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Abstract. Pattern recognition aims to classify data (patterns) based ei-
ther on a priori knowledge or on statistical information extracted from the
data. In this paper we will concentrate on statistical pattern recognition using
a new probabilistic approach which makes possible to select the so called ’infor-
mative’ features. Our goal here is to develop a pattern recognition algorithm
based on an approximation of the joint probability distribution. The approxi-
mating joint probability distribution is based on the discovery of some of the
conditional independencies underlying the statistical data. For this purpose
earlier we introduced the concept of t-cherry junction tree (see [8], [11]). This
structure is based on a special kind of graph structure called t-cherry hypertree
introduced by J. Bukszár with A. Prékopa and T. Szántai (see [2], [3]). Our
method was succesfully tested on a real problem of recognizing Parkinson’s
disease on the basis of voice disorders (see [9]).
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1. Introduction

Pattern recognition as a field of study developed significantly in the last
years. The large number of applications, ranging from the classical ones such
as automatic character recognition and medical diagnosis to more recent ones
in data mining (such as credit scoring, gene selection, credit card transaction
analysis) have increased the researches in this field.

In this paper we propose a probabilistic approach for statistical pattern
recognition. The classifier will be achieved by supervised learning.

The classification uses the Bayes decision rule. The methods using the
Bayes decision rule require the knowledge of the multivariate probability dis-
tribution function, such as normal distribution whose parameters are estimated
from the data. There exist also nonparametric density estimation methods,
such as kernel density estimations, which use locally tuned radial basis (e.g.
Gaussian) function to interpolate the multi-dimensional density.

In our approach we estimate the underlying multi-variate probability dis-
tribution, by the exploitation of the conditional independences between the
variables (features), managed by the fitting to the training data a t-cherry
junction tree [8], [11]. This represents the novelty of the approach introduced
here.

A problem which occurs is that databases often contain redundant data,
which mean a great number of features that may lead to overfitting of the
model. This may cause poor generalization (the performance of the model
on a new test data). Our method can be used for discovering those variables
(features) which are ”informative” (see [13]) for the categorical variable Y .

Throughout this paper we shall use the term of ”pattern” to denote a d-
dimensional data vector x =

(
x1, . . . , xi, . . . , xd

)
of measurements, where xi is

the value of the feature denoted by X i. We assume that there exist M groups
or classes that can be associated with each pattern. The categorical variable
which takes values in {1, . . . , M} is denoted by Y .

The second section of the paper contains a short review of Markov ran-
dom fields, t-cherry junction tree, and in this environment we give a new
definition of ”informative” features. In the third section we describe how the
t-cherry junction tree approach can be applied to the classification problem.
In the fourth section we deal with a real world problem. We use our approach
for selecting features of voice that are able to predict whether a patient has
Parkinson’s disease or not.
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2. Markov random field, t-cherry junction tree, informative
features

Let X = {X i}i=1,...,d be a set of discrete finite random variables over the

same probability space. Let Λi denote the set of values of X i, and D =
{1, . . . , d} the set of indeces. In physical literature the set Λi is called phase
space, and the index set D sometimes denoted by S is called set of sites.

Definition 1.[1] A random field on D with phase space in
d∏

i=1

Λi is a

collection X = {X i}i=1,...,d of random variables X i with values in Λi.
In order to state the Markov property for random fields, we need to intro-

duce the topology on the set of indeces.
Definition 2. [1] A neighborhood system on D is a family N = {Ni}i∈D

of subsets of D such that for all i ∈ D
i) i /∈ Ni

ii) j ∈ Ni ⇒ i ∈ Nj.

Definition 3.[1] The cuple (D,N ) is called topology.
Remark 1. If j ∈ Ni then i can be linked to j by an undirected edge.

From this point of view the cuple (D,N ) defines an undirected graph, between
the indices.

Definition 4. [1] A random field is called Markov random field (MRF)
with respect to the neighborhood system N if ∀i ∈ D, X i is independent from
X − {Xj}j∈D\{Ni∪{i}} given {Xj}j∈Ni

.
Remark 2. The ”neighborhood system N” in Definition 4 can be replaced

with the corresponding undirected graph.
Definition 5. For a variable X i the set {Xj}j∈Ni

is called set of informative
variable.

As an example see the Markov random field of Figure 1. The informative
variables for X6 are X1, X3, X4.

Remark 3. If one is intrested in classification, than it is useful to find
the set of informative variables for the classifying variable. For this purpose
it is useful to discover the Markov random field, that in practice is mostly
unknown.

