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ON THE BASINS OF ATTRACTION OF THE REGULAR
AUTONOMOUS ASYNCHRONOUS SYSTEMS

Serban E. Vlad

Abstract. The Boolean autonomous dynamical systems, also called reg-
ular autonomous asynchronous systems are systems whose ‘vector field’ is a
function Φ : {0, 1}n → {0, 1}n and time is discrete or continuous. While the
synchronous systems have their coordinate functions Φ1, ..., Φn computed at
the same time: Φ, Φ ◦Φ, Φ ◦Φ ◦Φ, ... the asynchronous systems have Φ1, ..., Φn

computed independently on each other. The purpose of the paper is that of
studying the basins of attraction of the fixed points, of the orbits and of the
ω-limit sets of the regular autonomous asynchronous systems, by continuing
the study started in [8]. The bibliography consists in analogies.
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1.Introduction

The R → {0, 1} functions model the digital electrical signals and they are
not studied in literature. An asynchronous circuit without input, considered
as a collection of n signals, should be deterministically modelled by a function
x : R → {0, 1}n called state. Several parameters related with the asynchronous
circuit are either unknown, or perhaps variable or simply ignored in modeling:
the temperature, the tension of the mains, the delays the occur in the com-
putation of the Boolean functions etc. For this reason, instead of a function
x we have in general a set X of functions x, called state space or autonomous
system, where each x represents a possibility of modeling the circuit. When
X is constructed by making use of a ’vector field’ Φ : {0, 1}n → {0, 1}n, the
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system X is called regular. The universal regular autonomous asynchronous
systems are the Boolean dynamical systems and they are identified with Φ.
The dynamics of these systems is described by the so called state portraits.
We give the example of the function Φ : {0, 1}2 → {0, 1}2 that is defined by
Table 1, where µ = (µ1, µ2) ∈ {0, 1}2 :

(µ1, µ2) (Φ1(µ1, µ2), Φ2(µ1, µ2))
(0, 0) (1, 1)
(0, 1) (1, 1)
(1, 0) (1, 0)
(1, 1) (0, 1)

Table 1

The state portrait of Φ was drawn in Figure

Example of state portrait

where the arrows show the increase of time. The coordinates µi, i ∈ {1, 2}
are underlined if Φi(µ1, µ2) 6= µi and they are called unstable, or enabled, or
excited. These are the coordinates that are about to change their value. The
coordinates µi that are not underlined satisfy by definition Φi(µ1, µ2) = µi and
they are called stable, or disabled, or not excited. These are the coordinates
that cannot change their value. Three arrows start from the point (0, 0) where
both coordinates are unstable, showing the fact that Φ1(0, 0) may be computed
first, Φ2(0, 0) may be computed first or Φ1(0, 0), Φ2(0, 0) may be computed si-
multaneously. Note that the system was identified with the function Φ.
The existence of several possibilities of evolution of the system (three pos-
sibilities in (0, 0)) is the key characteristic of asynchronicity, as opposed to
synchronicity where the coordinates Φi(µ) are always computed simultane-
ously, i ∈ {1, ..., n} for all µ ∈ {0, 1}n and the system’s run is: µ, Φ(µ), (Φ ◦
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Φ)(µ), ..., (Φ ◦ ... ◦ Φ)(µ), ...
The purpose of the paper is that of defining in the asynchronous systems the-
ory, by following analogies, the basins of attraction of the fixed points and of
the orbits from the dynamical systems theory. We shall also define the basins
of attraction of the ω−limit sets. The paper continues the study of the basins
of attraction that was started in [8] and many introductory issues are taken
from that work.

2. Preliminaries

Notation 1 The set B = {0, 1} is the binary Boole algebra, endowed with the
usual algebraical laws

0 1
1 0

,
· 0 1
0 0 0
1 0 1

,
∪ 0 1
0 0 1
1 1 1

,
⊕ 0 1
0 0 1
1 1 0

Table 2

and with the discrete topology.

Definition 2 The sequence α : N → Bn, usually denoted by αk, k ∈ N, is
called progressive if the sets

{k|k ∈ N, αk
i = 1}

are infinite for all i ∈ {1, ..., n}. We denote the set of the progressive sequences
by Πn.

Definition 3 For the function Φ : Bn → Bn and ν ∈ Bn we define Φν : Bn →
Bn by ∀µ ∈ Bn,

Φν(µ) = (ν1 · µ1 ⊕ ν1 · Φ1(µ), ..., νn · µn ⊕ νn · Φn(µ)).

Definition 4 The functions Φα0...αk
: Bn → Bn are defined for k ∈ N and

α0, ..., αk ∈ Bn iteratively: ∀µ ∈ Bn,

Φα0...αkαk+1

(µ) = Φαk+1

(Φα0...αk

(µ)).
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Notation 5 We denote by χA : R → B the characteristic function of the set
A ⊂ R: ∀t ∈ R,

χA(t) =

{
1, t ∈ A
0, t /∈ A

.

Notation 6 We denote by Seq the set of the sequences t0 < t1 < ... < tk < ...
of real numbers that are unbounded from above.

Definition 7 The functions ρ : R → Bn of the form ∀t ∈ R,

ρ(t) = α0 · χ{t0}(t)⊕ α1 · χ{t1}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ... (1)

where α ∈ Πn and (tk) ∈ Seq are called progressive and their set is denoted
by Pn.

Definition 8 The function Φρ : Bn×R → Bn that is defined in the following
way

Φρ(µ, t) = µ · χ(−∞,t0)(t)⊕ Φα0

(µ) · χ[t0,t1)(t)⊕ Φα0α1

(µ) · χ[t1,t2)(t)⊕ ...

...⊕ Φα0...αk

(µ) · χ[tk,tk+1)(t)⊕ ...

is called flow, motion or orbit (of µ ∈ Bn). We have supposed that ρ ∈ Pn

is like at (1).

