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FORMS OF THE CAYLEY-HAMILTON THEOREM FOR GENERALIZED 
SYSTEMS 

 
by 

Basil G. Mertzios 
 
Abstract: The Cayley_Hamilton Theorem for generalized systems is derived for the constant 
square matrices A 0 ,A 1 , … , A K ; k ≥ 1, by applying the fundamental idea of the CH Theorem 

for the polynomial matrix A( s ) = sk A K +…+sA 1 +A 0  ∈  R [s]nxn. Another natural extension 
of the Cayley-Hamilton Theorem to Generalized (or Singular, or Semistate, or Descriptor) and 
Matrix Fraction Description (MFDs) Systems is based on the use of the fundamental matrix 
sequence Фi, which are the matrix coefficients of the Laurent expansion of the Laplace 
transform Ф(s) of the fundamental matrix Ф(t). The fundamental matrix coefficient matrices 
Фi of the generalized system having system’s matrices Ai i=0,1,…k, k ≥ 1 may be analytically 
and recursively computed in terms of system’s matrices. The Copyright © 2003 IFAC. 
Keywords: Generalized systems, generalized state space, mathematical system theory, matrix 
algebra. 
 
 
1. INTRODUCTION 
 

The Cayley Hamilton (CH) Theorem is valid for matrices over a commutative 
ring R and it says that a matrix satisfies the characteristic equation. 

In the context of system theory, the CH Theorem in for regular state-space 
systems is expressed in terms of the powers of the system’s matrix. Ai, i=0,1,…,n. 
Moreover, since, Ai =Фi, where Фi are the coefficients of the Laurent expansion at 
infinity of the Laplace transform Ф(s)=(sI - A)-1 of the fundamental matrix Ф(t), the 
CH Theorem may be seen as a linear relation among (n+1) consecutive fundamental 
matrix coefficient matrices Фi. 

In this paper the CH Theorem is presented for the case of two or more square 
matrices Ai; i=0,1,…k, k ≥ 1, or equivalently for the generalized systems, in which 
two or more square system matrices are involved. Two distinct forms based on the 
algebraic and the systems’ theory approaches are considered. The underlying relation 
of both approaches, as well as their advantages is discussed.  

The generalized CH theorem is useful for the calculation of the state transition 
matrix of the system and therefore for the solution of the associated homogeneous 
matrix differential A(D) x(t)=0, equation, for the calculation of the controllability and 
observability Grammians of the system (Kailath, 1980), as well as in the analysis and 
synthesis procedures of the generalized systems. 

The algebraic approach for the derivation of the CH Theorem is based on the 
characteristic equation of the polynomial matrix A(s)=sk Ak+…+sA1+A0 ∈  R [s]nxn in 
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one variable s, having as coefficients the real square matrices Ai; i=0,1,…k, k ≥ 1 and 
provides direct relations among the powers of the matrices. The CH Theorem for two 
or more square matrices may be reduced to the CH Theorem of the polynomial ring  

On the other hand, in the system theory framework, the CH Theorem for 
generalized systems is expected to be a linear relation among consecutive fundamental 
matrix coefficient matrices Фi of the generalized systems, having system matrices Ai; 
i=0,1,…k, k ≥ 1 Therefore, a natural extension of the C-H Theorem in Singular and 
Matrix Fraction Description Systems (MFDs) is to use the fundamental matrix 
sequence Фi, which involve Ai; i=0,1,…k, k ≥ 1. Since Фi may be analytically and 

recursively computed in terms of Ai; i=0,1,…k, k ≥ 1, the CH direct relation may be 
also derived. 

The generalized or singular systems consist of both dynamical differential and 
algebraic equations and are characterized by impulsive behavior. Such systems arise in 
the study of inversion of state-space systems (Silverman, 1969), in large scale 
interconnected systems (Rosenbrock and Pugh, 1974; Singh and Liu, 1973), in using 
proportional-plus-derivative control laws in state-space systems (Armentano, 1985), in 
power systems (Stott, 1979), in economics (Leontieff model) (Luenberger and Arbel, 
1977), in demography models (Leslie model) (Campbell 1980, 1982), in network 
theory (Newcomb, 1981), in biology, e.t.c. 

