

Ey = RyRyr = (LyLp2) ' = Ry LR\ L; !

(v) (z-y2)z =2y (2E;" - x) [27)

(vi) (@M\y) -2z = 2(yz - ) [3], [27], [29]
(vii) zy - (z/2F) = (z - yz)z [27]

(viii) z(yz> 2)- 22 = z(yz - 3) [27]
(ix) z(yz-zP) - 2z = x(yz - x) [26]

(x) z[(aty)z - 2] =y - 2z [26]

(xi) [z -y(zaf)]z = zy - 2 [27]

(xii) z[(z*y)z-z] =y - 22 [26]

(xiii) (z-y2)x =y - [(2* - 22) - 2] [26]

(xiv) (z-yz)x =zy - [(z-2Pz) - x| [27]
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5. CONSTRUCTION OF NON-UNIVERSAL OSBORN LOOP

The binary operations as defined in the construction below hold between two active(non-
arbitrary) variables ‘a’ and 'b'. Whereas, the combination ‘b4 ¢ or ‘a+ ¢’ is peculiar
and unique to Osborn loops as defined in the construction below.

Example 1. Let I(-) = Cyy, x Cy that is [ = {(z%,y%),0<a<2n—-1,0< 3 < 1}
and the binary operation is defined as follows:

(2% €) - (a*,37) = (a*7°,5")
(a%,y%) - (% €) = (2", y)
(@%,y®) - (2%,y7) = (2", y**P) if b= 0(mod 2)
(1‘“+b+ab Yo+ if b= 1(mod 2)
(@4, %) - (2%, 4%) = (@0, 42 if b = O(mod 2)
($b+c’y ) - (2%, y%) = ($a+b+c+ab2,ya+6) if b= 1(mod 2)
Then I(-) is an Osborn loop of order 4n, where n = 2,3,4,6 and 12.
Proof. We first show that I(-) satisfies Osborn identity (vi):
(XN\Y)-ZX =X(YZ-X)
(a) Let X = (2% ¢e); Y = (2%, €); Z = (2°¢), then by direct computations, we have
(XMNY) - ZX = (22004 ¢)
X(YZ-X) = (2270 ¢)
(b) Let X = (2%¢); Y = (20,¢); Z = (2%, 3")
(XMNY) - ZX = (a*F0e,y)
X(YZ-X) = (a2+0+e y)
(c) Let X = (z%e); Y = (2b,9%); Z = (2°,¢)
(XMN\Y) - ZX = (270 4P b = even
X(YZ-X)= (227 4F) b= even

(XNY) - ZX = (g2etbretal® W8y — odd
X(YZ i X) — (x2a+b+6+ab27yﬁ) b — Odd
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(d) Let X = (z%,e);Y = (2%,97); Z = (2°,y)
(XMN\Y) - ZX = (2?0 4P17) b = even

X(YZ-X) = (22+bF¢ 4517) b = even

(X’\\Y) LIX — (:C2a+b+c+ab27y,8+’y) b= odd
X(YZ . X) = (a20tbtetab® y647) b — odd
(e) Let X = (2%,y%);Y = (2%,¢); Z = (2%, ¢)
(XMNY) - ZX = (222F0Fe 42%) ¢ = even

X(YZ-X) = (z%F¢ 2 4 = even

(XMNY) - ZX = (g2etbreta’e 20y ¢ — o4
X(YZ - X)= (I2a+b+c+(b+c)a2’y2a) a = odd
(F) Let X = (2%,y°);Y = (ab,€); Z = (2, ¢)
(XMNY) - ZX = (a2atbte 2907 g = even
X(YZ-X) = (22F0F¢ 42997 4 = even
(X)\\Y) CIX — (x2a+a20+b+c+7y2a+7) a = odd
X(YZ-X)= (x2a+b+c+(b+c)a2’y2a+7) a = odd
(g) Let X = (z%,y*); Y = (a*,9%); Z = (2%, ¢)
(XMNY) - ZX = (g2atbFe o2a48) o — cven, b = even

X(YZ - X) = (227+0%¢ 42048 4 = even, b = even

(XMNY) ZX = (x2a+“b2+b+c, Y28 4 = even,b = odd
X(YZ . X) _ (x2a+ab2+b+c+7y2a+,3) a = even, b = odd

(XMN\Y) ZX = (:U2a+b+c+“2‘:, y?) a = odd, b = even
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XYZ -X)= (x2a+b+c+(b+c)a2,yﬁ) a = odd,b = even

(X)\\Y) L 7X = (l,2a+b+c+a2c+ab2’y2a+,3) a = odd,b= odd
X(YZ . X) _ (x2a+b+c+(b+c)a2+a2c+ab2,y2a+6) a = odd,b = odd
(h) Let X = (2%,y%); Y = (2",9%); Z = (2°,97)
(XMNY) - ZX = (g20+0+e o 200847) o — even, b = even

