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0 —b—OPEN SETS AND § — b—CONTINUOUS FUNCTIONS

UDAY SHANKAR CHAKRABORTY

ABSTRACT. The aim of this paper is to introduce the concept of § — b—open set
together with its corresponding operators 6 — b—interior and § — b—closure. A few
relations between these operators and the operators defined before are established.
In this paper, the concept of § — b—continuity has been introduced with the aid of
0 — b—open sets. Some basic properties of this mapping have also been studied.
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1. INTRODUCTION

Velicko [1] introduced the concept of J—open sets as a generalization of open sets.
After him many others like Raychoudhury and Mukherjee [2], Noiri [3], Hatir and
Noiri [4] further generalised the concept and introduced the notion of j—prepen,
d—semiopen and § — f—open sets. In this paper we have introduced the notions
of & — b—open sets and § — b—continuity. The class of § — b—continuous functions
contains both the classes of §—precontinuous and d—semicontinuous functions and
is contained in the class of all 6 — S—continuous functions. We obtained charac-
terizations of § — b—continuous functions and analysed some of the basic properties
of the function. The relationships between § — b—continuity and separation axioms
have also been investigated.

2. PRELIMINARIES

Throughout the present paper, X and Y are always topological spaces on which no
separation axioms are assumed unless explicitly stated. Let A be a subset of X. The
interior of A, the closure of A, the j—interior of A, the d—closure, the semi-interior,
the semi-closure, the pre-interior and the pre-closure of A are denoted by int(A),
cl(A), ints(A), cls(A), sint(A), scl(A), pint(A) and pcl(A) respectively. A subset

17



Uday Shankar Chakraborty — ¢ — b—open sets and § — b—continuous functions

A of X is said to be regular open (resp. regular closed) [5] if A =int(cl(A)) (resp.
A =cl(int(A))). The d—interior [2] of a subset A of X is the union of all regular open
sets of X contained in A. A subset A is called —open [1] if A =ints(A), i.e., a set
is d—open if it is the union of regular open sets. The complement of a d—open set
is called d—closed, alternatively, a subset A of X is called d—closed [1] if A =cl;(A),
where cls(A) = {x € X : AN int(cl(U))# 0, U is open in X and z € U}.

Definition 1. A subset A of X is called
(a) Preopen [6] if A C int(cl(A)),
(b) Semiopen [7] if A C cl(int(A)),
(c) B—open [8] if A C cl(int(cl((A)))),
(d) 6—preopen [2] if A C int(cls(A)),
(e) 6 — B—open [4] if A C cl(int(cls(A))),
(f) 6—semiopen [3] if A C cl(ints(A)),
(9) b—open [9] if A C int(cl(A)) Ucl(int(A)),
(h) 6 —b—open if A Cint(cls(A)) Ucl(ints(A))

The family of all 6 — b—open (resp. d—preopen, j—semiopen, § — S—open) sets
of X is denoted by 6 BO(X) (resp. 0PO(X), 650(X), 650(X)).

Definition 2. Let A be a subset of a topological space X .

(a) The complement of a § — b—open (resp. d—preopen, §—semiopen, § — 3—open)
set is called § — b—closed (resp. d—preclosed [2], 6—semclosed [3], § — f—closed
[4])-

(b) The union of all 6 — b—open (resp. O—preopen, d—semiopen, 6 — B—open)
sets contained in A is called the 6 — b—interior (resp. O0—preinterior [10],
d—seminterior [3], 6 — B—interior [{]) of A and is denoted by bints(A) (resp.
pints(A), sints(A), Bints(A)).

(¢) The intersection of all § — b—closed (resp. ¢ — preclosed,—semiclosed, § —
B—closed) sets containing A is called the § — b—closure (resp. d—preclosure
[2], §—semclosure [3], § — B-closure [}]) of A and is denoted by bels(A) (resp.
pels(A), scls(A), Bels(A)).

