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Abstract. One of the most promising implementation of neural networks is 
optoelectronic implementation. Optical interconnections are useful for neural 
networks as far as one can take advantage of the special potential of 3D connection 
through free space. This paper analyses the consequences  caused  by random 
deviations of the neurons interconnection weights from the accurately  computed 
values. For the neural network we used, the connections are considered to be 
implemented optically, by computer generated holograms (CGH) and we outlined the 
main causes of weight deviations. Also we study the influence of these deviations on 
the network’s dynamics, accuracy of prototype recall, spurious states etc. The 
theoretical results  are sustained  by  simulations of a concrete autoassociative neural 
network. 
Keywords: Autoassociative memory, weights matrix, random deviations, pattern 
recognition.  
 
1.INTRODUCTION 
 
 The artificial neural networks have the specific feature of “storing” the 
knowledge in the synaptic weights of the processing elements (artificial 
neurons).There is a great number of algorithms allowing the design of  neural 
networks (e. g.2) and the computing of weight values. 
 Depending on the network type and the purpose had in sight, the weights can be 
established through an iterative learning process (supervised or unsupervised) or they  
can be computed from the apriori knowledge on the input and output network space. 
In software implementations, the weights computed according to a certain algorithm 
will be used with precise, accurate values, resulting from calculus (although there 
might also appear problems caused by data precision - the number of  bytes assigned 
to one value). In hardware implementations of neural networks, the weights values 
will be materialized in a technological process during which various errors may occur, 
so that the resulting network will use more or less deviated weights. 
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 It  is expected that these deviations of the weights from the accurate values 
influence the network’s behaviour during the working phase. This paper therefore 
intends an analysis of the consequences of synaptic weights deviations from the 
accurate values in the particular case of an associative network, whose neurons are 
optically interconnected through CGH. 
 Section 2  briefly presents the network model we used, as well as some results 
concerning the behaviour of this network type. Section 3 reviews the main causes of 
errors that may occur when using CGH to implement the interconnections of neurons. 
Section 4 realises a detailed study on the consequences of the random weights 
deviations on the behaviour of the network and section 5 shows the results of some 
simulations realised by the authors. 
 
2. THE ARTIFICIAL NEURAL NETWORK MODEL 
 
 In this section we’ll  briefly introduce the main theoretical elements concerning 
associative memories and recurrent neural networks 4, elements that will be used in 
section 5 in order to build an associative memory for patterns recognition. 
 We’ll call pattern a multidimensional vector with real components. An 
associative memory is a system that accomplishes the association of p pattern pairs  

nR∈µξ ,  nR∈µς , ( µ =1, 2,..., p) so that when the system  is given a new vector  
nRx∈ such as 

)(min)( j

j

i dd ξxξx  , , =      (1) 

the system responds with  iς ; in (1) d(a,b) is the distance between patterns a and b. 
 The pairs ( )ii ςξ , , (i= 1,2,... p)  are called prototypes and the association 
accomplished by the memory can be defined as a transformation Φ : Rn × Rm so that 

( )ii ξς Φ= . 
 The space  nR⊂Ω  of  input vectors x  is named configuration space and the 
vectors  iξ , (i=1,2,...,p) are called attractors or stable points. Around each attractor, 
there is a basin of attraction Bi such that iBx∈∀ , the dynamics of the network will 
lead to the stabilization of  ( )ii ςξ ,  pair. For autoassociative memories  ii ςξ =  
(i=1,2,...,p) and if some vector x  is nearest  iξ , then ( ) ix ξ=Φ . 
 In section 4 we will use for graphic pattern recognition a neural network whose 
model4 is presented below. Let’s consider the single-layer neural network built from 
totally connected neurons, whose states are given by  xi ∈{-1,1}, i=1,2,... n, (fig.1). 