Definition 9 The set

Orρ(µ) = {Φρ(µ, t)|t ∈ R}

is also called orbit (of µ ∈ Bn).

Remark 10 The function Φν shows how an asynchronous iteration of Φ is
made: for any i ∈ {1, ..., n}, if νi = 0 then Φi is not computed, since Φν

i (µ) = µi

and if νi = 1 then Φi is computed, since Φν
i (µ) = Φi(µ).

The definition of Φα0...αk
generalizes this idea to an arbitrary number k + 1 of

asynchronous iterations, with the supplementary request that each coordinate
Φi is computed infinitely many times in the sequence µ, Φα0

(µ), Φα0α1
(µ), ..., Φα0...αk

(µ), ...
whenever α ∈ Πn.
The sequences (tk) ∈ Seq make the pass from the discrete time N to the contin-
uous time R and each ρ ∈ Pn shows, in addition to α ∈ Πn, the time instants
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tk when Φ is computed (asynchronously). Thus Φρ(µ, t), t ∈ R is the continu-
ous time computation of the sequence µ, Φα0

(µ), Φα0α1
(µ), ..., Φα0...αk

(µ), ...
When α runs in Πn and (tk) runs in Seq we get the ’unbounded delay model’
of computation of the Boolean function Φ, represented in discrete time by the
sequences µ, Φα0

(µ), Φα0α1
(µ), ..., Φα0...αk

(µ), ... and in continuous time by the
orbits Φρ(µ, t) respectively. We shall not insist on the non-formalized way that
the engineers describe this model; we just mention that the ’unbounded delay
model’ is a reasonable way of starting the analysis of a circuit in which the
delays occurring in the computation of the Boolean functions Φ are arbitrary
positive numbers. If we restrict suitably the ranges of α and (tk) we get the
’bounded delay model’ of computation of Φ and if both α, (tk) are fixed, then
we obtain the ’fixed delay model’ of computation of Φ, determinism.

Theorem 11 [8] Let α ∈ Πn, (tk) ∈ Seq be arbitrary and the function

ρ(t) = α0 · χ{t0}(t)⊕ α1 · χ{t1}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ...,

ρ ∈ Pn. The following statements are true:
a) {αk|k ≥ k1} ∈ Πn for any k1 ∈ N;
b) (tk) ∩ (t′,∞) ∈ Seq for any t′ ∈ R;
c) ρ · χ(t′,∞) ∈ Pn for any t′ ∈ R;
d) ∀µ ∈ Bn,∀µ′ ∈ Bn,∀t′ ∈ R,

Φρ(µ, t′) = µ′ =⇒ ∀t ≥ t′, Φρ(µ, t) = Φρ·χ(t′,∞)(µ′, t).

Notation 12 For any d ∈ R, we denote with τ d : R → R the translation
∀t ∈ R, τ d(t) = t− d.

Theorem 13 [8] Let be µ ∈ Bn, ρ ∈ Pn and d ∈ R. The function ρ ◦ τ d is
progressive and we have

Φρ◦τd

(µ, t) = Φρ(µ, t− d).

Definition 14 The universal regular autonomous asynchronous sys-
tem that is generated by Φ : Bn → Bn is by definition

ΞΦ = {Φρ(µ, ·)|µ ∈ Bn, ρ ∈ Pn};

any x(t) = Φρ(µ, t) is called state (of ΞΦ), µ is called initial value (of x),
or initial state (of ΞΦ) and Φ is called generator function (of ΞΦ).
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Remark 15 The asynchronous systems are non-deterministic in general, due
to the uncertainties that occur in the modeling of the asynchronous circuits.
Non-determinism is produced, in the case of ΞΦ, by the fact that the initial
state µ and the way ρ of iterating Φ are not known.

Some notes on the terminology:
- universality means the greatest in the sense of inclusion. Any X ⊂ ΞΦ is

a system, but we shall not study such systems in the present paper;
- regularity means the existence of a generator function Φ, i.e. analogies

with the dynamical systems theory;
- autonomy means here that no input exists. We mention the fact that

autonomy has another non-equivalent definition also, a system is called au-
tonomous if its input set has exactly one element;

- asynchronicity refers (vaguely) to the fact that the coordinate functions
Φ1, ..., Φn are computed independently on each other. Its antonym synchronic-
ity means that the iterates of Φ are: Φ, Φ◦Φ, ..., Φ◦...◦Φ, ... i.e. in the sequence
Φα0

, Φα0α1
, ..., Φα0...αk

, ... all αk are (1, ..., 1), k ∈ N. That is the discrete time
of the dynamical systems.

Definition 16 Let x : R → Bn be some function. If

∃t′ ∈ R,∀t ≥ t′, x(t) = x(t′),

we say that the limit lim
t→∞

x(t) (or the final value of x) exists and we denote

lim
t→∞

x(t) = x(t′).

Theorem 17 [7],[8] ∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn,

lim
t→∞

Φρ(µ, t) = µ′ =⇒ Φ(µ′) = µ′,

i.e. if the final value of Φρ(µ, ·) exists, it is a fixed point of Φ.

Theorem 18 [7],[8] ∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn,

(Φ(µ′) = µ′ and ∃t′ ∈ R, Φρ(µ, t′) = µ′) =⇒ ∀t ≥ t′, Φρ(µ, t) = µ′,

meaning that if the fixed point µ′ of Φ is accessible, then it is the final value of
Φρ(µ, ·).
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Corollary 19 [8] We have ∀µ ∈ Bn,∀ρ ∈ Pn,

Φ(µ) = µ =⇒ ∀t ∈ R, Φρ(µ, t) = µ.

3.ω−limit sets

Definition 20 For µ ∈ Bn and ρ ∈ Pn, the set

ωρ(µ) = {µ′|µ′ ∈ Bn,∃(tk) ∈ Seq, lim
k→∞

Φρ(µ, tk) = µ′}

is called the ω−limit set of the orbit Φρ(µ, ·).