Lemma 1. [}] For a subset A of a topological space X, the following properties hold:
) A)),

(b) sints(A) = ANncl(ints(A)); scls(A) = AUint(cls(A)),

(c) Bints(A) = ANcl(int(cls(A))); Bels(A) = AUint(cl(ints(A))).

(a) pints(A) = ANint(cls(A)); pels(A) = AU cl(ints(
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3. 6 — b—OPEN SETS
Theorem 2. §PO(X)UJSO(X) C dBO(X) C 680(X).

Remark 1. The inclusions can not be replaced with equalities as shown by the
following examples.

Example 1. Let X = {a,b,c,d, e} and let 7 = {X,0,{a},{e},{a, e}, {c, d},{a,c d},
{¢,d,e},{a,c,d,e}}. Then A = {a,b,d} is 6 — b—open but neither §—preopen nor
d—semiopen.

Example 2. Let X = {a,b,c,d} and let 7 = {X,0,{a},{c},{a,c},{a,b},{a,b,c}}.
Then A = {a,d} is § — f—open but not 6 — b—open.

Theorem 3. Let A € 6BO(X) such that ints(A) =0, then A € §PO(X).

Theorem 4. A subset A of X is §—b—-closed if and only if cl(ints(A))Nint(cls(A)) C
A.

Theorem 5. Arbitrary union (intersection) of  —b—open (resp. § —b—closed) sets
is 6 — b—open (resp. § — b—-closed).

Remark 2. The intersection of two § — b—open sets may not be § — b—open. This
can be shown by the following example.

Example 3. Let X = {a,b,c¢} and 7 = {X,0,{a},{b},{a,b}}. Then A = {a,c}
and B = {b,c} are both 6 — b—open sets, but AN B = {c} is not § — b—open.

Theorem 6. The following properties hold for the 6 — b—-closures of subsets A, B
of X.

(a) A is § —b—closed in X if and only if A = bels(A),

(b) bels(A) C bels(B) whenever AC B C X,

(c) bels(A) is 6 — b—closed in X,

(d) bels(bels(A)) = bels(A),

(e) x € cls(A) if ANU # 0 for every 6 — b—open set U containing x.

Theorem 7. The following properties hold for the § — b—interiors of subsets A, B
of X.

(a) bints(A) C bints(B) whenever A C B C X,
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(b) bints(B) is b—open in X,
(c) bints(bints(A)) = bints(A).

Theorem 8. Let A, B C X be such that A is § — b—open and B is 6 — b—closed.
Then there exist a 0 —b—open set H and a 6 —b—closed set K such that ANB C K
and H C AU B.

Proof. Let K =bcls(A) N B and H = AUbints(B). Then K is § — b—closed and H
is § —b—open. Also AN B C bels(A)N B = K and H = AU bints(B) C AU B.

Theorem 9. For a subset A of a space X, the following are equivalent.
(a) A is 6 — b—open.

(b) A =pints(A)Usints(A).

(c) A C pcls(pints(A)).

Proof.

(a)= (b): Let A be 6 —b—open. Then A Ccl(ints(A))U int(cls(A)). Now pints(A)U
sints(A) = [ANint(cls(A))] U [AN cl(ints(A))] = AN [int(cls(A))U cl(ints(A4))] = A.
(b)= (c): A =pints(A)Usints(A) =pints(A)U[ANcl(ints(A))]C pints(A)Ucl(ints(A))
=pcls(pints(A4))

(c)=(a): A C pcls(pints(A)) =pints(A)Ucl(ints(A)) C (AN cl(ints(A))U int(cls(A)).
Therefore, A is § — b—open.

Lemma 10. [2] Let A be a subset of a space X. Then

(a) cls(A) NG C cls(ANG), for any §-open set G in X,

(b) ints(AU F) Cints(A) UF, for any 6—closed set F' in X.

Theorem 11. For a subset A of a space X, the following properties hold.

