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Abstract. During the last three decades, different types of decompo-
sitions have been processed in the field of graph theory. Among these we
mention: decompositions based on the additivity of some characteristics of the
graph, decompositions where the adjacency law between the subsets of the par-
tition is known, decompositions where the subgraph induced by every subset
of the partition must have predeterminate properties, as well as combinations
of such decompositions.

In this paper we characterize threshold graphs using the weakly decom-
position, determine: density and stability number, Wiener index and Wiener
polynomial for threshold graphs.
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1. Introduction

Threshold graphs play an important role in graph theory as well as in
several applied areas such as set-packing problem (Chvátal and Hammer [4]),
parallel processing (Henderson and Zalcstein [14]), allocation problems (Ord-
man [19]).

When searching for recognition algorithms, frequently appears a type of
partition for the set of vertices in three classes A, B, C, which we call a weakly
decomposition, such that: A induces a connected subgraph, C is totally adja-
cent to B, while C and A are totally nonadjacent.

The structure of the paper is the following. In Section 2 we present the
notations to be used, in Section 3 we give the notion of weakly decomposition
and in Section 4 we determine the clique number, the stability number and
give some applications in optimization problems.

2.General Notations

Throughout this paper, G = (V,E) is a connected, finite and undirected
graph, without loops and multiple edges ([2]), having V = V (G) as the vertex
set and E = E(G) as the set of edges. G is the complement of G. If U ⊆ V ,
by G(U) we denote the subgraph of G induced by U . By G − X we mean
the subgraph G(V −X), whenever X ⊆ V , but we simply write G− v, when
X = {v}. If e = xy is an edge of a graph G, then x and y are adjacent,
while x and e are incident, as are y and e. If xy ∈ E, we also use x ∼ y, and
x 6∼ y whenever x, y are not adjacent in G. A vertex z ∈ V distinguishes the
non-adjacent vertices x, y ∈ V if zx ∈ E and zy 6∈ E. If A,B ⊂ V are disjoint
and ab ∈ E for every a ∈ A and b ∈ B, we say that A,B are totally adjacent
and we denote by A ∼ B, while by A 6∼ B we mean that no edge of G joins
some vertex of A to a vertex from B and, in this case, we say that A and B
are non-adjacent.

The neighbourhood of the vertex v ∈ V is the set NG(v) = {u ∈ V : uv ∈
E}, while NG[v] = NG(v) ∪ {v}; we simply write N(v) and N [v], when G
appears clearly from the context. The neighbourhood of the vertex v in the
complement of G will be denoted by N(v).

The neighbourhood of S ⊂ V is the set N(S) = ∪v∈SN(v)−S and N [S] =
S∪N(S). A clique is a subset Q of V with the property that G(Q) is complete.
The clique number density of G, denoted by ω(G), is the size of the maximum
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clique. A clique cover is a partition of the vertices set such that each part is a
clique. θ(G) is the size of a smallest possible clique cover of G; it is called the
clique cover number of G. A stable set is a subset X of vertices where every
two vertices are not adjacent. α(G) is the number of vertices is a stable set
o maximum cardinality; it is called the stability number of G. χ(G) = ω(G)
and it is called chromatic number.

By Pn, Cn, Kn we mean a chordless path on n ≥ 3 vertices, a chordless
cycle on n ≥ 3 vertices, and a complete graph on n ≥ 1 vertices, respectively.

A graph is called cograph if it does not contain P4 as an induced subgraph.
A split graph is a graph in which the vertices can by partitioned a clique

and an independent set.
Let F denote a family of graphs. A graph G is called F -free if none of

its subgraphs is in F . The Zykov sum of the graphs G1, G2 is the graph
G = G1 + G2 having:

V (G) = V (G1) ∪ V (G2),
E(G) = E(G1) ∪ E(G2) ∪ {uv : u ∈ V (G1), v ∈ V (G2)}.

