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Abstract: This article is the second part of a work dealing with the optoelectronic 
implementation of artificial neural networks. The authors analyze the problems involved by 
using computer-generated holograms (CGH) for these interconnections and some methods of 
designing such diffractive elements. The authors also analyze the error sources and the 
consequences caused by random deviations of the neurons interconnection weights from the 
accurately computed values. The theoretical considerations are illustrated by designing an auto 
associative memory built for graphic pattern recognition. Neurons interconnections are to be 
implemented optically by computer generated holograms (CGH). The network functioning was 
simulated on computer and the paper presents also the results of simulations on a data set and a 
CGH layout for neuron interconnections. 
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1. ERROR SOURCES FOR OPTICAL INTERCONNECTION WITH CGH. 
INFLUENCE OF RANDOM WEIGHT DEVIATIONS 

 
 Implementing optical interconnection with CGH implies the following steps: 
synthesis of CGH for the synaptic weights matrix W; building and aligning the optical 
setup. In the following we will briefly review the errors that may occur in the optical 
implementation of interconnections, leading to deviations of the real weight values 
from the accurate ones. 
 A. During the CGH computing step, the errors are due to the hologram 
synthesis method, as well as to the quantization of the obtained values [8] [9], [11]. 
When using Fourier amplitude holograms, a frequent difficulty is connected to the 
dynamic range of Fourier coefficients to be materialized in hologram. The computed 
range would lead to a smaller number of large aperture cells, most of the apertures 
being small, which significantly diminishes the hologram efficiency on diffraction. 
Consequently, dynamic range compression is required, with direct influence on the 
accuracy of the resulting synaptic weights. 
 During the CGH materialization step, the errors may occur from the 
unsatisfactory resolution of the devices involved or from the photolithographic 
process. 
 B. During the building of optical setup (the hardware implementation of the 
neural network), the following error sources may appear: 
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• Un-uniform optical emission of the photoemitters from the output plane of the 
neural layer (the input plane of the optical interconnection system) 

• Un-uniform sensitivity of the photodetectors in the input plane of the neural 
layer (the output plane of the optical interconnection system) 

• Axial misalignment (translation or rotation) of the three planes: the input 
plane, the hologram plane and the output plane. 

• Errors concerning the positioning of individual photoemitters or 
photodetectors in their corresponding plane. 

• Errors due to the variation of the geometrical dimensions of the setup, as a 
result of temperature variations. 

• Errors caused by interaction of the adjacent optical paths (the light flow 
deviated by the hologram to a certain photodetector also reaches the nearby 
photodetectors). 

 All the errors above can be minimized, but it is obvious they cannot be 
completely removed. Consequently, we find very useful an analysis of the influences 
these errors might have on the global behaviour of the network. 
 In the following, we will present a general qualitative study on the effects of 
the weight deviations from the accurate values. The neural network had in sight for 
this analysis is an autoassociative neural network which stores p n-dimensional 
prototype vectors >1, >2,..., >p . We’ll denote by W the accurate (theoretical) weight 
matrix and by W *the real weight matrix. We may then consider: 

WWW* δ+=       (1) 
where  ∗W  is a matrix of deviations from the computed values. 
 An energy function is defined for the neural network. The network’s dynamics 
is associated to this energy function and one can easily see that the weight values 
deviations will have important consequences on the network’s functioning. Thus, the 
random deviations of synaptic weights values can cancel the symmetry of W matrix 
and the property of diagonal elements (e. g. they may become negative), making the 
results concerning stability no longer valid. A non-symmetric or negative diagonal 
weight matrix may lead to the occurrence of cycles in the network’s evolution. 
Therefore, the network won’t reach a stable state; consequently it won’t work well as 
associative memory. 
 The weight matrix synthesis starts from a set of prototype vectors we wish to 
be stored. From energy perspective, these prototypes are global minimum of function 
E (of value -E0). If instead of the accurate W matrix the network operates using the 
W*  matrix, the energy value for some prototype becomes:  

EEWW)(E TT δ+=ξδξ−ξξ−=ξ 02
1

2
1     (2) 

 One may observe that the weights deviation from accurate values will modify 
the “energy landscape”. The prototypes minimum may change, as well as spurious 
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states minimums may occur. 

Up to this point we didn’t make any assumption on the range or statistical 
distribution of deviations. A more detailed analysis is performed in [4], to see the 
influence of deviations on the maximum number of prototypes the memory can store. 
The main result of this analysis is that, if  the weight deviations obey a gaussian 
distribution with the variance Φ∗

2, then, in case of Heb’s rule, the maximum number 
of patterns that can be stored is: 

n).(p ⋅σ−≤ δ
21380       (3) 

One can thus see that random deviations of the weights can seriously affect 
the maximum number of prototypes that may be stored in the network, as well. 

