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CHARACTERIZATIONS OF THE FUNCTIONS 
 WITH BOUNDED VARIATION 

 
by 

Daniel Lesnic 
 
 
Abstract. The present study concerns the class of the functions with bounded variations and its 
relations with other classes of well-known characterized functions. 

 
Definition 1.1. A function f : [a,b] →  R is called with bounded variation on [a,b] if 
there is M > 0 such that for any partition ∆  = (a = xo < x1 < … < xn = b) of the interval 
[a,b] we have: 

)( fV
b

a
 = sup { )( fV∆  ∆  division of [a,b]} 

is called the total variation of the function f on the interval [a,b]. 
 

Remarks. 
i) the concept of the function with bounded variation has sense only on 

compact intervals; 
ii) the definition can easily be extended when the function takes values in a 

metric space. 
 

For a better understanding of the class of functions with bounded variation 
one finds appropriate to list a series of well-known results, see for instance [1], the 
proof being reserved only for no classical results. 

 
 

1.PROPERTIES OF THE FUNCTIONS WITH BOUNDED VARIATION 
 

Proposition 2.1. A function f : [a,b] →  R is constant if and only if f is a function 

with bounded variation and )( fV
b

a
 = 0. 

 
Proposition 2.2. A function f : [a,b] →  R is monotonic if and only if f is a function 

with bounded variation and )( fV
b

a
 = | f(b) – f(a) |. 
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Theorem 2.1. The set of the functions with bounded variation on a given compact 
interval forms an algebra which is not closed. Furthermore, the set of functions with 
bounded variation and with nonzero values on a given compact interval forms a 
commutative field. 

 
Proposition 2.3. Let f : [a,b] →  R be a function with  bounded variation on [a,b] and 
let V: [a,b] →  R be a function defined as: 

V(x) = )( fV
x

a
 for any x ∈  [a,b]. 

Then V and V – f are increasing functions and satisfy the following inequality: 
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Proof. Let x, y ∈  [a,b] such that x > y. Then V(x) – V(y) = )( fV
x

y
 ≥  0 and V(x) – 

f(x) – V(y) + f(y) = )( fV
x

y
 – f(x) + f(y) ≥  0. Hence, V and V – f are increasing 

functions. Applying the Cebîşev’s inequality for the functions V and V – f results in: 

( )∫ −
b

a

dxxVxfxV )()()(  ≥  
ab −

1  









∫
b

a

dxxV )(  












−∫∫

b

a

dxxfdxxV )()(  

which is in fact the requested inequality. 
 

Theorem 2.2. (Jordan) A function is with bounded variation if and only if it can be 
represented as the difference of two increasing (decreasing) functions. 

 
Remarks. 

i) the two monotonic functions can be taken positive (by adding a 
sufficiently large constant) and continuous if in addition the initial 
function is continuous; 

ii) the decomposition is not unique. 
 

Corollary 2.1. If a function is with  bounded variation is not continuous it has only 
discontinuities of the first kind. 

 
Corollary 2.2. (Froda) The set of the discontinuity points of a function with bounded 
variation is at most countable. 
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Corollary 2.3. A function with  bounded variation is Riemann integrable. The 
reciprocal is false and a contraexemple is given by the function: 

f : [0,2] →  R ,  f(x) = 




=
≤<

0     xif                      0
2x0     if         /x)sin( πx

 

which is Riemann integrable on [0,2] being continuous, but is not with bounded 
variation on [0,2]. 

 
Corollary 2.4. (Lebesque) A function with  bounded variation is almost everywhere 
derivable. 

 
Observation. Based on corollary 2.4., a class of continuous functions which are not 
(even locally) with bounded variation is the class of continuous functions nowhere 
derivable. 

 
Proposition 2.4. A function with with bounded variation is bounded. The reciprocal is 
false and a contraexemple is given by the Dirichlet function, namely 

f : [a,b] →  R ,  f(x) = 




∩∈
∩∈

Q)-(Rb][a,     xif         1,
b][a,     xif       0, Q

 

which is bounded, but is not with bounded variation from corollary 2.2. 
 

Observation. The function f : [0,1] →  R 

f(x) = 




=
∈

0     xif            0,
]1,0(     xif         1/x,
 

is not with bounded variation being unbounded but this example shows that a 
monotonic function on a noncompact interval, namely g : (0,1] →  R, g(x)=1/x could 
be structurally far away from a function with bounded variation. 

 
Proposition 2.5. Let f,g : [a,b] →  R and K > 0, c ≥  1 be with the property that 
 

| f(x) – f(y) | ≤  K| g(x) – g(y) |c for any x, y ∈  [a,b]. 
 

If g is with bounded variation then f is with bounded variation. 
 

Proof. From proposition 2.4. there is M > 0such that |g(x)| < M for any x ∈  [a,b]. 
Then for any division ∆  = (a = xo < x1 < … < xn = b) of the interval [a,b] we have: 
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≤K (2M)c-1∑
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ii xgxgK  ≤  K (2M)c-1 )(gV

b

a
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Hence, f is with bounded variation on [a, b]. 
 