3.Preliminary results

3.1. Weakly decomposition
At first, we recall the notions of weakly component and weakly decompo-

sition.
Definition 1. ([7], [22], [23]) A set A ⊂ V (G) is called a weakly set of the

graph G if NG(A) 6= V (G)− A and G(A) is connected. If A is a weakly set,
maximal with respect to set inclusion, then G(A) is called a weakly component.
For simplicity, the weakly component G(A) will be denoted with A.

Definition 2. ([7], [22], [23]) Let G = (V,E) be a connected and non-
complete graph. If A is a weakly set, then the partition {A,N(A), V − A ∪
N(A)} is called a weakly decomposition of G with respect to A.

Below we remind a characterization of the weakly decomposition of a graph.
The name of ”weakly component” is justified by the following result.
Theorem 1. ([8], [22], [23]) Every connected and non-complete graph

G = (V,E) admits a weakly component A such that G(V − A) = G(N(A)) +
G(N(A)).

Theorem 2. ([22], [23]) Let G = (V,E) be a connected and non-complete
graph and A ⊂ V . Then A is a weakly component of G if and only if G(A)
is connected and N(A) ∼ N(A).
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The next result, that follows from Theorem 1, ensures the existence of a
weakly decomposition in a connected and non-complete graph.

Corollary 1. If G = (V, E) is a connected and non-complete graph, then
V admits a weakly decomposition (A,B,C), such that G(A) is a weakly com-
ponent and G(V − A) = G(B) + G(C).

Theorem 2 provides an O(n + m) algorithm for building a weakly decom-
position for a non-complete and connected graph.

Algorithm for the weakly decomposition of a graph ([22])
Input: A connected graph with at least two nonadjacent vertices, G = (V, E).
Output: A partition V = (A,N,R) such that G(A) is connected, N = N(A),
A 6∼ R = N(A).
begin

A := any set of vertices such that
A ∪N(A) 6= V
N := N(A)
R := V − A ∪N(A)
while (∃n ∈ N , ∃r ∈ R such that nr 6∈ E ) do

begin
A := A ∪ {n}
N := (N − {n}) ∪ (N(n) ∩R)
R := R− (N(n) ∩R)

end
end

3.2. Threshold graphs
In this subsection we remind some results on threshold graphs.
A graph G is called threshold graph if NG(x) ⊆ NG[y] or NG(y) ⊆ NG[x]

for any pair of vertices x and y in G.
Threshold graphs were first introduced by Chvátal and Hammer ([5]).
In [20], Ortiz and Villanueva-Ilufi give a structural characterization of

threshold graphs for solving the following two difficult problems: enumera-
tion of all maximal independent sets and the chromatic index problem.

Theorem 3. ([4]) A graph G is a threshold graph if and only if G does
not contain a C4, C4, P4 as an induced subgraph.

Chvátal and Hammer also showed that threshold graphs can be recognizing
in O(n2) time.

In [1], Babel showed that if G is a threshold graph then the algorithms that
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determine ω(G), χ(G), α(G) and θ(G) are O(n + m) time.
Theorem 4. ([4]) A graph G is a threshold graph if and only if G is a

cograph and G is a split graph.
In [6] (as well as in [12] and [17]) linear algorithms for recognizing a cograph

can be found. Hammer and Simeone [13]) give an O(n + m) algorithm for
recognizing a split graph. Therefore, an algorithm that recognizes a threshold
graph is O(n(n + m)).

In [18] a linear algorithm for recognizing a threshold graph can be found.

4.New results on threshold graphs

4.1. Characterization of a threshold graph using the weakly decom-
position

In this paragraph we give a new characterization of threshold graphs using
the weakly decomposition. Also, we determine the stability number and the
clique number for threshold graphs.

Theorem 5. Let G=(V,E) be a connected graph with at least two nonad-
jacent vertices and (A,N,R) a weakly decomposition, with A the weakly com-
ponent. G is a threshold graph if and only if:
i) A ∼ N ∼ R;
ii) dG(n) = |V | − 1, dG(r) = |N |, ∀n ∈ N , ∀r ∈ R;
iii) G(A) is threshold graph.