 We denote : W=[wij,: 1≤ i, j≤  n] the weights  matrix, θ =[θ 1, ..., θ n]T∈Rn the 
thresholds vector, x (t)=[x1(t), ... xn(t)]T∈{-1,1}n the network state vector. 
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For the memory described in this paper, the weight matrix W  will be built as 
follows: given a set of n-dimensional prototype vectors X=[ξ 1, ξ 2,..., ξ p ], we 
establish the synaptic matrix W and the threshold vector θ , so that the prototype 
vectors become stable points for the associative memory, that is: 

   p2,.., 1,i      )sgn( ii =−= θξξ W     (2) 
 

where the sgn function is applied to each component of the  argument. 
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Fig. 1. Single layer recurrent neural network 
  
 We use the Lyapunov method to study the stability  of  the network, defining an 
energy function and showing that this function is decreasing for any network 
trajectory in the state space. In our case, we’ll consider the following energy function: 

    θx-Wxxx TT

2
1)( −=E      (3) 

where x  is the network state vector at time t.  
 From the evolution in states space point of view, a network can reach a stable 
point or can execute a limit cycle. At its turn, a stable point can be a global or a local 
energy minimum. Using (3), the following results concerning the network’s dynamics 
are demonstrated in4: 
 a) The asynchronous updating mode: 
 Χ If the synaptic matrix is symmetric and has non-negative diagonal elements, 

the recurrent network in asynchronous operation has only stable states (there 
are no cycles). As a consequence, the different variants of Hebb’s law 
(weighted, with or without null diagonal) and the projection rule guarantee the 
absence of cycles for asynchronous mode. 

 b) The synchronous updating mode: 
 Χ If the synaptic matrix is defined non-negative on {-1,0,1}n , the recurrent 

network in synchronous functioning has no cycles. As a consequence, Hebb’s 
rule (with or without weighting) and projection rule assure the absence of 
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cycles in synchronous mode. If the diagonal is null, two-length cycles may 
appear. 

 
 3. ERROR SOURCES FOR OPTICAL INTERCONNECTION WITH CGH 
 
 Optical interconnections are useful for neural networks as far as one can take 
advantage of the special potential of 3D connection through free space. This involves 
the organizing of the neurons layer in 2D configurations (planar), where the optical 
interconnections realise the desired links between the two planes. A certain connection 
also materialises the synaptic weight corresponding to neuron j from input plane and 
neuron i from output plane (fig. 2). 
 The interconnection network accomplishes the following function: 

   ∑ ⋅=
ij

ijklTjilk ),(),( αβ      (4) 

 In order to connect the two neuron planes one may use computer generated 
holograms which, by light waves diffraction, assure the desired connections. Due to 
the fact that generally the connections differ from neuron to neuron, the 
interconnection system will be a spatial variant system, each point from the input 
plane being connected differently to the output plane. This spatial variance can be 
realised in several manners. 

(i,j)

Input plane
(Photonic generators or
 SLM)

Optical interconnection network Output plane (Photodetectors)

(k,l)

Fig. 2 .Optical interconnection of two neural planes. 

 Implementing optical interconnection with CGH implies the following steps: 
• synthesis 8 of CGH for the synaptic weights matrix W (fig. 3) 

CGH
Complex
amplitude
calculation

Coding Materialization

 
Fig. 3. Main steps in CGH realisationbuilding and aligning the optical setup. 
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 In the following we will briefly review the errors that may occur in the optical 
implementation of interconnections, leading to deviations of the real weight values 
from the accurate ones. 
 A. During the CGH computing step, the errors are due to the hologram synthesis 
method, as well as to the quantization of the obtained values 7, 8,10,11. When using 
Fourier amplitude holograms, a frequent difficulty is connected to the dynamic range 
of Fourier coefficients to be materialized in hologram. The computed range would 
lead to a smaller number of large aperture cells, most of the apertures being small, 
which significantly diminishes the hologram efficience on diffraction. Consequently, a 
dynamic range compression is required, with direct influence on the accuracy of the 
resulting synaptic weights. 
 During the CGH materialization step, the errors may occur from the 
unsatisfactory resolution of the devices involved or from the photolythographic 
process. 
 B. During the building of optical setup (the hardware implementation of the 
neural network), the following error sources may appear: 

• Un-uniform optical emission of the photoemitters from the output plane of the 
neural layer (the input plane of the optical interconnection system) 

• Un-uniform sensitivity of the photodetectors in the input plane of the neural 
layer (the output plane of the optical interconnection system) 

• Axial misalignment (translation or rotation) of the three planes: the input 
plane, the hologram plane and the output plane. 