Theorem 21 [8] For any µ ∈ Bn and any ρ ∈ Pn, we have:
a) ωρ(µ) 6= ∅;
b) ∀t′ ∈ R, ωρ(µ) ⊂ {Φρ(µ, t)|t ≥ t′} ⊂ Orρ(µ);
c) ∃t′ ∈ R, ωρ(µ) = {Φρ(µ, t)|t ≥ t′} and any t′′ ≥ t′ fulfills ωρ(µ) =

{Φρ(µ, t)|t ≥ t′′};
d) ∀t′ ∈ R,∀t′′ ≥ t′, {Φρ(µ, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′′} implies ωρ(µ) =

{Φρ(µ, t)|t ≥ t′};
e) we suppose that ωρ(µ) = {Φρ(µ, t)|t ≥ t′}, t′ ∈ R. Then ∀µ′ ∈ ωρ(µ),∀t′′ ≥

t′, if Φρ(µ, t′′) = µ′ we get

ωρ(µ) = {Φρ·χ(t′′,∞)(µ′, t)|t ≥ t′′} = Orρ·χ(t′′,∞)
(µ′) = ωρ·χ(t′′,∞)

(µ′).

Remark 22 If in Theorem 21 e) we take t′′ ∈ R arbitrarily, the equation

ωρ(µ) = ωρ·χ(t′′,∞)
(Φρ(µ, t′′)) (2)

is still true. Indeed, for sufficiently great t′′′, the terms in (2) are equal with

{Φρ(µ, t)|t ≥ t′′′} = {Φρ·χ(t′′,∞)(Φρ(µ, t′′), t)|t ≥ t′′′}.

Theorem 23 [8] For arbitrary µ ∈ Bn,ρ ∈ Pn the following statements are
true:

a) lim
t→∞

Φρ(µ, t) exists ⇐⇒ card(ωρ(µ)) = 1;

b) if ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, then lim
t→∞

Φρ(µ, t) = µ′ and Φ(µ′) = µ′;

c) if ∃µ′ ∈ Bn, Φ(µ′) = µ′ and µ′ ∈ Orρ(µ), then ωρ(µ) = {µ′}.

Theorem 24 [8] Let be µ ∈ Bn, ρ ∈ Pn, d ∈ R. We have ωρ(µ) = ωρ◦τd(µ).
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4. Invariant sets

Theorem 25 [8] We consider the function Φ : Bn → Bn and let be the set
A ∈ P ∗(Bn). For any µ ∈ A, the following properties are equivalent

∃α ∈ Πn,∀k ∈ N, Φα0...αk

(µ) ∈ A, (3)

∃ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) ∈ A, (4)

∃ρ ∈ Pn, Orρ(µ) ⊂ A (5)

and the following properties are also equivalent

∀α ∈ Πn,∀k ∈ N, Φα0...αk

(µ) ∈ A, (6)

∀ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) ∈ A, (7)

∀ρ ∈ Pn, Orρ(µ) ⊂ A, (8)

∀λ ∈ Bn, Φλ(µ) ∈ A. (9)

Definition 26 The set A ∈ P ∗(Bn) is called a p-invariant (or p-stable)
set of the system ΞΦ if it fulfills for any µ ∈ A one of (3),..., (5) and it is
called an n-invariant (or n-stable) set of ΞΦ if it fulfills ∀µ ∈ A one of
(6),..., (9).

Remark 27 In the previous terminology, the letter ’p’ comes from ’possibly’
and the letter ’n’ comes from ’necessarily’. Both ’p’ and ’n’ refer to the quan-
tification of ρ. Such kind of p-definitions and n-definitions recalling logic are
caused by the fact that we translate ’real’ concepts into ’binary’ concepts and
the former have no ρ parameters, thus after translation ρ may appear quantified
in two ways. The obvious implication is n-invariance =⇒ p-invariance.

Theorem 28 [8] Let be µ ∈ Bn and ρ′ ∈ Pn.
a) If Φ(µ) = µ, then {µ} is an n-invariant set and the set Eq of the fixed

points of Φ is also n-invariant;
b) the set Orρ′(µ) is p-invariant and

⋃
ρ∈Pn

Orρ(µ) is n-invariant;

c) the set ωρ′(µ) is p-invariant.

5. The basin of attraction
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Theorem 29 [8] We consider the set A ∈ P ∗(Bn). For any µ ∈ Bn, the
following statements are equivalent

∃α ∈ Πn,∃k′ ∈ N,∀k ≥ k′, Φα0...αk

(µ) ∈ A, (10)

∃ρ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, Φρ(µ, t) ∈ A, (11)

∃ρ ∈ Pn, ωρ(µ) ⊂ A (12)

and the following statements are equivalent too

∀α ∈ Πn,∃k′ ∈ N,∀k ≥ k′, Φα0...αk

(µ) ∈ A, (13)

∀ρ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, Φρ(µ, t) ∈ A, (14)

∀ρ ∈ Pn, ωρ(µ) ⊂ A. (15)

Definition 30 The basin (or kingdom, or domain) of p-attraction or
the p-stable set of the set A ∈ P ∗(Bn) is given by

W (A) = {µ|µ ∈ Bn,∃ρ ∈ Pn, ωρ(µ) ⊂ A}; (16)

the basin (or kingdom, or domain) of n-attraction or the n-stable set
of the set A is given by

W (A) = {µ|µ ∈ Bn,∀ρ ∈ Pn, ωρ(µ) ⊂ A}. (17)

Remark 31 Definition 30 makes use of the properties (12) and (15). We
can make use also in this Definition of the other equivalent properties from
Theorem 29.

In Definition 30, one or both basins of attraction W (A), W (A) may be
empty.

Theorem 32 [8] We have:
i) W (Bn) = W (Bn) = Bn;
ii) if A ⊂ A′, then W (A) ⊂ W (A′) and W (A) ⊂ W (A′) hold.