(a) bels(A) = scls(A) Npcls(A),

(b) bints(A) = sints(A) U pints(A),

(c) bels(X \ A) = X \ bints(A),

(d) x € bels(A) if and only if ANU # 0 for every U € §BO(X) containing .
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Proof. (a) Since bcls(A) is d—b—closed, therefore, int(cls(bcls(A)))N cl(ints(bels(A))) C
bels(A). This implies that AU[int(cls(A))N cl(ints(A))] C bels(A).
Thus scls(A)Npcls(A) C bels(A).
To prove the reverse inclusion, we have, scls(A)Npcls(A) is a § — b—closed set
containing A. Hence, bcls(A) Cscls(A)Npcls(A).

(b) Since bints(A) is § — b—open, therefore, int(cls(bints(A)))U cl(ints(bints(A))) D
bints(A). This implies that AN[int(cls(A))N cl(ints(A))] D bints(A). Thus
sintg(A)Upints(A) D bints(A).

To prove the reverse inclusion, we have, sints(A)Upints(A) is a § — b—open set
containing A. Hence, sints(A)Upints(A) C bints(A).

(c) We have, bels(X\A) =scls(X\A)N pels(X\A) = [ X\ sints(A)]N[X\ pints(A)] =
X\ [sints(A)Upints(A)] = X\ bints(A)

(d) Let = € bels(A). Thus z €cls(A). Hence, ANU # ) for every U € 6BO(X)
containing .
Conversely, let ANU # ) for every U € 6BO(X) containing z. Let z € X\
bels(A) =bints(X \ A). Therefore, there exists U € 6 BO(X) containing x such
that U C X \ A. This implies, ANU = (). Which is a contradiction. Hence, = €
bels(A).

Theorem 12. A set A in X is § — b—open if and only if UN A € 6BO(X), for
every reqular open (equivalently §—open)set U of X.

Proof. Let A € 6BO(X). Therefore, U N A C UN[int(cls(A))Ucl(ints(A))]
Clint(U)Nint(cls(A))]U cl(UN ints(A)) = int(UN cls(A))U cl(ints(U)N ints(A)) C
int(cls(U N A))U cl(ints(U N A)). Thus, UN A € §BO(X).

Conversely, let U N A € §BO(X), for every regular open set U of X. Since, X is
regular open, therefore, X N A = A € §BO(X).

Definition 3. A subset A of a space X is called a § — b—mneighbourhood of x in X
if there exists U € 0BO(X) such that x € U C A.

Theorem 13. If U is a d—open subset of a space X and V € §BO(X), then
UNnV edBOU).

Proof. We have, UNV C UnN[int(cls(A4))U cl(ints(A))]

= [Unint(cls(V))] U [UN cl(ints(V))] C inty(UNcls(V)) U [UNcl(UNints(V))] C
inty (UNels(U N V)U cly(Unints(V)) =inty (clsg (U N V))U cly(ints(U NV)) C
inty (clsy (U N V)U cly (intsy (U NV)). Therefore, UNV € 6BO(U).
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4. § — b—CONTINUOUS FUNCTION

Definition 4. A function f : (X,7) — (Y, 0) is said to be § — b—continuous (resp.
d—precontinuous, d—semicontinuous [3], 6 — f—continuous [4]) if for each V € o,
f~YV) is 6 — b—open (resp. 6—preopen, 6—semiopen, § — f—open) in X.

Remark 3. FEvery d—precontinuous as well as every d—semicontinuous function is
0 —b—continuous function also every 6 —b— continuous function is § — — continuous.
But none of these relations can be reversed as given by the following examples.

Example 4. The function f: (X,7) — (Y,0), where (X, ) is the topological space
given in Example 1 and Y = {a,b},0 = {Y,0,{a}}, defined by f(a) = f(b) =
f(d) =a, f(c) = f(e) = b is 6 — b—continuous but it is neither §—precontinuous nor
d—semicontinuous.