• Errors concerning the positioning of individual photoemitters or 
photodetectors in their corresponding plane. 

• Errors due to the variation of the geometrical dimensions of the setup, as a 
result of temperature variations. 

• Errors caused by interaction of the adjacent optical paths (the light flow 
deviated by the hologram to a certain photodetector also reaches the nearby 
photodetectors). 

 All the errors above can be minimized, but it is obvious they cannot be 
completely removed. Consequently, we find very useful an analysis of the influences 
these errors might have on the global behaviour of the network. 
 
4. INFLUENCE OF RANDOM WEIGHT DEVIATIONS  
 
 In the following, we will present a general qualitative study on the effects of the 
weight deviations from the accurate values. We’ll denote by W  the accurate 
(theoretical) weight matrix  and by W *the real weight matrix. We may then consider: 

    WWW* δ+=       (5) 

 where  ∗W  is a matrix of deviations from the computed values. 
 As we have shown in section 2, an energy function (3) is defined for the neural 
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network. In order to simplify the computing we will consider null thresholds for all the 
neurons. The network’s dynamics is associated to this energy function and one can 
easily see that the weight values deviations will have important consequences on the 
network’s functioning. 
 Thus, the random deviations of synaptic weights values can cancel the symmetry 
of W  matrix and the property of diagonal elements (e. g. they may  become negative), 
making the results in section 2 (concerning stability) no longer valid. A non-
symmetric or negative diagonal weight matrix may lead to the occurrence of cycles in 
the network’s evolution. Therefore, the network won’t reach a stable state, 
consequently it won’t work well as associative memory. 
 The weight matrix synthesis starts from a set of prototype vectors we wish to be 
stored. From energy perspective, these prototypes are global minimum of function E 
(of value E0). If instead of the accurate W matrix the network operates using the W 
*matrix, the energy value for some prototype becomes:  

    EEE δξδξξξξ +=−= 02
1

2
1( WW-) TT    (6) 

 One may observe that the weights deviation from accurate values will modify the 
“energy landscape”. The prototypes minimum may change, as well as spurious states 
minimums may occur. 
 Up to this point we didn’t make any assumption on the range or statistical 
distribution of deviations. Now we will perform, following3, a more detailed analysis, 
to see the influence of deviations on the maximum number of prototypes the memory 
can store. For this, starting from the dynamic equation with θ i= 0, we’ll study the 
stability of component υξ i (i=1,2,..,n) of the prototype υξ : 

    ∑ ∑ ∑
= = =

+==
n
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1 1 1

* )sgn()sgn( ννν ξδξξξ   (7) 

 We’ll call net input (or synaptic potential): 
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 Assuming that the weights have been computed using Hebb’s rule, it is easy to 
outline the contribution of υξ i  to net input: 

    ∑∑ ∑
= ≠ =
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n
h
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1
νµ

ννµµνν ξδξξξξ    (9) 

where µ :=1,2,..,p indexes the p prototypes. 

 We denote by Zi the additive term from (14) and we make the observation that if 
it doesn’t have the same sign with υξ i , it may make unstable this component of the 
prototype υ . To examine the influence of random deviations on maximum number of 
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prototypes that may be stored, we’ll consider: 

  )1(
1 1

∑∑ ∑
= ≠ =

+−=⋅−=
n

j

n

j
jijjjiiiii w

n
ZC

νµ

ννµµννν ξδξξξξξ    (10) 

 The probability for υξ i  to be unstable is (remember that iξ may take only -1 or +1 
values): 

    )1(Pr >= ν
iunst Cobp      (11) 

 We shall try to find the distribution function and the statistical parameters for the 
random variable υ

iC . 
 Let  

    ∑∑
= ≠

−=
n

j
jjiii n

A
1

1
νµ

νµµν ξξξξ      (12) 

and 

    ∑
=

−=
n

j
jijii wB

1

νν ξδξ       (13) 

 In the reference [3] it is shown that the variable Ai obeys, with a good 
approximation, a gaussian distribution with mean 0 and variance p/n. We’ll consider 
that the deviations δ Wij also obey a gaussian distribution with mean 0 and variance 

