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Abstract. In this paper the R-sequences are defined. The main result shows that the sequence

1 - . Lo
(an )n21, a, = F , where p > 0, defining the Riemann zeta function, is not an R-sequence.

M athematics subject classification (2000): 26A03, 26A99.

A sequence (a,),., of real numbers is called arational sequence or shortly

R-sequence if there exists arational function R such that for any positive integer n>1
the
following relation holds

a, +a, +..+a, =R(n) (1)
Example 1. The sequence (X, )., X, = ﬁ , isan R-sequence. Indeed, for any
5 n(n+
positiveinteger n>1, wehave X, + X, +...+ X, = R(n), where R(x)=il.
X +

Example 2. (Romanian Mathematical Olympiad, [1, pp. 8 and 53], [4, pp. 170 and
514]) The sequence (y,) ., Y, = 1 , isnot an R-sequence.

The argument follows by contradl ctlon. Assume that for any positiveinteger n>1

1,1, G AN o

1 2 n B(h)
where A, B e IR[x]anddeg(A) =k, deg(B)= m. From IlmAE ;—eltfollowsthat
k =m. Consider the polynomial function given by Q(x)= A(x +1)B(x)— A(x)B(x +1).
Itisclear that

lim =lim =1 2

Taking into account that A(n+1)= R(n+1)B(n+1) and A(n)= R(n)B(n), we obtain
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Q(n)=Aln+1)B(n) - B(n+)A(n)=

=R(n+1)B(n+1)B(n)- R(n)B(n B((n)+ (1): |
B(n)B(n+1
=B(n)B(n+1)R(n+1)- R(n))=—~—~~ BT
Therefore
Qn+1)_B(n+1B(n+1) (n+1} B(n+2) 1
Q(n) B(n)B(n+1) (n+2) B(n) n+2
and
- Q(n+1) _ - B(n+2) A S
MRTom e B eniz 070
relation which contradicts (2).

1 .
Example 3. The sequence (z,)..,,2, =— , isnot an R-sequence.
n

nx1’

If for any positiveinteger n>1

where P,Q e IR[x], then from well-known relation

. 1 1 1
lIiml+=+=+..+=|=+4w
2 3

Nn—oo n

it follows deg(P)> deg(Q), i.e. deg(P)> deg(Q) +1
On the other hand, from (3) one obtains

1+1+ +1
2 " n__PN

= 4
n nQ(n) @
By using Cesaro’ Lemma we have
1 1
1+ —+..+—
lim N-lim==0
n—oo n n—wo N
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and from (4) it follows Iim%&))zo, i.e. deg(P)< deg(Q)+1in contradiction with
the relation deg(P)> deg(Q)+1.

The main purpose of this present paper is to prove that the sequence (a,,) ;. @, = ip ,
) n

wherep > 0, is not an R-sequence.

It is well-known that Zip is divergent when pe(0,1] and
n

n=1

- 1

Y —=5(p) (5)
where ¢ isthe Riemann function, when p>1.

Lemma 1. Consider f :[1,c0)— [0,0)a continuous and decreasing function. Let F be
adifferentiable function such that its derivative is f. Then the sequence (x,, ) ., , given

by
x, = @)+ f(2)+...+ f(n)-F(n),n>1 (6)
is convergent.

Proof. Applying Lagrange’ Theorem to F on theinterval [k, k+ 1], k>1,itfollows
that there exists ¢, e (k,k +1) such that

F(k+1)-F(k)= f(c,)
By using the monotony of function f we obtain
f(k+)<F(k+1)-F(k)< f(c) @)

Takingk=1,2,...,nin(7) and adding all these inequalities we get

f(2)+ f(3)+..+ f(n+)<F(k+1)-F(k)< f@Q)+ f(2)+..+ f(n) (8

On the other hand let us note that
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Xy — %y = F(N)=F(n+1)+ f(n+1)>0,n>1
that is the sequence(x, ). ., isincreasing.
From the left inequality in (8) we abtain

X, = f@)+ f(2)+..+ f(n)-F(n)< f(1)- F@),n>1

that is the sequence (x,, ) ., is upper bounded.

n>1

Lemma 2. (Stolz-Cesaro’ Theorem, the case 0/0).
Let (a,)..,(8,)...be two se-quences of real numbers satisfying the following

hypothesis:

1 limea,=0and lim g, =0;
n—oo n—oo
2) The sequence (ﬂn )nZl is strict decreasing (or strict increasing);

3) There exigts lim £72~%n _ A (finite or not).
=0 ﬂn+l ~Fn

Then (e, /5, )., isconvergent and lim 22 = A,

n—oo

For the proof of this variant of well-known Stolz-Cesaro’ theorem we refer to the

papers
[3] and [2].
Let now state our main result.

nx1’">n

Theorem. The sequence (a,) .,,a =ip , wherep > 0, isnot an R-sequence.
n

Proof. Wewill consider few situationson p > 0.