Definition 33 When W (A) 6= ∅, A is said to be p-attractive and for any
non-empty set B ⊂ W (A), we say that A is p-attractive for B and that B
is p-attracted by A; A is by definition partially p-attractive if W (A) /∈
{∅,Bn} and totally p-attractive whenever W (A) = Bn.

The fact that W (A) 6= ∅ makes us say that A is n-attractive and in
this situation for any non-empty B ⊂ W (A), A is called n-attractive for B
and B is called to be n-attracted by A; we use to say that A is partially
n-attractive if W (A) /∈ {∅,Bn} and totally n-attractive if W (A) = Bn.
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Theorem 34 [8] Let A ∈ P ∗(Bn) be some set. If A is p-invariant, then
A ⊂ W (A) and A is also p-attractive; if A is n-invariant, then A ⊂ W (A) and
A is also n-attractive.

Remark 35 The previous Theorem shows the connection that exists between
invariance and attractiveness. If A is p-attractive, then W (A) is the greatest
set that is p-attracted by A and the point is that this really happens when A is
p-invariant. The other situation is dual.

Theorem 36 [8] Let be A ∈ P ∗(Bn). If A is p-attractive, then W (A) is p-
invariant and if A is n-attractive, then W (A) is n-invariant.

Corollary 37 [8] If the set A ∈ P ∗(Bn) is p-invariant, then W (A) is p-
invariant and if A is n-invariant, then the basin of n-attraction W (A) is n-
invariant.

6. The basin of attraction of the fixed points

Notation 38 For any point µ ∈ Bn we use the simpler notations W (µ), W (µ)
instead of W ({µ}), W ({µ}). Furthermore, if the point µ is identified with the
n−tuple (µ1, ..., µn), it is usual to write W (µ1, ..., µn), W (µ1, ..., µn) for these
sets.

Remark 39 This section is dedicated to the special case when in Definition
30 the set A ∈ P ∗(Bn) consists in a point µ, in other words

W (µ) = {µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn, ωρ′(µ
′) ⊂ {µ}}, (18)

W (µ) = {µ′|µ′ ∈ Bn,∀ρ′ ∈ Pn, ωρ′(µ
′) ⊂ {µ}}. (19)

The fact that the point µ is chosen to be fixed is justified by the

Theorem 40 W (µ) 6= ∅ ⇐⇒ µ is a fixed point of Φ and similarly, W (µ) 6=
∅ ⇐⇒ µ is a fixed point of Φ.

Proof. We prove the first statement. If µ′ ∈ W (µ), then ρ′ ∈ Pn exists such
that ωρ′(µ

′) ⊂ {µ}. In this case ωρ′(µ
′) is non-empty, thus ωρ′(µ

′) = {µ} and,
from Theorem 23 b), Φ(µ) = µ.
Let us suppose now that Φ(µ) = µ. For any ρ′ ∈ Pn, Orρ′(µ) = ωρ′(µ) = {µ}
from Corollary 19, thus µ ∈ W (µ) and W (µ) 6= ∅.

272



Serban E. Vlad - On the basins of attraction of the regular autonomous...

Remark 41 In [6] at page 5, the fixed point x0 ∈ X is called attractive if the
neighborhood U ⊂ X and t′ > 0 exist such that

∀x ∈ U,∀t > t′, Φt(x) ∈ U and lim
t→∞

|Φt(x)− x0| = 0.

We give also the point of view from [3] where, at page 110 it is said, in a
discrete time context, that the basin of attraction of an attractive fixed point
x0 ∈ X is formed by the the set of all the initial points of some sequences of
iterates that converge to x0.

Example 42 In Figure 42 we have the property that all the points are fixed
points and ∀µ ∈ B2,∀ρ ∈ P2,

The basins of attraction of the fixed points

W (µ) = W (µ) = {µ}.

Any µ ∈ B2 is partially p-attractive and partially n-attractive.

Example 43 The point (1, 0) is fixed in Figure 43 and

The basins of attraction of the fixed points
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W (1, 0) = {(0, 0), (1, 0)},

W (1, 0) = {(1, 0)}.

The point (1, 0) is partially p-attractive and partially n-attractive.

Example 44 We have also the example when in Figure 44:

The basins of attraction of the fixed points

W (1, 0) = W (1, 0) = B2,

thus the fixed point (1, 0) is totally p-attractive and totally n-attractive.

Theorem 45 Let µ ∈ Bn be a fixed point of Φ. The following statements are
true:

a) We have

W (µ) = {µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn, lim
t→∞

Φρ′(µ′, t) = µ},

W (µ) = {µ′|µ′ ∈ Bn,∀ρ′ ∈ Pn, lim
t→∞

Φρ′(µ′, t) = µ};

b) {µ} ⊂ W (µ) ⊂ W (µ) thus µ is p-attractive and n-attractive;
c) W (µ) is p-invariant and W (µ) is n-invariant.

Proof. a) If µ′ ∈ W (µ), then ρ′ ∈ Pn exists such that ωρ′(µ
′) = {µ}. In this

situation from Theorem 23 b) we infer that lim
t→∞

Φρ′(µ′, t) = µ, thus W (µ) ⊂
{µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn, lim

t→∞
Φρ′(µ′, t) = µ}.
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Conversely, if µ′ ∈ Bn, ρ′ ∈ Pn exist such that lim
t→∞

Φρ′(µ′, t) = µ, then

ωρ′(µ
′) = {µ} from Definition 20 and we get {µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn, lim

t→∞
Φρ′(µ′, t) =

µ} ⊂ W (µ).
b) The fact that µ ∈ W (µ) is a consequence of the fact that ∀ρ′ ∈

Pn, lim
t→∞

Φρ′(µ, t) = µ (see Corollary 19).

c) µ is p-attractive from b), thus W (µ) is p-invariant (Theorem 36).