Example 5. The function f: (X,7) — (Y,0), where (X, T) is the topological space
given in Example 3.2. and Y = {a,b},0 = {Y,0,{a}}, defined by f(a) = f(d) =
a, f(¢) = f(d) = b is § — B—continuous but not § — b— continuous.

Definition 5. [11] A function f: (X,7) — (Y,0) is said to be 6— continuous if for
each x € X and for each V € o containing f(x), there exists U € T containing x
such that f (int(cl(U))) C int(cl(V)).

Remark 4. §—continuity and 6 — b—continuity are independent of each other as
given by the following example.

Example 6. Let X = Y = {a,b,c} and let 7 = {X,0,{a},{b},{a,b}}, 0 =
{Y,0,{b,c}}. Then the function [ : (X,7) — (Y,0) defined by f(a) = ¢, f(b) =
b, f(¢) = a is —continuous but not § — b—continuous whereas the identity function
i:(Y,0) = (X,7) defined by i(x) = x for all x € Y is § — b—continuous but not
d— continuous.

Definition 6. Let A be a subset of a space X. Then § — b-frontier of A is defined
by bfrs(A) =bcls(A) Nbels(X \ A)=bcls(A) \ bints(A).

Theorem 14. The following statements are equivalent for a function f : X — Y.
(a) f is & — b—-continuous,

(b) For each x € X and each open set V of Y containing f(x), there exists U €
dBO(X) containing x such that f(U) C V,

(c) For each closed subset W of Y, f=Y(W) is § — b-closed.
(d) For each subset A of X, f(bcls(A)) C cl(f(A)).

22



Uday Shankar Chakraborty — ¢ — b—open sets and § — b—continuous functions

(e) For each subset B of Y, bels(f~1(B)) C f~(cl(B)).
(f) For each subset B of Y, f~ (int(B)) C bints(f~1(B)).
(g9) For each subset B of Y, bfrs(f~1(B)) C f~'(fr(B)).

Proof. (a)<(b) and (a)<(c) are straightforward.

(c)=>(d): For any subset A of X, f~1(cl(f(A))) is § — b—closed and contains A.
Thus bels(A) € f=1(cl(f(A))), so that f(bcls(A))C f(f1(cl(f(A)))) Cel(f(A)).
(d)= (e): Let B be any subset of Y. Then f(bcls(f~1(B))) ccl(f(f~*(B))) Ccl(B).
Hence bels(f~1(B)) C f~(cl(B)).

(e)= (c): Let W be a closed subset of Y.

Then bels(f~1(B)) c f~1(cl(B) = f~1(B). Thus f~}(B) is § — b—closed in X.
Hence, f is § — b—continuous.

(a)= (f): Let B be any subset of Y. Then f~!(int(B))€ §BO(X).

Thus f~!(int(B))=bints(f~(int(B))) C bints(f~1(B))).

(f)= (a): Let V € 0. Then f~1(V) = f~!(int(V))C bints(f~1(V))). Therefore,
f~HV) € 6BO(X). Hence, f is 6 — b—continuous.

(d)= (g): Let B be a subset of Y.

We have, bfrs(f~(B)) = bels(f~1(B)) Nbels(X \ f~1(B))

C fHel(B))Nbels(fTHY \ B)) € f7H(el(B)) N f7Hel(Y'\ B))= f~H(fx(B)).
(g)=(c): Let W be a closed subset of Y. Then bfrs(f~t(W)) C f~1(fr(W)) C
f~Y(W). Thus f~1(W) is § — b—closed in X. Hence, f is § — b—continuous.

Theorem 15. The set of all points of X at which a function f : X — Y is not
0 — b—continuous is identical with the union of the & — b—frontiers of the inverse
images of the open sets containing f(x).

Proof. Let x € X and let f be not § — b—continuous at z. Therefore, there exists
an open set V in Y containing f(x) such that U N (X \ f=4(V)) # 0 for every
U € 6BO(X) containing z. This implies € bels(X \ f~1(V)) and =z € f~1(V).
Thus z € bfrs(f~1(V)).