Proof. Let G = (V,E) be a connected, uncomplete graph and (A,N, R) a
weakly decomposition of G, with G(A) as the weakly component.
At first, we assume that G is threshold. Then N ∼ R and A ∼ N also,
as otherwise a ∈ A, n ∈ N would exists such that an 6∈ E. Because N =
N(A) it follows that there exists a1 ∈ A such that na1 ∈ E. As G(A) is
connected, a path Paa1 exists. On the path from a to a1 in Paa1 , let a2 ∈ A
the last vertex with a2n 6∈ E and a3 ∈ A the first vertex with a3n ∈ E. Then
G({a2, a3, n, r}) ' P4, for every r ∈ R, so i) holds.

If N would not be a clique then (as A ∼ N ∼ R) an induced C4 would
exists. This would be a contradiction, as G is threshold. So N is a clique and
A ∼ N ∼ R, which leads to dG(n) = (|N | − 1) + |A|+ |R| = |V | − 1, ∀n ∈ N .
So ii) also holds.
Suppose that R is not stable. Then an edge r1r2 (r1, r2 ∈ R) exists such that
G({r1, r2, a1, a2}) ' 2K2, for every a1 ∈ A and every a2 ∈ A, as |A| ≥ 2.
Indeed, if |A| = 1 then because R is not stable there exists R′ ⊆ R such that
G(R′) is connected. Suppose that R′ is maximal with respect to inclusion.
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Then G(R′) is a weakly component as R′ is a weakly set (NG(R′) = N 6=
A ∪ N ∪ (R − R′) = V − R′, G(R′) is connected) and R′ is maximal with
respect to inclusion. We have |R′| > |A|, contradicting the maximality of A.
As A 6= ∅, it follows that |A| ≥ 2. So R is stable.

As R is stable, R ∼ N , R 6∼ A, it follows that dG(r) = |N |, ∀r ∈ R. As G
is threshold we have that G(A) is threshold, so iii) holds, too.

Conversely, we suppose that i), ii) and iii) hold. As A ∼ N ∼ R, A 6∼ R
and dG(n) = |A| + (|N | − 1) + |R| it follows that N is a clique. As R ∼ N ,
R 6∼ A and dG(r) = |N |, ∀r ∈ R it follows that R is stable. If we suppose
that X ⊂ V exists such that G(X) ' 2K2 then, as A ∼ N ∼ R, N clique and
R stable, it follows that X ⊆ A, contradicting that G(A) is threshold. If we
suppose that G(X) ' P4 then X ⊆ A, contradicting iii). In a similar manner
we can prove that G is C4-free. So G is threshold.

The above results lead to a recognition algorithm with the total execution
time O(n(n + m)).

4.2. Determination of clique number and stability number for a
threshold graph

The threshold graphs is a graph class of bounded clique-width ([3]).
Proposition 1. If G=(V,E) is a connected graph with at least two nonadja-

cent vertices and (A,N,R) a weakly decomposition with A the weakly component
then

α(G) = max{α(G(A)) + α(G(N(A))), α(G(A ∪N(A)))}.
Proof. Indeed, every stable set of maximum cardinality either intersects N(A)
and in this case the cardinal is α(G(A))+α(G(N(A))) or it does not intersect
N(A) and has the cardinal α(G(A ∪N(A))).

Theorem 6. Let G=(V,E) be connected with at least two non-adjacent
vertices and (A,N,R) a weakly decomposition with A the weakly component. If
G is a threshold graph then

α(G) = α(G(A)) + |R| and ω(G) = ω(G(A)) + |N |.
Proof. As R is a stable set, A 6= ∅, G(A) is connected, A ∼ N and

A 6∼ R it follows that ω(G) = ω(G(A)) + ω(G(N)). Because N is a clique
it follows that ω(G) = ω(G(A)) + |N |. According to Proposition 1, α(G) =
max{α(G(A))+α(G(N(A))), α(G(A∪N(A)))}. Let T ⊂ A∪N(A) such that
T is stable, with |T | = α(G(A ∪ N(A))). As N = N(A) is a clique, we have
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|T ∩ N(A)| ≤ 1. If T ∩ N = ∅ then T ∪ {r} is a stable set in G(A ∪ N(A)),
∀r ∈ R = N(A). If T ∩ N(A) = {n} then (T − {n}) ∪ {r} is a stable set in
G(A ∪N(A)), ∀r ∈ R. Therefore, the maximum is obtained only for the first
component, that is, α(G) = α(G(A)) + |R|, because R is stable.