7. The basin of attraction of the orbits and of the ω−limit
sets

Definition 46 Let be Φ : Bn → Bn, µ ∈ Bn and ρ ∈ Pn. We define the
basins (or kingdoms, or domains) of p-attraction of Φρ(µ, ·), ωρ(µ) by

W [Φρ(µ, ·)] = {µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, (20)

Φρ′(µ′, t) = Φρ(µ, t)},
W [ωρ(µ)] = {µ′|µ′ ∈ Bn,∃ρ′ ∈ Pn, ωρ′(µ

′) = ωρ(µ)} (21)

and the basins (or kingdoms, or domains) of n-attraction of Φρ(µ, ·),
ωρ(µ) respectively by

W [Φρ(µ, ·)] = {µ′|µ′ ∈ Bn,∀ρ′ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, (22)

Φρ′(µ′, t) = Φρ(µ, t)},
W [ωρ(µ)] = {µ′|µ′ ∈ Bn,∀ρ′ ∈ Pn, ωρ′(µ

′) = ωρ(µ)}. (23)

Remark 47 The attractiveness of the orbits and of the ω−limit sets is defined
in the spirit of Definition 33 and it is their property of making one of the
previous basins of attraction non-empty.
We mention [2], page 133, where M is a differentiable manifold together with
a distance d on M and a discrete time dynamical system is generated by the
Cr−diffeomorphism Φ : M → M. The orbit through x0 ∈ M is called attractive
if

∃δ > 0,∀x ∈ B(x0, δ), lim
n→∞

d(Φn(x), Φn(x0)) = 0, (24)

where B(x0, δ) is the notation for the open ball of center x0 and radius δ. In
the same work [2], page 133 the orbit through x0 ∈ M is called stable if

∀ε > 0,∃δ(ε) > 0,∀x ∈ B(x0, δ),∀n ∈ N, d(Φn(x), Φn(x0)) < ε. (25)
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The translation of (24), (25) in our framework gives the statements

∃µ′ ∈ Bn,∃ρ′ ∈ Pn, ωρ′(µ
′) = ωρ(µ), (26)

∃µ′ ∈ Bn,∀ρ′ ∈ Pn, ωρ′(µ
′) = ωρ(µ), (27)

∃µ′ ∈ Bn,∃ρ′ ∈ Pn,∀t ∈ R, Φρ′(µ′, t) = Φρ(µ, t), (28)

∃µ′ ∈ Bn,∀ρ′ ∈ Pn,∀t ∈ R, Φρ′(µ′, t) = Φρ(µ, t); (29)

we note that (26), (27) are equivalent with W [ωρ(µ)] 6= ∅, W [ωρ(µ)] 6= ∅
attractiveness, while (28), (29) are stronger than the attractiveness properties
W [Φρ(µ, ·)] 6= ∅, W [Φρ(µ, ·)] 6= ∅. On the other hand, if we take in (26)
and (28) µ′ = µ, ρ′ = ρ we get that these two properties are always true, see
Theorem 51 to follow, items a), b).

Note that the stability of the sets A from the dynamical systems theory is
interpreted as invariance [8], while the stability of the orbits from the dynamical
systems theory is interpreted to be stronger than attractiveness.

Example 48 In Figure 48

The basins of attraction of the orbits and of the ω-limit sets

for

ρ(t) = (1, 1) · χ{0}(t)⊕ (1, 1) · χ{1}(t)⊕ (1, 1) · χ{2}(t)⊕ ...

we get
W [Φρ((0, 0), ·)] = W [ωρ((0, 0))] = {(0, 0), (1, 1)},

W [Φρ((0, 0), ·)] = W [ωρ((0, 0))] = ∅.

Example 49 We take in Figure 49

ρ(t) = (1, 1) · χ{0}(t)⊕ (1, 1) · χ{1}(t)⊕ (1, 1) · χ{2}(t)⊕ ...
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The basins of attraction of the orbits and of the ω-limit sets

and we obtain

W [Φρ((0, 1), ·)] = W [ωρ((0, 1))] = W [ωρ((0, 1))] = {(0, 0), (0, 1), (1, 1)},

W [Φρ((0, 1), ·)] = ∅.

Example 50 In Figure 50

The basins of attraction of the orbits and of the ω-limit sets

for

ρ(t) = (0, 1) · χ{0}(t)⊕ (1, 1) · χ{1}(t)⊕ (0, 1) · χ{2}(t)⊕ (1, 1) · χ{3}(t)⊕ ...

we see that

W [Φρ((0, 0), ·)] = W [ωρ((0, 0))] = W [Φρ((0, 0), ·)]

= W [ωρ((0, 0))] = {(0, 0), (0, 1), (1, 1)}.

Theorem 51 We consider the point µ ∈ Bn and the function ρ ∈ Pn.
a) W [Φρ(µ, ·)] = W [ωρ(µ)];
b) we have Orρ(µ) ⊂ W [Φρ(µ, ·)], thus W [Φρ(µ, ·)] is non-empty;
c) W [Φρ(µ, ·)] ⊂ W [ωρ(µ)];
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d) W [Φρ(µ, ·)] 6= ∅ ⇐⇒ card(ωρ(µ)) = 1, thus card(ωρ(µ)) = 1 implies that
W [Φρ(µ, ·)] and W [ωρ(µ)] are non-empty;

e) if ∃µ′ ∈ Bn, ωρ(µ) = {µ′}, then

W [Φρ(µ, ·)] = W [ωρ(µ)] = W (µ′),

W [Φρ(µ, ·)] = W [ωρ(µ)] = W (µ′)

hold.