X(YZ-X) = (a20H0Fe o 29HB47) 4 = even, b = even

(XMNY) ZX = (x2a+b+c+“b2,y2a+ﬁ+7) a = even,b = odd

X(YZ . X) = (x2a+b+c+ab2’ y2a+ﬂ+7) a = even,b = odd

(XMN\Y)-ZX = (:c2a+b+c+azc, y?*) @ = odd, b = even
X(YZ -X)= (m2a+b+c+(b+c)“2,y5+7) a = odd,b = even

(X/\\Y) LIX = (x2a+b+c+a2c+ab2’ y2a+ﬁ+'y) a = odd,b= odd
X(YZ X X) _ (x2a+b+c+(b+c)a2+ab2,y20¢+5+’Y) a = Odd, b = odd

Since (X*\Y)-ZX = X(YZ - X) holds in cases whenever 25 = 1(mod 2n), that
isn = 2,3,4,6 and 12, hence, the example is an Osborn loop of order 4n where
n =2,3,4,6 and 12- see Solarin and Sharma [35].

Also (e,e) is the two sided identity. Moreover, if X = (2% ), then X! =
(x7%e). If X = (2% y*) then

X' =(27% ¢y ) if a = even

And ,
X7 = (a7 (@) ) if a=odd.

Therefore, the inverses are defined.

Also for non-associativity
Let
X = (@%y*)Y = (2"97); Z = (a%,y")
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where a is an even integer and b an odd integer.

(XY)Z = (gotbretat® yatit)
X(YZ) _ (xa—i-b-‘rc, ya—i-ﬁ—i-’y)b — odd

Thus
(XY)Z #X(YZ)

whenever 4,6 are not congruence to 0 mod 2n.

Next, we verify that the example above is non-universal using [26] and [27].
Jaiyeola and Adeniran [27] showed that an Osborn loop (H,x) should be universal
Osborn loop, if it should obey the identity Y x YY = YM\Y %Y [27]-see lemma 2
above.

Applying the above, the constructed example 1 defined as above should be a
universal Osborn loop, if it should obey the the identity: ¥ «YY = YMN\Y Y.

Let Y = (20, yP ), b being an odd integer. Then, by direct computation, we have:

Y*YY = (a3 %) b= odd

Y)\\Y *Y = (xb7 yﬁ)/\\(xba yﬂ) ’ (xbu yﬂ)
Y)\\Y <Y = ($3b+3b3+b57y36) b= odd

Thus, Y xYY # Y\Y « Y. Thus, I(-) = Ca, x Cs is not a universal Osborn
loop.

6. CONCLUDING REMARKS

Example 1 above is a new method of constructing proper non-associative Osborn
loops of order 16, 24 and 48. The example above is found not to be flexible and
does not have the left(right) alternative properties [LAP(RAP)] or the left(right)
inverse properties [LIP(RIP)] or the anti-automorphic inverse properties (AAIP).
Consequently, it is not Moufang. For detail about those properties, see [8], [10],[17],
[31], [32].

Since the smallest order possible for Osborn is 16 [29], implies that I(-) is an
Osborn loop when n = 4,6,12. At n = 2, we have a group of order 8 with a
single normal subgroup of order 2. Thence, we hypothesised that at order 12, the
construction is either a Moufang loop or the dihedral group on six elements (Cg x C2)
[2]. We reach this conclusion since the smallest Moufang loop which is not a group
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is of order 12, and Osborn loops simultaneously generalize Moufang and CC-loops
[29].

The hypothesis above is yet to be proven. By and large, the constructed example
is of order 16, 24 and 48.

REFERENCES

[1] A.A. Albert, Quasigroups I, Trans-Amer. Math. Soc., 54 (1943), 507-519.

[2] A.M. Asiru,A study of the classification of finite Bol loops, Ph.D thesis univer-
sity of Agriculture (2008), Abeokuta.

[3] A. S. Basarab and A.I. Belioglo, UAI Osborn loops, Quasigroups and loops,
Mat. Issled. 51 (1979), 8-16.

[4] A. S. Basarab, Osborn’s G-loop, Quasigroups and Related Systems 1 (1994),
51-56.

[5] A.S.Basarab, Generalised Moufang G-loops, Quasigroups and Related Systems
3 (1996), 1-6.

[6] R. Bear, Nets and Groups, I and II, Trans. Amer. Math. Soc., 46 (1940), 110-
141.

[7] E.D. Bolker, Elementary Number Theory an algebraic approach, W.A. Ben-
jamin, Inc. New York, (1970).

[8] R. H. Bruck, A survey of binary systems,Springer-Verlag, Berlin and New York,
(1958).

[9] B.F. Bryant and H. Schneider, Principal loop-isotopes of quasigroups, Canad.
J. Math. 18 (1966), 120-125

[10] O. Chein, H. O. Pflugfelder and J. D. H. Smith, Quasigroups and loops : Theory
and applications, Heldermann Verlag (1990), 568pp.

[11] V. O. Chiboka, The study of properties and construction of certain finite order
G-loops, Ph.D thesis, Obafemi Awolowo University, Ile-Ife, (1990).