As a consequence of the above theorem, we give an algorithm that leads
to a stable set of maximal cardinal and to a clique of maximal cardinal in a
threshold graph.

Input: A threshold, connected graph with at least two nonadjacent vertices,
G = (V,E)

Output: Determination of α(G) and ω(G)
begin

S = ∅; Q = ∅; s := 0; q := 0; i := 1; Gi := G;
while |V (Gi)| ≥ 4 do

Determine a weakly decomposition (Ai, Ni, Ri) of Gi, with Ri stable,
Ni clique and G(Ai) threshold
if (Gi is complete) then

S := S ∪ {v}, s := s + 1, ∀v ∈ V (Gi);
Q := Q ∪ V (Gi), q := q + |V (Gi)|

else
S := S ∪Ri, s := s + |Ri|;
Q := Q ∪Ni, q := q + |Ni|;
i := i + 1;
H := Gi;

α(G) := s + α(H);
ω(G) := q + ω(H)

end
Remark 1. The most time consuming operation inside the while loop is

the determination of the decomposition (A,N, R), namely O(n + m). As the
while body executes at most n times, it follows that the total execution time
is O(n(n + m)).

The characterization theorem of threshold graphs leads to the following
result that is useful in the next section.

Corollary 2. Let G=(V,E) be connected with at least two non-adjacent
vertices and (A,N,R) a weakly decomposition with A the weakly component.
If G is a threshold graph then if after k steps in the weakly decomposition
algorithm of G we get |Ak| ≤ 3 then Ak ' K3 or Ak ' K2 or Ak ' K1.
Proof. G(Ak) is connected and |Ak| ≤ 3. If |Ak| = 3 then if G(Ak) 6' K3 then
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G(Ak) ' P3 and we apply again the weakly decomposition algorithm with the
vertex of degree 2 in Nk+1 and the other two vertices in Ak+1 and Rk+1. If
|Ak| = 2 then G(Ak) ' K2.

5.Some Applications in Optimization Problems

In this section we point some applications of threshold graphs in optimization
problems.

Facility location analysis deals with the problem of finding optimal loca-
tions for one or more facilities in a given environment [16]. Location problems
are classical optimization problems with many applications in industry and
economy. The spatial location of the facilities often takes place in the con-
text of a given transportation, communication, or transmission system. A first
paradigme for location is based on the minimization of transportation cost.

According to their objective function, we can consider two types of loca-
tion problems. The first type consists of those problems that use a minimax
criterion. For example, if we want to determine the location of a hospital the
main objective is to find a site that minimizes the maximum response time
between the hospital and site of a possible emergency. More generally, the
aim of the first problem type is to determine a location that minimizes the
maximum distance to any other location in the network. The second type of
location problems optimizes a ”minimum of a sum” criterion, which is used in
determining the location for a service facility like a shopping mall, for which
we try to minimize the total travel time. The following centrality indices are
defined in [16].

The eccentricity of a vertex u is eG(u) = max{d(u, v)|v ∈ V }.
The radius is r(G) = min{eG(u)|u ∈ V }.
The center of a graph G is C(G) = {u ∈ V |r(G) = eG(u)}.
We consider the second type of location problems. Suppose we want to

place a service facility such that the total distance to all customers in the
region is minimal. The problem of finding an appropriate location can be
solved by computing the set of vertices with minimum total distance.