Proof. a) Let µ′ ∈ W [Φρ(µ, ·)] be arbitrary, for which ρ′ ∈ Pn, t
′ ∈ R exist

such that
∀t ≥ t′, Φρ′(µ′, t) = Φρ(µ, t), (30)

ωρ′(µ
′) = {Φρ′(µ′, t)|t ≥ t′}, (31)

ωρ(µ) = {Φρ(µ, t)|t ≥ t′}. (32)

(30) is fulfilled from the definition (20) of W [Φρ(µ, ·)] and, by taking t′ suffi-
ciently great, (31), (32) are fulfilled too (Theorem 21). As ωρ′(µ

′) = ωρ(µ) we
get µ′ ∈ W [ωρ(µ)] and because µ′ was arbitrary, we infer that W [Φρ(µ, ·)] ⊂
W [ωρ(µ)].

Conversely, let µ′ ∈ W [ωρ(µ)] be arbitrary, thus

∃ρ′ ∈ Pn, ωρ′(µ
′) = ωρ(µ)

and let µ′′ ∈ ωρ′(µ
′) = ωρ(µ) be some point,

Φρ′(µ′, t1) = Φρ(µ, t2) = µ′′, (33)

t1, t2 ∈ R. The function

ρ′′(t) = ρ′(t− t2 + t1) · χ(−∞,t2](t)⊕ ρ(t) · χ(t2,∞)(t) (34)

is progressive and fulfills

Φρ′′(µ′, t2)
(34)
= Φρ′◦τ t2−t1 (µ′, t2)

Theorem 13
= Φρ′(µ′, t1)

(33)
= Φρ(µ, t2)

(33)
= µ′′,

∀t > t2, Φ
ρ′′(µ′, t)

Theorem 11 d)
= Φρ′′·χ(t2,∞)(µ′′, t)

(34)
= Φρ·χ(t2,∞)(µ′′, t)

Theorem 11 d)
= Φρ(µ, t)
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in other words µ′ ∈ W [Φρ(µ, ·)]. The fact that µ′ was arbitrary gives the
conclusion that W [ωρ(µ)] ⊂ W [Φρ(µ, ·)].

b) Let µ′ ∈ Orρ(µ) be arbitrary, thus ∃t′ ∈ R with µ′ = Φρ(µ, t′). We get

∀t ≥ t′, Φρ·χ(t′,∞)(µ′, t)
Theorem 11 d)

= Φρ(µ, t).

We have shown that µ′ ∈ W [Φρ(µ, ·)] and as µ′ was arbitrarily chosen, we infer
Orρ(µ) ⊂ W [Φρ(µ, ·)].

c) Let µ′ ∈ W [Φρ(µ, ·)] and ρ′ ∈ Pn be arbitrary. Some sufficiently great
t′ ∈ R exists such that

∀t ≥ t′, Φρ′(µ′, t) = Φρ(µ, t)

and we have

ωρ′(µ
′) = {Φρ′(µ′, t)|t ≥ t′} = {Φρ(µ, t)|t ≥ t′} = ωρ(µ),

i.e. µ′ ∈ W [ωρ(µ)].
d) =⇒ Let be ρ given by

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ...,

α ∈ Πn, (tk) ∈ Seq and we define

ρ′(t) = α0 · χ{t′0}(t)⊕ ...⊕ αk · χ{t′k}(t)⊕ ...,

where

t′k =
tk + tk+1

2
, k ∈ N (35)

belongs to Seq. We call point of discontinuity of Φρ(µ, ·) a point ξ ∈ R with
the property that µ′, µ′′ ∈ Bn and ε > 0 exist such that

∀t ∈ (ξ − ε, ξ), Φρ(µ, t) = µ′,

∀t ∈ [ξ, ξ + ε), Φρ(µ, t) = µ′′,

µ′ 6= µ′′.

The hypothesis states that µ̃ ∈ W [Φρ(µ, ·)] exists fulfilling the property

∃t′ ∈ R,∀t ≥ t′, Φρ′(µ̃, t) = Φρ(µ, t). (36)
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Let us suppose against all reason that card(ωρ′(µ̃)) = card(ωρ(µ)) > 1 and

ωρ′(µ̃) = {Φρ′(µ̃, t)|t ≥ t′′} = {Φρ(µ, t)|t ≥ t′′} = ωρ(µ),

t′′ ≥ t′. Then equation (36) is contradictory, since the discontinuity points of
Φρ′(µ̃, ·)|[t′,∞)

1 and Φρ(µ, ·)|[t′,∞) are included in the disjoint sets [t′,∞) ∩ (t′k)
and [t′,∞) ∩ (tk). The conclusion is that card(ωρ′(µ̃)) = card(ωρ(µ)) = 1 and
in (36) the disjoint sets [t′,∞)∩ (t′k) and [t′,∞)∩ (tk) contain no discontinuity
points.

⇐= We presume that µ′ ∈ Bn exists with ωρ(µ) = {µ′} and then for an
arbitrary ρ′ ∈ Pn we get ∀t ∈ R, Φρ′(µ′, t) = µ′. As lim

t→∞
Φρ(µ, t) = µ′, we

conclude that ∃t′ ∈ R such that ∀t ≥ t′,

Φρ(µ, t) = Φρ′(µ′, t) = µ′,

thus µ′ ∈ W [Φρ(µ, ·)].
e) The fact that ωρ(µ) = {µ′} shows that µ′ is a fixed point of Φ (Theorem

23 b)), thus W (µ′) 6= ∅. W [Φρ(µ, ·)], W [ωρ(µ)] and W (µ′) are all equal with
the set

{µ′′|µ′′ ∈ Bn,∃ρ′ ∈ Pn, lim
t→∞

Φρ′(µ′′, t) = µ′}.

Corollary 52 Let µ ∈ Bn be a fixed point of Φ and ρ ∈ Pn. We have

W (µ) = W [Φρ(µ, ·)] = W [ωρ(µ)],

W (µ) = W [Φρ(µ, ·)] = W [ωρ(µ)].

Proof. If µ is a fixed point of Φ, then ωρ(µ) = {µ}. We apply Theorem 51 e).