The first attempt to formulate the CH Theorem for two constant square 
matrices, E,A, based on the algebraic approach, has been presented in (Mertzios and 
Christodoulou, 1986). Moreover, the CH Theorem may be expressed in terms of the 
fundamental matrix sequence Фi of the associated generalized singular system (Lewis, 
1986). In singular systems Ф(s) is a generalized matrix pencil Ф(s) = (sE-A)∈R 
[s]nxn. Then the fundamental sequence Фi satisfies the characteristic equation of the 
associated pencil. The explicit and recursive calculation of Фi in terms of the 
generalized system’s matrices E,A, has been addressed in (Mertzios and Lewis, 1989). 

For completeness and in order to introduce properly the notation, the relation 
of the fundamental matrix and of the CH Theorem is reviewed for the regular state-
space systems in Section 2. In Section 3 and 4 two forms of the CH theorem are 
extracted for the generalized systems and for the Matrix Differential Systems 
respectively. The first form is extracted by extending the algebraic based approach by 
considering the characteristic equation of a polynomial matrix, having as coefficients 
k ≥ 2 square matrices. The second form is extracted using the systems’ approach and 

is expressed in terms of the fundamental matrix sequence, which depends on the k ≥ 2 
system’s matrices. 

 
2. RELATION OF THE CAYLEY-HAMILTON THEOREM WITH THE 
FUNDAMENTAL MATRIX AND MARKOV PARAMETERS 
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In this section, the relation of the fundamental matrix sequence and of the CH 

Theorem is reviewed for the regular state-space systems of the form 

 X(t)=Ax(t)+Bu(t), y(t)=Cx(t)                                           (1) 

The resolvent matrix of (1) is the inverse matrix A-1(s)=(sIn-A)-1, which is a 
strictly proper rational matrix expressed as (Kailath, 1980) 

   A-1(s)=(sIn –A)-1=
)(

1
sp

B(s)                                    (2) 

where 

B(s)=Adj(sI-A)= ∑
−

=
−−∈

)1(

0
1

n

m

m
mn SB  

=InSn-1+Bn-2s+ …+B0sn-1 (3) 

p(s)=det(sIn-A)=∑
=

−

n

m

m
mn Sp

0

=sn+pn-1s+…+p0sn            (4)                               

Then the application of the classical Leverrier algorithm gives 

 pm= -
m
1

tr[ARm-1]; m=1,2,…,n                              (5a) 

 Rm=ARm-1 +pmIn; m=1,2,…,n-1                              (5b) 

 
with initial conditions Bn-1=In, pn=1. According to the CH Theorem, a single square 
matrix A, satisfies its characteristic equation 

 
 p(A)=∆ [A]=An+p1An-1+…+pn-1A+pnIn=0 (6) 

                                                                                  
Another forms of the C-H Theorem is given by the nth recursion of the form 

(5b), which gives 

 P(A)=Rn=ARn-1+pnIn=0                                              (7) 

and from the matrix equation of the form 
 

 p(A)=Фk+p1Фk-1+…+pn-1Фk-n+1+pnФk-n =0   for k ≥n              (8) 
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where, Фi=Ai, i ≥0, is the fundamental matrix sequence, defined by the Laurent 
expansion of the resolvent matrix (sIn-A)-1 at infinity, as follows: 

 A-1(s)=(sI-A)-1=∑
∞

=0i
Ais–i-1=∑

∞

=0i
Фis–i-1                  (9) 

since for the regular state space systems, A-1(s) is a strictly proper rational matrix 
functions it is seen from (2). 

The alternative identical formulation (8) of the CH theorem reveals the fact 
that the CH Theorem in system theory represents a recursive relation among the 
fundamental matrix coefficients Фi. 

The system’s Markov parameters are given in terms of Фi=Ai, as follows: 

 Hi=CФiB=CAiB; i=0,1,2,…                                 (10) 

and are sufficient for the system’s characterization and realization. Also the CH 
theorem in the form of (8) provides a recursive relation for the Markov parameters. 
Hi=CФiB, i ≥0. 