2
δσ . In this case, the variable Bi will obey, with a good approximation, a gaussian 

distribution with mean 0 and variance 2
δσ . Consequently, we may assume that 

variable Ci obeys a normal distribution with mean 0 and variance: 

    22
δσσ +=

n
p

      (14) 

We denote 
    2' δσ⋅+= npp       (15) 
and using the results from reference [3] we find that the correct functioning of the 
network implies 

    138.0
'

≤
n
p

       (16) 

 or 
    np ⋅−≤ )138.0( 2

δσ      (17) 
 
 One can thus see that random deviations of the weights can seriously affect 
the maximum number of prototypes that may be stored in the network, as well. 
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5. EXPERIMENTAL RESULTS AND CONCLUSIONS 
 

 We’ve performed a large number of simulations in order to verify the theoretical 
considerations from the precedent section. We’ve studied an autoassociative neural 
network, synthesized starting from a set of 10 prototypes representing the cursive 
script numerals 0..9 (fig. 4). The simulations have had in view the influence that 
random weight deviations have on the following network features: 

• Noise tolerance. The network had to recognize noise affected prototypes, 
using the accurate W matrix, and also the deviated weights matrix W *. 

• The energy minimums corresponding to prototypes. For the 10 prototypes we 
have computed the energy minimums, in the accurate weights phase, as well 
as using the deviated weights.  

• The average number of iterations before stabilizing into an attractor. 

 
Fig.4. The prototypes used in simulations 

 The results we’ve obtained are illustrated below: 

I. When the associative memory  operates with the accurate weights, it shows a very 
good noise immunity, recognizing prototypes affected by up to 40% noise (fig. 
5).  

 
Fig. 5. The recognition of noisy prototypes by the accurate network 

 If the weight matrix used is W*, the noise immunity decreases, so that the 
network is no longer able to recognize prototypes with the same noise contamination 
(fig.6). 
 In order to study the above mentioned objectives, we’ve performed several 
simulations affecting the weight matrix W with random deviations having various 
distribution laws and parameters. 
 A first set of simulations pursued the altering of the accurate matrix with random 
deviations having a gaussian distribution, with different mean and variance values. For 
each case, we’ve performed 100 recognitions of every prototype, disturbed by 40% 
noise. The results are shown in fig. 7. 
 A second set of simulations included the usage of a matrix in which every weight 
has been randomly affected by an uniformly distributed error between 5% and 10% of 
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its  value. In this case also we’ve performed 100 recognitions for each noise affected 
prototype. The results are shown in table 1. 

II. For every deviated matrix we used, we’ve computed the prototype corresponding 
energy values, watching the energy minimum’s variations. The simulations outlined, 
for the above cases, a slight disturbance of the energy minimums (about 3% of the 
values corresponding to the accurate weights). Also, we’ve noticed that the average 
number of iterations slightly varies from the value of  3, no matter which the weights 
deviations are. 
 

 
 

Fig. 6. Failed recognition of prototypes by the deviated weights network 
 

 
Fig. 7. Recognition of some noisy prototypes by the network with  weights  disturbed 

by Gaussian deviations  with variance Φ ∗2−m2 Φw 2 

Table 1. 
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Prototype 0 1 2 3 4 5 6 7 8 9 
Percent of correct 
recognitions 

94 100 94 81 95 86 98 100 98 91 

 
CONCLUSIONS 
 
 The simulations have shown diminished performances of the autoassociative 
memory as a result of the random weights deviations from the correctly computed 
values. For the statistical parameters used above the performances’ degradation is 
relatively small, which proves certain insensitivity to those deviations. Therefore, the 
memory appears quite robust, not only in what the noise contained by the patterns to 
be recognized is concerned, but also in relation with the random weights deviations. 
 It is possible for this insensitivity to occur also due to the fact that the number of 
stored prototypes is much lower than the memory’s capacity. The simulations 
performed on another associative memory, designed to recognize cursive script letters, 
confirm this last assumption. In this case the input vector’s size is still of 1024 
components, but the amount of stored prototypes becomes 27.  
 This aspect is to be elucidated in further studies. It would also be useful to 
determine quantitatively the contribution of the errors described in section 4 to the 
deviation of actual weights from accurate ones, in order to state realistic requests for 
the hardware implementation of the autoassociative memory. 
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