 
2. EXPERIMENTAL RESULTS  

 
 We performed a series of simulations in order to investigate the following 
problems concerning the interconnection of artificial neurons by CGH: the influence 
on the behaviour of the network of the random deviations of weights due to 
tehnological errors, the design of interconnection CGH. In  this simulations we 
considered the recurrent neural network in figure 1, designed as autoassociative  
memory. In that concern the interconnection by CGH, we considered the solution 
proposed by A. Keller in references [6], [7] using, for each neuron, one holograms to 
connect it to the other n neurons.  
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Fig. 1. Single layer recurrent neural network 

 
2.1. The influence of random deviations of the weights 
 The errors shown in previous section can produce, as we said, deviations of 
the real interconnection weights from the exact values. In order to see the influence of 
these deviations we’ve performed a large number of simulations in order to verify the 
theoretical considerations from the precedent section. We’ve studied an 
autoassociative neural network, synthesized starting from a set of 10 prototypes 
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representing the cursive script numerals 0..9. The simulations have had in view the 
influence that random weight deviations have on the following network features: 

• Noise tolerance. The network had to recognize noise affected prototypes, 
using the accurate W matrix, and also the deviated weights matrix W *. 

• The energy minimums corresponding to prototypes. For the 10 prototypes we 
have computed the energy minimums, in the accurate weights phase, as well 
as using the deviated weights.  

• The average number of iterations before stabilizing into an attractor. 
The results we’ve obtained are illustrated below: 

 I. When the associative memory operates with the accurate weights, it shows a 
very good noise immunity, recognizing prototypes affected by up to 40% noise.  If the 
weight matrix used is W*, the noise immunity decreases, so that the network is no 
longer able to recognize prototypes with the same noise contamination. 
 II. In order to study the above-mentioned objectives, we’ve performed several 
simulations affecting the weight matrix W with random deviations having various 
distribution laws and parameters. A set of simulations pursued the altering of the 
accurate matrix with random deviations having a gaussian distribution, with different 
mean and variance values. For each case, we’ve performed 100 recognitions of every 
prototype, disturbed by 40% noise. The results are shown in fig. 2. 
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Fig. 2. Recognition of some noisy prototypes by the network with  weights  disturbed 

by gaussian deviations with variance Φ ∗2−m2 Φw 2 

  
III. For every deviated matrix we used, we’ve computed the prototype 

corresponding energy values, watching the energy minimum’s variations. The 
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simulations outlined, for the above cases, a slight disturbance of the energy minimums 
(about 3% of the values corresponding to the accurate weights). Also, we’ve noticed 
that the average number of iterations slightly varies from the value of 3, no matter 
which the weights deviations are. 
 
2.2. Example of CGH design 
 An other attempt of our crew was to design an example of interconnection 
CGH. We considered a more simple recurrent network, designed to recognise the 
graphical patterns in figure 3. The network was organized as a plan of 16x16 neurons. 
In our approach it is neccessary a CGH for every neuron, to achieve the 
interconnection of this neuron to all other neurons in network. We calculated only one 
interconnection CGH, from neuron (1,1) to the other neurons in network. The method 
used was “detour phase”, with no error correction. Because the amplitude dynamic 
range resulted after Fourier transform was too great, we compressed this dynamic 
range. The resulting layout is displayd in figure 4. 
 
 
 
 
 
 
Fig. 3. Graphical patterns used as prototypes 

 
 

Fig. 4. Layout of CGH connecting 
neuron (1,1) to the other neurons 

3. CONCLUSIONS 
 
 The interconnections of optoelectronic neuron by means of CGH seem to be a 
useful solution to satisfy the necessity of dense connectivity. There are, nevertheless, 
several problems due to the spatial variant interconnection and to diffraction 
efficiency. Other problems appear as consequences of errors which can appear in the 
realization of CGH and in optical setup. The simulations have shown diminished 
performances of the autoassociative memory as a result of the random weights 
deviations from the correctly computed values. For the statistical parameters used 
above the performances’ degradation is relatively small, which proves certain 
insensitivity to those deviations. Therefore, the memory appears quite robust, not only 
in what the noise contained by the patterns to be recognized is concerned, but also in 
relation with the random weights deviations. 
 This aspect is to be elucidated in further studies. It would also be useful to 
determine quantitatively the contribution of the errors described in section 4 to the 
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deviation of actual weights from accurate ones, in order to state realistic requests for 
the hardware implementation of the autoassociative memory. 
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