 
 

3. THE CAYLEY-HAMILTON THEOREM IN SINGULAR SYSTEMS 
 
Let 

Ex(t)=Ax(t)+Bu(t); Ex(t0
-)=Ex0                          (11a) 

Y(t)=Cx(t)                                                          (11b) 

be the generalized state space of a singular system. The generalized order of system 
(1), i.e. the number of degrees of freedom of the system, or equivalently the number of 
independent values of Ex(t0

-) equals. rank (E) ≤n-1. The inverse A-1(s) of the 
generalized pencil A(s)=(sE-A) represents the resolvent matrix of system (11) and 
gives rise to the generalized transfer function matrix H(s)=C(sE-A)-1B 

 
3.1 Algebraic approach (Characteristic Equation) 
 

The resolvent matrix of (11) is the inverse matrix A-1(s)=(sE-A)-1 which is a 
non proper rational matrix expressed as (Campbell, 1977; Cobb, 1981; Dai, 1989; 
Lewis, 1986; Verghese, 1981). 

Consider the square pencil A(s)=(sE-A)∈R [s]nxn. Then the characteristic 
equation of A(s) is  

 c(s,z)=det[zIn-A(s)]=zn+c1(s)zn-1+…+cn-1(s)z+cn(s)=0 (12) 
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where ci(s); i=1,2,…,n, are the coefficient polynomials appearing in the two-variable 
characteristic polynomial c(s,z) of A(s). 

Extending the underlying idea of the Cayley-Hamilton Theorem, A(s)∈R 
[s]nxn satisfies its characteristic equation (Mertzios et.al., 1986) 

 C[s,A(s)]=An(s)+c1(s)An-1(s)+…+cn-1(s)A(s)+cn(s)In=0 (13) 

for all s, which represents a polynomial matrix equal to zero. Therefore all its 
coefficient matrices of the powers of s are zero. 

It is seen from (13) that 

 C(s,z) z=0=c(s,0)=det[-A(s)]=cn(s)                          (14) 

So that cn(s)In=Adj(-A(s))(-A(s)). 

In view of the Faddeva (Leverrier) algorithm for regular state-systems 
(Gantmacher, 1959; Kailath, 1980) and substituting the constant matrix A with the 
pencil A(s)=(sE-A), we may write the following: 

 
Algorithm 1: Initial conditions 

T0(s)=In, c0(s)=1                                                      (15) 

Recursions 

Ti(s)=A(s)Ti-1(s)+ci(s)In, i=1,2,…n-1                    (16) 

Ci(s)=-
i
1

tr[A(s)Ti-1(s)], i=1,2,…,n                          (17) 

Terminate 

Ti-1(s)=Adj. [-A(s)]=Adj. [-sE+A]                        (18) 

Final Condition 
 
 Tn(s)=A(s)Tn-1(s)+cn(s)In=An(s)+c1(s)An-1(s)+…+cn-1(s)A(s)+                   
           +cn(s)In=c[s,A(s)]=0 (19) 

                                                                                                   
It is seen from (15)-(17) theat the degree of the polynomial matrices Ti(s), 

i=0,1,…,n and of the polynomials ci(s); i=1,2,…n is at most equal to i and may be 
written in the form 

 Ti(s)=Ai(s)+c1(s)Ai-1(s)+…+c(s)In=∑
=

i

m 0
Tj,i-msm=Tisi+Ti,1si-1+…+Ti,j,      (20) 

 ci(s)=∑
=

i

m 0

ci,i-msm=ci,0si+ci,1si-1+…+ci,i,   i=1,2,…,n  (21)                            
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Using (20) and (21), the characteristic polynomial and the Adjoint matrix of  
(-A(s)) = (-s-E+A) are written as 

cn(s)= mn
r

rnn
r

rnn
m

r

m
mnn cscscsc ,

1
1,,

0
, ...++= −

+−−
=

−∑   (22) 

1,1
1

1,1
0

1,11 ...)( −−
−

−−−
=

−−−− ++=∑ nn
f

fnn

f

m

m
mnnn sss TTTT  (23) 

where the integers f and r are defined by 

  =
∆

f degree Adj [-A(s)]=degree Adj [-sE+A]=degree T(s)=≤ rank (E)≤ n-1 
                                                                                                   (24) 

=
∆

r degree det [-sE+A]=degree c(s)≤ f≤ rank (E)≤ n-1 (25) 

In view of (19) and (20), relation (13) may be written in the form 
 
Tn,0(E, A)sn+Tn,1(E,A)s+…+Tn,n(E, A)=0                              (26) 
 

where Tn,j(E, A), j=0,1,…,n  are matrix functions of E, A. 
Moreover, the power of the polynomial matrix A(s)∈R [s]nxn may be written 

as follows 

∑
=

==−=
i

m

m
mi

ii nisss
0

, ,...,1,,)()( 0AAEA                      (27) 

with the initial conditions 

1,0,,)( ,10,0
0 ==== ms mmn AAIAA                             (28) 