Conversely, suppose that f is § — b—continuous at x € X and let V be an open set
containing f(x). Therefore, there exists U € 6BO(X) containing x such that U C
f~Y(V). This implies that = €bints(f~1(V)) and hence, z € X\ bfrs(f~1(V)).

Remark 5. The composition of two § — b—continuous functions may not be § —
b— continuous as shown by the following example.
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Example 7. Let X =Y = Z = {a,b,c} and let 7 = {X,0,{a}, {0}, {a,b}}, o =
{Y,0,{a},{b,c}},v=1{Z,0,{a},{b},{a,c},{a,c}}. Then the functions f : (X, T)
(Y.0) and g : (Y,0) = (Z,7) defined by f(a) = g(a) = ¢, f(b) = g(b) = ¢, f(c)

g(c) = b are 6 — b—continuous but their composition g o f is not § — b—continuous.

[

Theorem 16. Let f : X Y andg:Y — Z. If f: X = Z is § — b—continuous
and g is continuous, then go f is § — b—continuous.

Proof. Straightforward.

Definition 7. A function f : (X,7) — (Y,0) is said to be § — b—open if f(V) €
dBO(Y) for each V € §BO(X).

Theorem 17. A function f : X — Y is § — b—open if and only if f~'(bcls(B)) C
bels(f~Y(B)) for each subset B of Y.

Proof. Let f be § — b—open and let x € f~1(bcls(B)). Let G be a § — b—open
set in X containing z. Therefore, f(G) is § — b—open in Y containing f(z). As
aresult BN f(G) # 0 and so f~Y(B) NG # 0. Thus z € bels(f~1(B)). Hence,
f~(bels(B)) C bels(f~1(B)).

Conversely, let f~!(bcls(B)) C bels(f~1(B)) for each subset B of Y. Let A be 6 —
b—open in X and let C = Y\ f(A4). Now, ANf~1(bcls(C)Nf(A)) € Anf~L(bels(C) C
Anbels(f~1(C)) c An(X \ A) = 0. This implies that f~!(bcls(C)N f(A)) = 0. As
a result bels(C) N f(A) = 0 and so bels(C) C C. Therefore, C' is § — b—closed and
hence, f(A) € dBO(Y).

Theorem 18. Let f: X - Y andg:Y — Z. Ifgof: X — Z is § — b—continuous
and f is a 6 — b—open surjection, then g is § — b—continuous.

Proof. Let V be open in Z. Since go f is § —b—continuous, therefore, (go f)~1(V) =
f~YHg Y(V)) € 6BO(X). Since, f is a s—b—open surjection, therefore, f(f~(g71(V))) =
g Y(V) € §BO(Y). Hence, g is § — b—continuous.

Remark 6. The term “surjection” can not be dropped from the above theorem as
shown by the following example.

Example 8. Let X =Y = Z = {a,b,c} and let 7 = {X,0,{a},{b,c}}, 0 =
{Y,0,{a},{b},{a,b}}, v ={Z, @ {a} {b},{a,b},{a,c}}. Then function f: (X )—>
(Y,0) defined by f(a) = a, f(b) = f(c) = b is § — b—open whereas g : (Y, 0)
(Z,’y) defined by g(a) = b,g(b) = ¢, g(c) = a is not 6 — b—continuous. But g,f is
& — b—continuous.

Definition 8 and Definition 9 can be given as in [12, 13].
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Definition 8. A net {z) : A € A} in a topological space X is said to § —b—converge
to x € X if for every 6 — b-neighbourhood U of x, there is some Ag € A such that
zy € U when A > Xp.

Theorem 19. A function f : (X,7) — (Y,0) is 6 — b—continuous at v € X if
and only if for every net {x) : A € A} in X which § — b—converges to x, the net
{f(x) : X € A} converges to f(x).