Throughout the paper we will use the following popular notation:

∑
x

P (X) =

m1∑
i1=1

...

md∑
id=1

P
(
X1 = x1

i1
, ..., Xd = xd

id

)
.
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Figure 1: Markov random field over the set of variables with indeces in D =
{1, 2, . . . , 6}

where xk
ik
, ik = 1, ..., mk are the possible values of the random variable Xk, k =

1, ..., d. Apply similar notation for products, too.
In our earlier papers [8], [11], we have introduced the concept of t-cherry

junction tree. This structure is based on the following two definitions:
Definition 6. A tree which fulfills the following properties is called junc-

tion tree over X.

1) Each node of the tree consists of a subset XC of X, called cluster. To
each cluster we assign the joint marginal probability distribution of its
random variables.

2) Each edge connecting two clusters of the tree consists of a subset XS of
X given by the intersection of the connected clusters, called separator.
To each separator we assign the joint marginal probability distribution
of its random variables.

3) If two clusters contain a random variable, then all clusters on the path
between these two clusters contain this random variable (running inter-
section property).

4) The union of all clusters is X.

The concept of t-cherrytree hypergraph was introduced by J. Bukszár and
A. Prékopa [2] and by J. Bukszár and T. Szántai [3] for constructing sharp
lower and upper bounds on the probability of union or intersection of events.
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Definition 7. The recursive construction of the k-th order t-cherry tree
(i) The complete graph of (k-1) nodes from D represent the smallest k-th

order t-cherry tree.
(ii) By connecting a new vertex from D, with all vertices of (k − 1)

dimensional complete subgraph of the existing k-th order t-cherry tree, we
obtain a new k-th order t-cherry tree.

(iii) Each k-th order t-cherry tree can be obtained from (i) by successive
application of (ii).

Remark 4. The k-th order t-cherry tree is a special case of the k-uniform
hypergraphs introduced by Tomescu [12].

Definition 8. The set of vertices of the (k − 1) dimensional complete
subgraph used in step (ii) of Definition 7 is called hyperedge of the k-th order
t-cherry tree.

Definition 9. The set of vertices of a hyperedge together with a new
vertex is called hypercherry of the k-th order t-cherry tree.

Notation 1 The set of hyperedges of the k-th order t-cherry tree let be
denoted by εk−1.

Notation 2 The set of hypercherries of the k-th order t-cherry tree let be
denoted by Ck.

The set of vertices D, the set of hyperedges εk−1and the set of hypercherries
Ck define the ∆k = (D, εk−1, Ck) k-th order t-cherry tree.

Definition 10. The k-th order t-cherry junction tree [11] can be defined
in the following way.

1) By using Definition 7 we construct a k-th order t-cherry tree over D :
∆k = (D, εk−1, Ck).

2) To each hypercherry ({i1, . . . , ik−1} , ik) we order a cluster set containing
the variables

{
Xi1 , . . . , Xik−1

, Xik

}
.

3) To each hyperedge {i1, . . . , ik−1} we oder a separator set containing the
variables {Xi1 , . . . , Xik−1

}
(edge of the junction tree).

3. The classification method based on t-cherry junction tree

First we introduce some notations and assumptions, see [5].
Let (X, Y )T be an Rd × {1, . . . , M} valued random vector. A classifier is

constructed on the basis of a training set (x1, y1) , . . . , (xn, yn) and is denoted
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Figure 2: Clusterization of MRF of Figure 1 which leads to the junction tree
of Figure 3

543 X,X,X

631 X,X,X

321 X,X,X

63 X,X 31 X,X

43 X,X

643 X,X,X

Figure 3: The 3-rd order t-cherry junction tree corresponding to the MRF of
Figure 2
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by gn. For a given x ∈ Rd the value y ∈ {1, . . . , M} of Y is guessed by
gn (x; (x1, y1) , . . . , (xn, yn)).

So the classifier gn is a function:

gn : Rd × {
Rd × {1, . . . , M}} −→ {1, . . . , M} .

The construction of gn in this way is called supervised learning.
We assume that (X1, Y1)

T , . . . , (Xn, Yn)T is a sequence of independent iden-
tically distributed random vectors having the same distribution as (X, Y )T .

The training dataset may be the result of experimental observation (methe-
orological data, ECG data...) The yi’s could be obtained through measure-
ments or through expert who filled yi’s after having xi’s.

The performance of the classifier gn is measured by the conditional proba-
bility error:

Ln = L (gn) = P {gn (X; (x1, y1) , . . . , (xn, yn)) 6= Y } .

The best possible classifier is defined by:

g∗ = arg min
g:Rd→{1,...,M}

P (g (X) 6= Y ) .

We note that g∗ depends on the probability distribution of the random
vector (X, Y )T which usually is unknown.

In the approach presented here we use the class of k-width junction trees
(a junction tree which has the largest cluster of a given size k). In this class we
search for the best-fitting probability distribution to the training data. The
multivariate probability distribution obtained in this way, makes possible to
choose the informative features for the classification, and to get a probabil-
ity distribution containing this features using marginals which contain just k
variables. This is one of the novelties provided by our approach.