The substitution of (21) and (27) in (13) results to matrix convolution 
equations, which are the matrix equalities expressed in terms of the coefficient 
matrices imninxn

mi ,...,1,0;,...,1,0;, ==ℜ∈A , and are defined 

0,,

},min{

}0,max{

1

0
,, =+= −−−−

−

−=

−

=
∑∑ ujnvnuvv

jnv

jvu

n

v
jnjn cc AIT ,   j=0,1,…nk  (29) 

where is Ai,m
nxnℜ∈ ; i=2,3,…,n; m=1,2,…,i is calculated in terms of in terms of E,A, 

by 

><−= −− mimmi
mi AEA ,)1(,                                            (30) 
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where the symbol <E µ , A v > denotes the sum of all )!!/(])![( vvv µµ
µ

µ
+=







 +
 

therms (the number of combinations of (µ+ v) times being taken µ each time), which 
consist of the product of matrices E and A appearing µ and v times respectively, i..e. 

<E µµµµ EAEAEAEA vvvv +++>= − ..., 1                     (31) 

At this point the inversion algorithm of the generalized pencil A(s)=(sE-A) is 
presented, which is based on using (20) and (21) in the 1-D recursive polynomial 
relations (16), (17) and employs 2-D recusions of constant square matrices and scalars 
(Mertzios, 1984) 

 
Algorithm 2: Two-Dimensional Recursive Inversion Algorithm (TDRIA) of 

the pencil A(s)=(sE-A). 
Initialize 

T00=In, c00=1                                                                   (32) 

Boundary conditions 

T–i,j=Ti,-j=0, for i>1, j>1                                                  (33a) 

c–i,j=ci,-j=0 , for i>1, j>1                                                  (33b) 

Ti,j=0, for j>i>0                                                             (33c) 

c–i,j=0, for j>i>0                                                             (33d) 

Ti,j=0, i=f+1, f+2,…,n-1; j=0,1,…i-f-1                         (33e) 
c–i,j=0 i=r+1, r+2,…,n; j=0,1,…i-r-1                            (33f) 

2-D recursions 

jijiji ,11,1,
ˆ

−−− −= ATETT                                           (34a) 

]ˆ[1
,, jiji tr

i
c T−= , i=1,2,…,n; j=0,1,…,i                   (34b) 

njijiji c ITT ,,,
ˆ == , i=1,2,…,n-1; j=0,1,…,i              (34c) 

Terminate 

Bi=Tn-1,i; i=n-1-f, n-f,…,n-1                                      (35a) 

pi =cn,i; i=n-r,n-r+1,…,n                                            (35b) 
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Final Conditions 

 njcc njnjnjnnjnjijn ,...,1,0;0ˆ
,1,1,1,,, ==+−=+= −−− IETATITT  (36) 

                                                                                  
Proof: 
The initial condition (32) results from (15) and(20), (21). The boundary 

conditions (33a)- (33d) result from the form of (20) and (21). 
For the proof of (33e), (33f) we use the fact that Tn-1(s)=Adj[-A(s)], is a 

polynomial matrix in s of order f, while cn(s)=det[-A(s)] is a polynomial in s of order 
r. Therefore it is seen from (21)-(23) that the maximum order of Ti(s); i=0,1,…,n-1 is 
f, and that the maximum order of ci(s); i=0,1,…,n is r. 

 
3.2 Systems’ approach (Fundamental Matrix) 
 

The CH theorem for regular state space systems in the form (8) will be 
naturally extended for generalized state space systems. Moreover the fundamental 
matrix coefficients Φ i may be analytically expressed in terms of the systems matrices 
E,A; this relation however is not straightforward and simple as in the regular systems. 

Thus the simple and nice expression in terms of Φ i may be finally written in 
terms of E,A. 