We denote the sum of the distances from a vertex u to any other vertex in
a graph G=(V,E) as the total distance s(u) =

∑
v∈V d(u, v). If the minimum

total distance of G is denoted by s(G) = min{s(u)|u ∈ V }, the median M(G)
of G is given by M(G) = {u ∈ V |s(G) = s(u)} .

Our result concerning the center of a threshold graph is the following.
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Theorem 7. Let G=(V,E) be a connected graph with at least two nonad-
jacent vertices. If G is threshold and if after k steps in the algorithm weakly
decomposition of G we get |Ak| ≤ 3 , then the center and the median are equal
to N , the radius is 1, while the excentricity is 1 for the vertices in N and 2
for the others.
Proof. Because A ∼ N ∼ R, A 6∼ R, R is stable and N is a clique it follows
that eG(u) = 1, ∀u ∈ N si eG(u) = 2, ∀u ∈ A∪R. So r(G) = 1 and C(G) = N .
It is easy to prove that

sG(u) =





2(|R| − 1) + |N |+ 2|A|, for u ∈ R
(|N | − 1) + |A|+ |R|, for u ∈ N
sG(A)(u) + |N |+ 2|R|, for u ∈ R

where sG(A)(u) = |A|−1+
∑i−1

l=2 |Rl|(1 ≤ i ≤ k). Therefore s(G) = sG(u) =
|V | − 1, for u ∈ N . Therefore M(G) = N .

The Wiener index was introduced in 1947 by Horold Wiener ([24]) and is
defined as the sum of distance between all pairs of vertices in G:

W (G) =
∑

u,v∈V dG(u, v).

We wish to point out that the theoretical framework is especially well elabo-
rated for the Wiener index of trees ([9]).

The distance-counting polynomial was introduced [15] as:

H(G, x) =
∑

k d(G, k)xk,

with d(G, 0) = |V (G)| and d(G, 1) = |E(G)|, where d(G, k) is the number of
pair vertices lying at distance k to each other. This polynomial was called
Wiener, by its author Hosoya, in the more recent literature [11], [21].

Theorem 8. Let G=(V,E) be connected with at least two non-adjacent
vertices and (A,N,R) a weakly decomposition with A the weakly component. If
G is a threshold graph then: if after k steps in the algorithm weakly decompo-
sition of G we get |Ak| ≤ 3 then

H(G, x) = [1
2
(α(G)− 1)2 + |Ak|(α(G)− 1)]x2 + |E(G)|x + |V (G)| and

W (G) = |E(G)|+ (α(G)− 1)2 + 2|Ak|(α(G)− 1).

Proof. According to Corollary 2, we have α(G(Ak)) = 1 (there are no vertices
in Ak at distance 2). Between every two vertices in any Ri(i = 1, ..., k) the
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distance is 2, which means that there are 1
2

∑k
i=1 |Ri|(|Ri| − 1) pairs of verices

at distance 2. Between every two vertices that are placed in any Ri, Rj(i, j =
1, ..., k, i 6= j) the distance is 2, meaning that there are 1

2

∑k
i=1

∑k
j=1,j 6=i |Ri||Rj|

pairs of vertices at distance 2. If a vertex is placed in Ri(i = 1, ..., k) and the
other is in Ak the distance is also 2, so there are

∑k
i=1 |Ri||Ak| pairs of vertices

at distance 2. As
∑k

i=1 |Ri| = α(G)− α(G(Ak)), it follows that

d(G, 2) = 1
2
(α(G)− α(G(Ak))

2 + |Ak|(α(G)− α(G(Ak)).

There are no vertices placed at a distance bigger than 2. Therefore

H(G, x) = [1
2
(α(G)− 1)2 + |Ak|(α(G)− 1)]x2 + |E(G)|x + |V (G)|.

The Wiener index is the sum of all distances between all pairs of vertices,
that is

∑2
p=0 pd(G, p), because there are no vertices at a distance bigger than

2. Therefore, W (G) = 0 · |V (G)| + 1 · |E(G)| + 2 · d(G, 2)=|E(G)| + (α(G)−
1)2 + 2|Ak|(α(G)− 1).
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