In order to find the best fitting k-width junction tree, we search in the class
of k-width t-cherry junction trees [11].

We intend to find the approximation which minimizes the Kullback-Leibler
divergence ([4]):

KL =
∑
x,y

P ((X, Y )) log2

P ((X, Y ))

Papp ((X, Y ))
.
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From now on the random variable Y will be denoted also by Xd+1 for
notational convenience.

The method for finding a k-th order t-cherry junction tree, using this cri-
terion is presented in [11].

In [11] Theorem 5 claims:
”In the class of k- width junction trees, the k-th order t-cherry junction

tree giving the smallest Kullback-Leibler’s divergence provides the best ap-
proximation of a given P (X) probability distribution’1.

On the basis of the constructed t-cherry junction tree we select the infor-
mative features by the following algorithm.

Algorithm. Selection of the informative features.
1. Give as input the training data set in discretized form.
2. From the empirical probability distribution determine all the k-th order

marginals (it is favorable if k is not to large (less than 7, say).
3. Find the heaviest weighted tree, in the sense (see [11]):

∑

(Xi1 ,...,Xic)∈C
I

(
X i1 , . . . , X ic

)−
∑

(Xj1 ,...,Xjs)∈S
(νj1,...,js − 1) I

(
Xj1 , . . . , X js

) → max,

where I (X i1 , . . . , X ic) is the information content (see [4]) of P (X i1 , . . . , X ic) .
4. Output : the set of clusters C and the set of separators S.
5. Select those clusters which contain the variable Xd+1(= Y ).
6. Select those variables which occur in the clusters selected in step 5 as

informative variables.
In Figure 3 the informative clusters for the variable X6 are (X1, X3, X6)

and (X3, X4, X6).
Let us introduce for the set of informative features the notation Xinfo =

{X i1 , . . . , X ir}. Let denote I = {i1, . . . , ir} the set of indeces. Let be Cinfo the
set of clusters selected in step 5, and Sinfo the set of separators between the
clusters selected in step 5. The joint probability distribution of the random

vector
(
Xinfo, X

d+1
)T

let be denoted by P
((

Xinfo, X
d+1

))

Papp

(
Xinfo; X

d+1
)

=

∏
(Xi1 ,...,Xic)⊂Cinfo

P (X i1 , . . . , X ic)

∏
(Xi1 ,...,Xis)⊂Sinfo

P (Xj1 , . . . , Xjs)(νj1,...,js−1)
, (1)
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where νj1,...,js = # {{Xj1 , . . . , Xjs} ⊂ C | C ∈ Cinfo} .
For example in Figure 3:

Papp (X1, X3, X4; X6) =
P (X1, X3, X6) P (X3, X4, X6)

P (X3, X6)
,

Remark 5. If the number of selected informative variables is not too
high one can use their joint marginal probability distribution. This can be
determined from the probability distribution underlying the training data. Else
it is useful to use formula (1).

We are going to define a classifier. This represents the second novelty of
this paper.

In the following we will refer to P
((

Xinfo, X
d+1

))
as Pinfo (X i1 , . . . , X ir , Y ).

This probability is the corresponding marginal determined from the training
set or its approximation given by (1).

In order to introduce the classifier we have to make some notations.
We suppose to have a set of training vectors : {(xt, yt)}t∈{1,...,n}, where

usually n > 4
5
N , where N is the total number of the available observation

vectors. These can be selected randomly from the given data set at the beginnig
of the analysis. The remaining data constitute the test set.

Let be

P i,k
inf

(
xi1

t , . . . , xir
t

)
=

{
Pinfo

(
Xj1 = xj1

t , . . . , Xjk = xjk
t , Y = i

) |
{Xj1 , . . . , Xjk} ⊂ Xinf ,

Pinfo

(
Xj1 = xj1

t , . . . , Xjk = xjk
t , Y = i

)
> 0

}

and
k∗ = max

{
k | k ∈ {1, . . . , r} ; P i,k

inf

(
xi1

t , . . . , xir
t

) 6= φ
}

.

We define the following random variable:

γk∗

x
i1
t ,...,xir

t

:

(
1 . . . i . . . M
p1 . . . pi . . . pM

)

where pi =

∑

Pi,k∗
inf (x

i1
t ,...,x

ir
t )

Pinfo

(
Xj1=x

j1
t ,...,Xjk∗=x

jk∗
t ,Y =i

)

∑

Pi,k∗
inf (x

i1
t ,...,x

ir
t )

Pinfo

(
Xj1=x

j1
t ,...,Xjk∗=x

jk∗
t

) , i = 1, . . . , M.
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Remark 6. It is easy to see that
M∑
i=1

pi = 1.