The inverse matrix A-1(s) may be written as a Laurent expansion in a deleted 
neighborhood of zero, as follows: 

A-1(s)=(sE-A)-1= ∑
∞

−=

−− Φ=Φ
µi

i
i ss )(1                                (37) 

where µ is the index of nil potency of the generalized pencil (sE A) (Langehop, 1979; 
Rose, 1978) and also the max order of infinite eigenvalues of |sE A|, i.e. the length of 
the largest relative eigenvector chain at ∞  (Lewis, 1983). In (37) iΦ ; 
i= ,...2,1,0,1,...,1, −+−− µµ  represents the fundamental matrix sequence of (11) and 

)](_[)( tLs ΒΦ=Φ  is the resolvent matrix of (37), which is given by the Laplace 

Trasform of the Fundamental matrix )(tΦ  of (11) (Mertzios and Lewis, 1989). 
The inverse matrix A-1(s)=(sE-A)-1, which is also the resolvent matrix of the 

singular system (11), may be also expressed as a rational matrix of the form 

A-1(s)=(sE-A)-1=
)(

1
sp

B(s)=
)(

1
sq

R(s)                            (38) 

where B(s) is the relative adjoint matrix and p(s) is the relative characteristic 
polynomial of the generalized pencil A(s)=(sE-A), given by 
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B(s)=Adj(sE-A)=∑
=

f

k 0
Bn-1-ksk=Bn-1-fsf+Bn-fsf-1+…+Bn-2s+Bn-1             (39) 

 p(s)=det(sE-A)=∑
=

f

k 0
pn-ksk=pn-rsr+pn-r+1sr-1+…+pn-1s+pn          (40) 

where f and r are determined by (24) and (25) respectively and  

R(s) = === −−
=

−−
=−−

∑∑ k
kn

f

k

k
kn

f

krnrn

ss
p

s
p 1

0
1

0

1)(1 RBB  

        12
1

1 ... −−
−

−−− ++++= nn
f

fn
f

fn sss RRRR             (41) 

q(s) = =+== −

−

=
−

=−−
∑∑ k

kn

r

k

rk
kn

r

krnrn

sqssp
p

sp
p

1

00

1)(1
 

       nn
r

rn
r qsqsqs +++++= −

−
+− 1

1
1 ...               (42) 

i.e. both and p(s) B(s) have been divided by pn-r, which is by construction nonzero. 
Thus, the leading coefficient qn-r, is known and equal to unity. 

Finally, equating the right hand sides of (37) and (38) respectively, it results 
that  

              Q(s)Φ (s)=R(s)                                           (43) 

where q(s), R(s), Φ (s) are expressed by (41),(42) and (37) respectively. 
Equating the coefficient matrices of positive powers of s in the two sides of (43), the 
following f+1 matrix equations result 

Rn-k-1 = =Φ=Φ −−−

−−

−−−=
−−

−

−−=
∑∑ iikn

kr

ki
ikn

kr

ki
qq 1

1

}1,max{},max{ µµ

 

         fkqq kiin

r

i
iikn

r

i

,...,1,0;1
0

1
0

=Φ=Φ= −−−
=

−−−
=

∑∑      (44) 

where qn-r=1. Relations (44) may be written analytically as 

Rn-f+1 =qn-r+2 µ−Φ +qn-r+1 1+−Φ µ + 2+−Φ µ                      (45a) 

! 

Rn-f+1 =qn-r+2 µ−Φ +qn-r+1 1+−Φ µ + 2+−Φ µ                      (45a) 

2−+− µfnR =Rn-r-1= 1121 ... −+−−+−−−+− Φ++Φ+Φ µµµµ rnrn qq  (45b) 
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rn−R = 0111 ... Φ+++Φ+Φ +−+−−+−−+− rnrnrn qqq µµµµ  (45c) 

1+−rnR = 10111 ... Φ+Φ+++Φ+Φ +−+−+−−++− rnrnrn qqq µµµµ  (45d) 

 ! 

+Φ++Φ+Φ= −+++−−−− )...( 1111 µµµµ nnnn qqqR  

            )...( 11110 µµµµ −−−+−−−− Φ+Φ++Φ+Φ+ rrrnnn qqq  (45e) 

+Φ++Φ+Φ= −+−+−−+−+− )...( 122111 µµµµ nnnn qqqR  

)...( 11101 +−−+−−+− Φ+Φ++Φ+Φ+ µµµµ rrrnnn qqq  (45f) 

)...()( 121120111 −−+−−−−− Φ+Φ++Φ+Φ+Φ= rrrnnnnn qqqqR  (45g) 

In (45) Rn-k-1, Φ i-k-1,qn-i are coefficients of sk, sk-i, si in the polynomial matrices 
R(s), Φ (s) and the polynomial q(s) respectively. Moreover, equating the coefficient 
matrices of negative powers of s in (43), the following ARMA matrix equation results 

Rn+k = ikn

r

i
q +−

=

Φ∑ 1
0

=Φ r+k+qn-r+1Φ n+k+1+…+qn-1Φ k+1+qnΦ k=0, for k≥0 (46) 

The relations (46) represent the relative Caley-Hamilton (CH) Theorem for 
generalized systems (Mertzios 1983; Lewis 1986). 