Proof. Let f be 6 —b—continuous at = and let {z) : A € A} be a net in X such that it
d — b—converges to x. Let V' € o contain f(x). Therefore, there exists a § — b—open
set U in X containing = such that f(U) C V. Now, {x) : A € A} § — b-converges
to x implies that there exists Ay € A such that z) € U for all A\ > A\g. This implies
that f(zy) € f(U) C V for all A > Xg. Thus {f(z») : A € A} converges to f(x).

Conversely, let f be not § — b—continuous at * € X. Therefore, there exists
an open neighbourhood V' of f(z) such that f(U) is not a subset of V for every
U € 0BO(X) containing x. Thus for every 6 —b—open neighbourhood U of x we can
find zy € U such that f(xy) ¢ V. Let N(x) be the set of all § — b-neighbourhoods
U of z in X. The set N(x) with the relation U; < Us if and only if Uy C Uy,
form a directed set. Therefore, the net {xyy : U € N(x)} § — b-converges to = but
{f(zpy) : U € N(z)} does not converge to f(x) in Y. Which is a contradiction.
Hence f is § — b—continuous at = € X.

Definition 9. A net {fy : o € A} in éBO(X,Y) is said to § — b—-continuously
converge to f € 6BO(X,Y) if for every net {z) : A € A} in X which § — b-converges
tox € X, the net { fo(xy) : (o, \) € AxA} converges to f(z) inY, where SBO(X,Y)
denotes the set of all & — b—continuous functions of X to Y.

Theorem 20. A net {f, : @ € A} in §BO(X,Y) § — b—continuously converges to
f € dBO(X,Y) if and only if for every x € X and for every open neighbourhood V
of f(z) inY, there exists an element ag € A and a 6 — b—open neighbourhood U of
x in X such that fo(U) CV for every a > g, € A.

Proof. Let x € X and let V' be an open neighbourhood of f(z) in Y such that for
every a € A and for every § — b—open neighbourhood U of © € X, there exists
o > a,a € A such that [/ (U) is not a subset of V. Then for every 0 — b—open
neighbourhood U of # in X we can choose a point xyy € U such that f /(xy) ¢ V.
Therefore, the net {xy : U € N(x)} 6 — b-converges to =, but the net {fq(zy) :
(o, U) € A x N} does not converge to f(x) in Y.

Conversely, let {z) : A € A} be anet in 6 BO(X,Y’) which § —b—converges to z in
X and an element oy € A such that f,(U) C V for all & > ap, € A. Since the net
{zx: XA € A} 6 — b-converges to = in X, there exists A\g € A such that z) € U for all
A€ A X> N Let (Mg, ap) € A X A. Then for every (A, o) € A X A} A > Ao, a0 > v,
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we have, fo(x)) € fo(U) C V. Thus the net {fo(x)) : (o, \) € A x A} converges to
f(z)inY.

Theorem 21. If f : X — Y is § — b—continuous and U is d—open in X, then
flv : U =Y is § — b—continuous.

Proof. Let V be an open subset of Y. Since f is § — b—continuous, f~1(V) €
SBO(X). Now (flU)"Y(V) = f~Y(V)nU € 6BO(U). Hence fly : U — Y is
d — b—continuous.

Let {X,:a € A} and {Y, : @ € A} be any two families of spaces with the same
index set A. Letf, : Xo — Y, be a function for each « € A. The product space
II{X, : a« € A} will be denoted by 11X, and f : I1X, — IIY, denotes the product
function defined by f({zs}) = {fa(za)} for each {z,} € I1X,,.

Theorem 22. If a function f : X — 1Y, is d —b—continuous, then poof : X — Y,
is § — b—continuous for each o € A, where py is the projection of I1Y,, onto Yy,.

Proof. Let V,, be an open set in Y,. Since p, is continuous, therefore, p;1(Vy) is
open in 1Y, and hence, f~1(p31(Va)) = (pao f) ™1 (Va) € 6BO(X). This shows that
Do © f is & — b—continuous for each a € A.