Case 1: pe(0,1). Assume that there exists a rational function R such that for any
nx1

From Lemma 1 we obtain that the sequence (x, ) ., , where

n>1"’

10
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1 1 1 1
=ttt

1 2° n® (@-ppnt
is convergent. Therefore the limit

Xy

Iim(R(n) - ;j ©)

n—o (1_ p)np 1

isfinite. But
limR(n)= Iim(i+i+...+iJ:+oo
n—oo n—oo 1p 2p np
impliesthe relation R=P + R, where P isapolynomial function and R isarational
function with lim R (n)=0. It follows
n—o0

|im[R(n)—inP-1J = |im(P(n)—1inp-1j = 400

Nn—o0 1— p

by contradicting the finiteness of limit (9).

Case2: p= 1. We aready proved this case in Example 3. Now we will indicate a
different argument.
Asin the previous case, the sequence (y,,)

n>1

11 1
Y,=1+=+=+..+=-Inn
2 3 n

is convergent. Therefore lim(R(n)—Inn) isfinite. But
lim(R(n)—Inn)=lim(P(n)-Inn) =+

which is a contradiction.
Case3: p> 1, peZ, . Inthissituation, the sequence (z,). .,

1 1 1 .
Zy =+ ..+~ isconvergent to ¢(p). Then
n

"or 2P
lim(z, —<(p)= lim(R(7) - (p)) =0
It followsthat for any n>1 therelation holds
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where P,,Q, are polynomial functions and deg(P, ) < deg(Q, ).

On the other hand, there exists a positive integer k such that deg(x" Pl)z deg(Q,) .
It follows that the limit
k

im MR(n)

n—ow Ql(n)
isfinite and different from zero. Therefore, the limit

o 1 1
limn (1+2—p+...+F—g(p)j (10)

isfinite and different from zero.
But, we can write the limit (10) in the following way by using Lemma 2:

1
: 1 1 T e L
fimn (“;* +ﬁ—€<p>j—l'£‘;ﬁ—
(n+2)¢ n*

k
=—Ilim lp[n o k 1=—1im n+1
(n+2)°|(n+1)" —n (n+1) { }

Thelast limit isfinite and different from zero if and only is p+ k -1=2k, i.e. if and
only if p=k+1. Thisrelation is not possible since p is not an integer.

Case4: p> 1, peZ . Supposethat for any integer n>1
1 1 1
(n)

—+—+..+—=R(n
1* 2P n®

where Rzg and ged(P,Q)=1.

It follows R(n+1)- R(n)= e

(n+1) Pn)_ 2
(n+1) Q) (n+2)*"

Q

Thisisequivalent to

(n+2)°(P(n+21)Q(n)- P(n)Q(n+1))=Q(n)Q(n+1),n>1.

12
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It is necessary to have the equality

(x+2)°(P(x+21)Q(x)- P(x)Q(x+1))=Q(x)Q(x+1) (1)
forany xeR.

Denote U (x) = ged(Q(x), Q(x + 1)) and obtain

QX)=R (M (x), Qx+1)=Ry(x(x)

where . Therelation (11) is equivalent to

(x+1)(P(x+ )Ry (x)— P(¥)R; (x+ 1)) =U (xR, (X)R, (%)

Because R, R, arerelatively prime, it follows that at least one of then isrelatively
primeto (x+1)p . Let say that the polynomia R, hasthis property. Then R, divides
the polynomial P(x+1)R,(x)- P(x)R,(x), i.e. R, divides P. Taking into account that
R/Q and ged(P,Q)=1, it followsthat R, isconstant.

From the equality Q(x)= R, (U(x)) it followsthat Q(x+1)= RU(x+1). Combining
with Q(x+1)=R,(x)U(x) one obtains

the relation

U(x+ 1= ¥y ().
Ry
But deg(U (x +1))= deg(U (x)) implies R, isalso constant and one obtains

Q(x+1)=aQ(x), xe R, where « isaconstant. The last relation impliesthat Q is
constant and we get

—+—+..+—=kP(n),n>1
1P 2P n®
and
) 1
I|m(1+—+...+—J=J_roo
N—oo p np

acontradiction.
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