Theorem 53 For any µ ∈ Bn and any ρ ∈ Pn,
a) the basin of p-attraction W [Φρ(µ, ·)] is p-invariant;
b) if Φρ(µ, ·) is n-attractive, then the basin of n-attraction W [Φρ(µ, ·)] is

n-invariant;
c) if ωρ(µ) is n-attractive, then W [ωρ(µ)] is n-invariant.

1Φρ′
(µ̃, ·)|[t′,∞) is the notation for the restriction of Φρ′

(µ̃, ·) : R → Bn to [t′,∞).
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Proof. a) From Orρ(µ) 6= ∅ and Orρ(µ) ⊂ W [Φρ(µ, ·)], see Theorem 51 b),
we have that W [Φρ(µ, ·)] 6= ∅. Let µ′ ∈ W [Φρ(µ, ·)] be arbitrary, meaning that

∃ρ′ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, Φρ′(µ′, t) = Φρ(µ, t)

and we prove the inclusion Orρ′(µ
′) ⊂ W [Φρ(µ, ·)]. Indeed, the points µ′′ of

the orbit Orρ′(µ
′) are of the form

∃t1 ∈ R, µ′′ = Φρ′(µ′, t1)

and they fulfill

∀t ≥ t1, Φ
ρ′(µ′, t)

Theorem 11 d)
= Φρ′·χ(t1,∞)(µ′′, t),

thus
∀t ≥ max{t′, t1}, Φρ(µ, t) = Φρ′(µ′, t) = Φρ′·χ(t1,∞)(µ′′, t).

We infer that µ′′ ∈ W [Φρ(µ, ·)].
b) We must prove any of the following three equivalent statements:

∀µ′ ∈ W [Φρ(µ, ·)],∀ρ′ ∈ Pn, Orρ′(µ
′) ⊂ W [Φρ(µ, ·)], (37)

∀µ′ ∈ W [Φρ(µ, ·)],∀ρ′ ∈ Pn,∀t1 ∈ R, Φρ′(µ′, t1) ∈ W [Φρ(µ, ·)], (38)

∀µ′ ∈ Bn,∀ρ′′ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, Φρ′′(µ′, t) = Φρ(µ, t) =⇒ (39)

=⇒ ∀ρ′ ∈ Pn,∀t1 ∈ R,∀ρ′′′ ∈ Pn,∃t′′ ∈ R,

∀t ≥ t′′, Φρ′′′(Φρ′(µ′, t1), t) = Φρ(µ, t).

For this, let µ′ ∈ Bn be arbitrary, fixed, making the following property true:

∀ρ′′ ∈ Pn,∃t′ ∈ R,∀t ≥ t′, Φρ′′(µ′, t) = Φρ(µ, t) (40)

and we take ρ′ ∈ Pn, t1 ∈ R, ρ′′′ ∈ Pn arbitrarily. The truth of (40) for

ρ′′ = ρ′ · χ(−∞,t1] ⊕ ρ′′′ · χ(t1,∞) (41)

shows the existence of t′ ∈ R that we choose > t1 such that ∀t ≥ t′,

Φρ(µ, t)
(40)
= Φρ′′(µ′, t)

Theorem 11 d)
= Φρ′′·χ(t1,∞)(Φρ′′(µ′, t1), t) =

(41)
= Φρ′′′·χ(t1,∞)(Φρ′′(µ′, t1), t)

(41)
= Φρ′′′·χ(t1,∞)(Φρ′(µ′, t1), t)
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Theorem 11 d)
= Φρ′′′(Φρ′(µ′, t1), t).

(39) holds.
c) We must prove any of the equivalent statements:

∀µ′ ∈ W [ωρ(µ)],∀ρ′ ∈ Pn, Orρ′(µ
′) ⊂ W [ωρ(µ)], (42)

∀µ′ ∈ W [ωρ(µ)],∀ρ′ ∈ Pn,∀t1 ∈ R, Φρ′(µ′, t1) ∈ W [ωρ(µ)], (43)

∀µ′ ∈ Bn,∀ρ′′ ∈ Pn, ωρ′′(µ
′) = ωρ(µ) =⇒ (44)

=⇒ ∀ρ′ ∈ Pn,∀t1 ∈ R,∀ρ′′′ ∈ Pn, ωρ′′′(Φ
ρ′(µ′, t1)) = ωρ(µ).

Let µ′ ∈ Bn be arbitrary, fixed, that fulfills

∀ρ′′ ∈ Pn, ωρ′′(µ
′) = ωρ(µ) (45)

and we take some arbitrary ρ′ ∈ Pn, t1 ∈ R, ρ′′′ ∈ Pn. A number t2 exists with
the property ∀t ≤ t2, ρ

′′′(t) = 0. We define ρ̃ ∈ Pn by

ρ̃(t) = ρ′′′(t− t1 + t2)

and we note that (as far as ∀t ≤ t1, t − t1 + t2 ≤ t2) we have ρ̃ · χ(t1,∞)(t) =
ρ̃(t) = ρ′′′(t− t1 + t2) = (ρ′′′ ◦ τ t1−t2)(t), thus

ωρ̃·χ(t1,∞)
(Φρ′(µ′, t1)) = ωρ′′′◦τ t1−t2 (Φ

ρ′(µ′, t1)) = ωρ′′′(Φ
ρ′(µ′, t1)), (46)

see Theorem 24. The truth of (45) for

ρ′′ = ρ′ · χ(−∞,t1] ⊕ ρ̃ · χ(t1,∞) (47)

shows that

ωρ(µ)
(45)
= ωρ′′(µ

′)
(47)
= ωρ′·χ(−∞,t1]⊕ρ̃·χ(t1,∞)

(µ′) =

(2)
= ωρ̃·χ(t1,∞)

(Φρ′(µ′, t1))
(46)
= ωρ′′′(Φ

ρ′(µ′, t1)).

The statement (44) was proved.