Definition 10. A topological space X is said to be 06— Hausdorff if for any x,y(#
x) € X, there exist disjoint 6—open sets G, H such that x € G and y € H.

Lemma 23. IfU € 6BO(X) and V is 6—open inY, then U x V € 6BO(X x Y).

Theorem 24. If f : X — Y is § — b—continuous, g : X — Y is d—continuous and
Y is Hausdorff, then the set {x € X : f(z) = g(x)} is § — b—closed in X.

Proof. Let A = {z € X : f(z) = g(z)} and let x € X \ A. Thus f(z) # g(z).
Since, Y is Hausdorff, therefore, there exists open sets G and H in Y such that
f(z) € G,g(x) € H and GN H = (. This implies GNint(cl(H)) = @. Since, f
is § — b—continuous, there exists U € 0BO(X) containing = such that f(U) C G.
Since, g is d—continuous, there exists an open set V in X containing x such that
f(int(cl(V))) C int(cl(H)). Let W = Un int(cl(V)). Now, W € 6BO(X) and
fW)ng(W) c f(U)Ng(int(cl(V))) € Gnint(cl(H)) = (. This implies W N A = (.
Thus z € X \ bels(A). Hence, A is § — b—closed.

Theorem 25. If f : X — Y is § — b—continuous and Y is a §—Hausdorff space,
then the graph Gy = {(z, f(x)) : x € X} is § — b—closed.
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Proof. Let (x,y) ¢ Gy. Then f(x) # y. Since, Y is a 6—Hausdorff space, therefore,
there exist disjoint d—open sets G and H such that f(z) € G and y € H. Since f
is § — b—continuous, there is a § — b—open set U containing z such that f(U) C G.
Thus (z,y) € Ux H C X xY \ Gy. As aresult of which X x Y \ Gy € 0BO(X xY)
since, by Lemma 22, U x H € 6BO(X xY'). Hence, Gy is § — b—closed.

Definition 11. A space X is called § — b—connected if X is not the union of two
disjoint non-empty § — b—open sets.

Theorem 26. Let f: X — Y be a § — b—surjection. If X is § — b—connected, then
Y is connected.

Proof. Suppose that Y is not connected. Therefore, there exist disjoint open sets G
and H such that Y = G U H. Since, f is § — b—continuous, f~1(G) and f~1(H) are
§ — b—open in X. On the other hand, f~1(G) and f~!(H) are non-empty disjoint
sets and X = f~1(G)U f~Y(H). This shows that X is not § — b—connected which

is a contradiction.
Definition 12. A space X is said to be

(a) 6§ —b—"T1 if for each pair of distinct points x and y in X, there exist § —b—open
sets G and H containing x and y, respectively, such that y ¢ G and x ¢ H.

(b) 6 — b—Hausdorff if for each pair of distinct points x and y in X, there exist
disjoint 6 — b—open sets G and H containing x and y, respectively.

Theorem 27. The following properties hold for a 6 — b—continuous injection f :
X =Y.

(a) If Y is a Hausdorff space, then X 6 — b—Hausdorff.
(b) If Y is a Ti-space, then X is a § —b— Ty space.

Proof. (a) Let z,y(# z) € X. Since, f is injective, therefore, f(x) # f(y) in Y.
Since, Y is Hausdorff, therefore, there exist disjoint open sets G and H such
that f(z) € G and f(y) € H. This implies that f~1(G), f~'(H) are disjoint
6 — b—open sets in X containing x, y respectively. Hence, X is 6 — b—Hausdorff.

(b) Let z,y(# =) € X. Since, f is injective, therefore, f(z) # f(y) in Y. Since, Y is
Ty, therefore, there exist open sets G and H containing x and y respectively such
that f(z) ¢ G and f(y) ¢ H. This implies that f~1(G), f~*(H) are § — b—open
sets in X containing z,y respectively such that ¢ f~'(G) and y ¢ f~1(H).
Hence, X is a § — b — T} space.
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