The fundamental matrix sequence Φ i may be calculated using explicit 
relations in terms of the system’s matrices E,A (Mertzios and Lewis, 1989). 

Specifically it is sufficient to calculate only Φ -1 and Φ 0 while Φ i; i=-2,-
3,…, µ−  and Φ i; i=1,2,… are recursively calculated in terms of Φ i, and Φ 0 
respectively. 

 
 

4. THE CAYLEY-HAMILTON THEOREM IN MATRIX DIFFERENTIAL 
SYSTEMS 

 
The Matrix Differential Systems (MDSs), or ARMA (Autoregressive-

Moving-Average) systems are dynamical systems of the (Willems, 1991; Baser and 
Schumacher, 2000; Campbel and Campbel and Schumacher, 2002; Vidyasagar, 1985) 

 A(D)x(t)=B(D)u(t)                             (47a) 

 y(t)=C(D)x(t)+D(D)u(t)                    (47b) 
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where x(t) nℜ∈ , u(t) mℜ∈ , y(t) 1ℜ∈ , D=
dt
d , A(D) ,0)](det[,][ ≠ℜ∈ DD nxn A  

B(D) lxmlxnnxm DDDDD ][)(,][)(,][ ℜ∈ℜ∈ℜ∈ DC  and may be considered as 
a generalization of the generalized state-space model (11). 
4.1 Algebraic approach (Characteristic Equation). 

The resolvent matrix of (47) is the inverse matrix A-1(s), where A(s) is the 
square polynomial matrix 

 A(s)=skAk+…+sA1+A0 nxns][ℜ∈   (48) 

Then the characteristic equation of is A(s) is 

 P(s,z)=det [zIn-A(s)]=p0(s)zn+p1(s)zn-1+…+pn-1(s)z+pn(s)=0  (49) 

where pi(s); i=1,2,…,n are the coefficient polynomials appearing in the two-variable 
characteristic polynomial p(s,z) of A(s). 

Extending the underlying idea of the Cayley-Hamilton Theorem, A(s) nxnℜ∈ , 
satisfies its characteristic equation (Mertzios et.al., 1986) 

    q[s,A(s)=q0(s)An(s)+q1(s)An(s)+…+qn-1(s)A(s)+qn(s)In=0    (50) 

for all s, which represents a polynomial matrix equal to zero. 
 

4.2 Systems’ approach (Fundamental Matrix) 
 

The inverse matrix A-1(s), in the convolutional type of notation, are written as 

A-1(s)=(skAk+…+sA1+A0)-1= ][1)(
)(

1
0

0

m
mf

f

m
r

m

m
mr

s
sp

s
sp −

=

=
−

∑
∑

BB  (51) 

where 

 r=deg p(s) knsf )1()(deg −≤=≤ B         (52) 

Moreover, in general A-1(s) has a Laurent expansion of the form 

 A-1(s)=(skAk+…+sA1+A0)-1= ∑
∞

−=

−−Φ
µi

i
is

1       (53) 

where 1≥µ , is the index of nil potency of A(s) at s=∞  at the Smith-McMillan 
from (Fragulis et. Al., 1991). 

Equating the right-hand side parts of (51) and (53), I obtain: 
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 ∑∑
∞

−=

−−
−

=

Φ==
µm

m
mmf

f

m
sss m ][)( 1

0
BB          (54) 

from which it is seen that f=r+ 1−µ  and the following relations result: 

 Bm=
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j
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−+−=
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µ
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0
, for m=0,1,…,f         (55) 
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r

j
j ,

0 −+−=
∑ Φ
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 m≥ 0 (56) 

Note that (54) represents the CH Theorem, which is written in the form (8) 
(Lewis, 1986). 

 
 

5. CONCLUSIONS 
 
Both the described approaches for the extraction of the Cayley-Hamilton 

theorem for the generalized and matrix differential systems may be extended to 
multidimensional systems, as well as to any other implicit state-space systems. 
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