Theorem 54 Let be µ ∈ Bn and ρ ∈ Pn. The following statements hold:
a) W [Φρ(µ, ·)] = W (Orρ(µ));
b) W [Φρ(µ, ·)] ⊂ W (Orρ(µ));
c) W [ωρ(µ)] = W (ωρ(µ));
d) W [ωρ(µ)] ⊂ W (ωρ(µ)).
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Proof. a) We prove that W [Φρ(µ, ·)] ⊂ W (Orρ(µ)) and let µ′ ∈ W [Φρ(µ, ·)]
be arbitrary, thus µ′ ∈ W [ωρ(µ)] (Theorem 51 a)). We get ∃ρ′ ∈ Pn, ωρ′(µ

′) =
ωρ(µ) ⊂ Orρ(µ) and finally µ′ ∈ W (Orρ(µ)).

We prove now that W (Orρ(µ)) ⊂ W [Φρ(µ, ·)]. We presume that µ′ ∈
W (Orρ(µ)), i.e. ∃ρ′ ∈ Pn, ωρ′(µ

′) ⊂ Orρ(µ). Let µ′′ ∈ ωρ′(µ
′) be arbitrary.

t1 ∈ R, t2 ∈ R exist then such that

Φρ′(µ′, t1) = Φρ(µ, t2) = µ′′ (48)

and we define

ρ′′(t) = ρ′(t− t2 + t1) · χ(−∞,t2](t)⊕ ρ(t) · χ(t2,∞)(t). (49)

We note that ρ′′ ∈ Pn. We have

∀t ≤ t2, Φ
ρ′′(µ′, t)

(49)
= Φρ′◦τ t2−t1 (µ′, t)

Theorem 13
= Φρ′(µ′, t− t2 + t1), (50)

Φρ′′(µ′, t2)
(50)
= Φρ′(µ′, t1)

(48)
= µ′′, (51)

thus ∀t > t2,

Φρ′′(µ′, t)
(51)
= Φρ′′·χ(t2,∞)(µ′′, t)

(49)
= Φρ·χ(t2,∞)(µ′′, t) = Φρ(µ, t).

We have proved the fact that µ′ ∈ W [Φρ(µ, ·)], thus W (Orρ(µ)) ⊂ W [Φρ(µ, ·)].
b) Let µ′ ∈ W [Φρ(µ, ·)] be arbitrary, in other words ∃µ′′ ∈ Bn such that

ωρ(µ) = {µ′′} (Theorem 51 d)). We infer that µ′′ ∈ Orρ(µ) and

W [Φρ(µ, ·)] Theorem 51 e)
= W (µ′′)

Theorem 32 ii)
⊂ W (Orρ(µ)).

c) For any µ′ ∈ W [ωρ(µ)] we have ∃ρ′ ∈ Pn, ωρ′(µ
′) = ωρ(µ), thus ∃ρ′ ∈

Pn, ωρ′(µ
′) ⊂ ωρ(µ) proving that µ′ ∈ W (ωρ(µ)) and the conclusion is that

W [ωρ(µ)] ⊂ W (ωρ(µ)). (52)

In order to show that the inclusion (52) takes place under the form of an
equality, we presume against all reason that µ′ ∈ W (ωρ(µ)) \W [ωρ(µ)] exists,
wherefrom we get

∃ρ′ ∈ Pn, ωρ′(µ
′) ⊂ ωρ(µ), (53)

∀ρ′′ ∈ Pn, ωρ′′(µ
′) 6= ωρ(µ). (54)
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From (53), t1 ∈ R, t2 ∈ R, µ′′ ∈ Bn exist such that

Φρ′(µ′, t1) = Φρ(µ, t2) = µ′′ (55)

and we define

ρ′′(t) = ρ′(t− t2 + t1) · χ(−∞,t2](t)⊕ ρ(t) · χ(t2,∞)(t). (56)

Obviously ρ′′ ∈ Pn. We have

∀t ≤ t2, Φ
ρ′′(µ′, t)

(56)
= Φρ′◦τ t2−t1 (µ′, t)

Theorem 13
= Φρ′(µ′, t− t2 + t1), (57)

Φρ′′(µ′, t2)
(57)
= Φρ′(µ′, t1)

(55)
= µ′′, (58)

thus ∀t > t2,

Φρ′′(µ′, t)
(58)
= Φρ′′·χ(t2,∞)(µ′′, t)

(56)
= Φρ·χ(t2,∞)(µ′′, t)

Theorem 11 d)
= Φρ(µ, t).

We have obtained ωρ′′(µ
′) = ωρ(µ), contradiction with (54).

d) We take an arbitrary µ′ ∈ W [ωρ(µ)]. The truth of

∀ρ′ ∈ Pn, ωρ′(µ
′) = ωρ(µ)

implies that
∀ρ′ ∈ Pn, ωρ′(µ

′) ⊂ ωρ(µ)

is true thus µ′ ∈ W (ωρ(µ)).

Example 55 In Figure 55 for any ρ ∈ P2 we have that W [Φρ((0, 0), ·)] = ∅,

Showing that the inclusion W [Φρ(µ, ·)] ⊂ W (Orρ(µ)) is not equality

Orρ(0, 0) = B2, W (B2) = B2 and the inclusion from Theorem 54 b) is not
equality.
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Showing that the inclusion W [ωρ(µ)] ⊂ W (ωρ(µ)) is not equality

Example 56 In Figure 56
we take µ = (0, 0), ωρ(µ) = B2 so that W (ωρ(µ)) = W (B2) = B2. On the

other hand we can see that W [ωρ(µ)] = ∅, showing that the inclusion from
Theorem 54 d) is not equality.

References

[1] C. D. Constantinescu. Haos, fractali şi aplicaţii. Editura the Flower Power,
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[3] A. Georgescu, M. Moroianu, I. Oprea. Teoria Bifurcaţiei, Principii şi
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