Definition 11. The classifier g
(r)
n,info is defined in the following way:

g
(r)
n,info : Rd × {Rr × {1, . . . ,M}} −→ {1, . . . , M} , r < d

g
(r)
n,info

(
x1, . . . , xd

)
= arg max

i∈{1,...,M}
P

(
γk∗

xi1 ,...,xir = i
)

.

Remark 7. One can see from this definition that for classifying a new
d-dimensional vector we use a number of r informative features only.

Definition 12. The performance of the classifier g
(r)
n,info is measured by the

conditional probability of error:

Ln = L
(
g

(r)
n,info (X)

)
= P

(
g

(r)
n,info (X) 6= Y | (X1, Y1) , . . . , (Xn, Yn)

)
.

In practice the probability of error can be approximated by the relative
frequency of errors in the set of test vectors.

4. Recognizing Parkinson’s disease from voice disorders

Voice disorders can be premonitory of different diseases. This observation
makes possible new ways of investigations and diagnosis. The idea to check up
our method in discovering the connection between voice disorders and having
Parkinson’s disease (PD) came from [9]: ”Research has shown that approxi-
mately 90% of people with PD exhibit some form of vocal impairment [7], [10].
Vocal impairment may also be one of the earliest indicators for the onset of
the illness [6]”.

The dataset was created by Max Little of the University of Oxford, in col-
laboration with the National Centre for Voice and Speech, Denver, Colorado,
who recorded the speech signals, and provided by UCI Machine Learning
Repository on the internet: http://archive.ics.uci.edu/ml/datasets/Parkinsons.

This dataset is composed of a range of biomedical voice measurements from
195 voice recording of 31 people, 23 with Parkinson’s disease (PD). The main
aim of the data is to discriminate healthy people from those with PD.

The 23 features are:
MDVP: Fo(Hz) - Average vocal fundamental frequency - X1
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MDVP: Fhi(Hz) - Maximum vocal fundamental frequency - X2;
MDVP: Flo(Hz) - Minimum vocal fundamental frequency - X3;
MDVP: Jitter(%) - X4,
MDVP:Jitter(Abs)- X5,
MDVP:RAP - X6,
MDVP:PPQ - X7,
Jitter:DDP - Several measures of variation in fundamental frequency - X8

MDVP:Shimmer - X9,
MDVP: Shimmer(dB) - X10,
Shimmer:APQ3 - X11,
Shimmer:APQ5 - X12,
MDVP:APQ - X13,
Shimmer:DDA - Several measures of variation in amplitude- X14

NHR,HNR Two measures of ratio of noise to tonal components in the voice
status - X15, X16

Health status of the subject (one) - Parkinson’s, (zero) - healthy - X17 = Y
RPDE,D2 - Two nonlinear dynamical complexity measures - X18, X19

DFA - Signal fractal scaling exponent -X20

spread1,spread2,PPE - Three nonlinear measures of fundamental frequency
variation X21, X22, X23.

MDVP stands for denoting measures introduced in the Multi Dimensional
Voice Program by Kay Pentax, which became a standard in voice analysis.

We choose randomly from the data a test set which contains 10 recordings
of healthy people and 20 from ill ones. The rest of 165 vectors remained
the training data set. The 5-th order t-cherry junction tree has the following
clusters:
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(X1, X2, X3, X10, X16)
(X1, X3, X10, X16, X20)
(X1, X6, X10, X16, X20)
(X1, X10, X16, X19, X20)
(X1, X10, X17, X19, X20)
(X4, X6, X8, X15, X16)
(X4, X6, X10, X15, X16)
(X4, X7, X10, X13, X16)
(X4, X10, X13, X15, X16)
(X5, X16, X19, X21, X22)
(X6, X10, X15, X16, X23)
(X6, X10, X16, X20, X23)
(X9, X10, X11, X12, X13)
(X9, X10, X11, X13, X14)

(X10, X11, X12, X13, X16)
(X10, X12, X13, X15, X16)
(X10, X16, X19, X20, X21)
(X16, X19, X20, X21, X22)
(X18, X19, X20, X21, X22)

Only the 5-th cluster is informative (X1, X10, X17 = Y, X19, X20). The in-
formative features are: Fo, shimmer, DFA, spread1. Using the probability
distribution P (X1, X10, X19, X20, Y ), we obtained a 93% correct classification
performance for the classifier. The authors of paper [9] got 91.4 % correct
classification performance using ten features and a Kernel support vector ma-
chine.

5. Conclusions

In this paper we approximate the multivariate probability distribution by
exploiting the conditional independencies between the features. The construc-
tion is based on the fitting of a t-cherry junction tree to the training data set.
The advantage of the method presented is that it makes possible the selection
of informative features. Then we define a classifier g

(r)
n,info which uses just the

informative features. This way we can reduce the dimensionality of the prob-
lem and get a good generalization. The numerical results presented confirm
the efficiency of our approach.
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