[12] P. Csorgé loops and groups, Ph.D. Thesis, Budapest 2009.
[13] F. Fenyves, Extra loops I, Publ. Math. Debrecen, 15 (1968), 235-238.
[14] F. Fenyves, Extra loops II, Publ. Math. Debrecen, 16 (1969), 187-192.

[15] E. G. Goodaire and D. A. Robinson, A class of loops which are isomorphic to
all loop isotopes, Can. J. Math. 34 (1982), 662—672.

[16] E.D. Huthnance Jr., A theory of generalised Moufang loops, Ph.D. thesis, Geor-
gia Institute of Technology, (1968).

[17] A. O. Isere, J. O. Adeniran and A. R. T. Solarin,Somes Examples Of Finite
Osborn Loops, Journal of Nigerian Mathematical Society, 31 (2012), 91-106.

42



A. O. Isere, S. A. Akinleye and J. O. Adéniran — On Osborn loops of order 4n

[18] T. G. Jaiyéold , On three cryptographic identities in left universal Osborn loops,
Journal of Discrete Mathematical Sciences and Cryptography, 14, 1 (2011), 33-50.
(DOI:10.1080,/09720529.2011.10698322)

[19] T. G. Jaiyéold, Osborn loops and their universality, Scientific Annals of 7 ALL
Cuza” University of Iasi. 58, 2 (2012), 437-452.

[20] T. G. Jaiyéola, On two cryptographic identities in universal Osborn loops, Jour-
nal of Discrete Mathematical Sciences and Cryptography, 16, 2-3 (2013), 95116.
(DOI:10.1080/09720529.2013.821371)

[21] T. G. Jaiyéolda and J. O. Adéniran, On another two cryptographic identities
in universal Osborn loops, Surveys in Mathematics and its Applications, 5 (2010),
17-34.

[22] T. G. Jaiyéola and J. O. Adéniran, Loops that are isomorphic to their Osborn
loop isotopes(G-Osborn loops), Octogon Mathematical Magazine, 19, 2 (2011), 328-
348.

[23] T. G. Jaiyéold , J. O. Adéniran and A. A. A. Agboola, On the second Bryant

Schneider group of universal Osborn loops, Societatea Roméana de Matematica Apli-
cata si Industriala Journal, 9, 1 (2013), , 37-50.

[24] T. G. Jaiyéola , J. O. Adéniran and A. R. T. Solarin, The universality of Osborn
loops, Acta Universitatis Apulensis Mathematics-Informatics, 26 (2011), 301-320.

[25] T. G. Jaiyéola , J. O. Adéniran and A. R. T. Solarin , Some necessary conditions
for the existence of a finite Osborn loop with trivial nucleus, Algebras, Groups and
Geometries, 28, 4 (2011), 363-380.

[26] T.G. Jaiyeola And J.O. Adeniran, New identities in universal Osborn loops,
Quasigroups and Related Systems, Moldova 17, 1 (2009), 55-76.

[27] T.G. Jaiyeola And J.O. Adeniran , Not Every Osborn loop is Universal, Acta
Math. Acad. Paed. Nviregvhaziensis 25 (2009), 189-190.

[28] M. K. Kinyon, J. D. Phillips and P. Vojtéchovsky , Loops of Bol-Moufang type
with a subgroup of index two, Bul. Acad. Stiinte Repub. Mold. Mat. 49, 3(2005),
71-87.

[29] M. K. Kinyon, A survey of Osborn loops, Milehigh conference on loops, quasi-
groups and non-associative systems, University of Denver, Denver, Colorado, 2005.

[30] J. M. Osborn, Loops with the weak inverse property, Pac. J. Math. 10 (1961),
295-304.

[31] H. O. Pflugfelder, special class of Moufang loops, Proc. Amer. Math. Soc. 26
(1970), 583-586.

[32] H. O. Pflugfelder, Quasigroups and loops : Introduction, Sigma series in Pure
Math. 7, Heldermann Verlag, Berlin (1990), 147pp.

43



A. O. Isere, S. A. Akinleye and J. O. Adéniran — On Osborn loops of order 4n

[33] J. D. Phillips and P. Vojtéchovsky, The varieties of loops of Bol-Moufang type,
Alg. Univer. 54, 3(2005), 259-383..

[34] J. D. Phillips and P. Vojtéchovsky , The varieties of quasigroups of Bol-Moufang
type : An equational approach, J. Alg. 293 (2005), 17-33.

[35] A. R. T. Solarin and B.L. Sharma , Some Ezamples of Bol loops, ACTA uni-
versitatis carolinae- Mathematica et Physics, 25, 1(1983), 59-68.

A. O. Isere

Department of Mathematics,
Ambrose Alli University,
Ekpoma 310001, Nigeria
email: abednis@yahoo.co.uk

S. A. Akinleye

Department of Mathematics,
Federal University of Agriculture,
Abeokuta 110101, Nigeria.

email: akinleyesa@yahoo.com

J. O. Adeniran

Department of Mathematics,
Federal University of Agriculture,
Abeokuta 110101, Nigeria.

email: adeniranoj@unaab.edu.ng

44