Corollary 2.5. A Lipschitz function is with bounded variation. 
 

Corollary 2.6. Let Φ  : [a,b] →  R be a Riemann integrable function. Then the 
function f : [a,b] →  R defined as: 

f(x) = ∫Φ
x

a

dtt)(   for any x ∈  [a,b] 

is with bounded variation. 
 

Corollary 2.7. A derivable function with bounded derivative on [a, b] is with bounded 
variation on [a, b]. 

 
Theorem 2.3. A derivable function f : [a,b] →  R with integrable derivative is with 

bounded variation and )( fV
b

a
 = ∫

b

a

dxxf |)('| . 

 
 

2.RELATIONS WITH OTHER CLASSES OF FUNCTIONS 
 

Proposition 3.1. Let [a,b] →f  [c,d] →g  R be functions with the properties that 
f is with bounded variation on [c, d] and g is monotonic on [a, b]. Then the 
composition gf o  is with bounded variation on [a, b]. 

 
Proof. Suppose g is an increasing function. Since f is with bounded variation, from 
Jordan’s theorem there are Φ  and Ψ  increasing functions such that f = Φ  – Ψ . 
Then gf o  = gΦ o  - gΨ o  and gΦ o  and gΨ o  are increasing functions. Finally, 
from Jordan’s theorem, results that gf o  is with bounded variation on [a, b]. 

 
Proposition 3.2. Let f : [a,b] →  R be a function with Darboux property such that |f | 
is with bounded variation. Then f is continuous. 

 
Proof. It is easy to observe that, since f has Darboux property, then |f | has this 
property as well. First we shall prove that |f | is continuous. Assume, by contradiction, 
that there is x0 a discontinuity point for |f |. 
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Since |f | is with bounded variation, from corollary 2.1., results that x0 is a 
discontinuity point of the first kind for |f |. This conclusion is in contradiction with the 
fact that |f | has Darboux property since such a function cannot have discontinuity of 
the first kind. Hence, |f | is continuous. Assume again, by contradiction, that there is y0 
a discontinuity point for f. Since f has Darboux property results that y0 is a point of 
discontinuity of the second kind for f and thus y0 is yet a point of discontinuity for |f | 
for which we have proved that is continuous. This is a contradiction and hence, f is 
continuous. 

 
Observation. We recall that a function with bounded variation and with Darboux 
property is necessary continuous. This observation will be referred as “analysis of 
discontinuities”. The following corollaries can easily be proved from this analysis. 

 
Corollary 3.1. Let a, x0 and b be real numbers such that a < x0 < b and let f : [a,b] →  
R be a function with the following properties: 

i) f is local with bounded variation at x0, i.e. there is a compact interval 
included in [a, b] and containing in interior the point x0 on which f is with bounded 
variation. 

ii) f possesses primitives on (a, x0) and (x0, b). 
Then f possesses primitives on (a, b) if and only if  f is continuous at x0. 
 

Corollary 3.2. Let f : [a,b] →  I be a function, where I is an interval included in [a, 
b]. Then: 

i)If f...ff ooo  is discontinuous and with bounded variation then f has not 
Darboux property. 

ii) If f has Darboux property and ff o  is with bounded variation then f(2n) = 

43421 ooo
times)n2(

f...ff  is continuous. 

 
Corollary 3.3. A function with bounded variation which can be represented as a ratio 
of two functions possessing primitives is continuous. 

 
Lemma 3.1. Let f : [a,b] →  R be a continuous one to one function and let g : [a,b] 
→  R be a function possessing primitives. Then the product f . g possesses primitives. 

 
Proof. Since f is one-to-one there is an left-inverse f -1, say, such that ( ff 1 o− )(x) = x 
for any x ∈[a, b]. In addition, since f is continuous results that f -1 is continuous. Let G 
be a primitive of the function g, so G’ = g. then the function 1fG −o  is continuous and 
hence possesses primitives. Let H be such a primitive, so H’ = 1fG −o . We prove 
now that the function f . g possesses primitives by showing that the function T : [a,b] 
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→  R, defined as T(x) = f(x).G(x) – ( fH o )(x) is derivable and its derivative is the 
function f . g. for this, let y be an arbitrary point in [a, b]. Then, 
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We apply now Lagrange’s mean value theorem to the function H on the 
interval [f(x), f(y)]. Thus there is ξ∈[f(x), f(y)] such that: 

H(f(x)) – H(f(y)) = ( ))()( yfxf − ))(( 1 ξ−⋅ fG , 
whence it exists xη ∈[x, y] such that 

yx
yfHxfH

−
− ))(())((  = G( xη ). 

Then the limit calculated above becomes: 
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 = f(y).g(y). 

 
So, T is derivable and T’ = f . g, hence f . g possesses primitives. 

 
Lemma 3.2. Let f : [a,b] →  R be a continuous monotonic function and let g : [a,b] 
→  R be a function possesses primitives. 
 
Proof. Suppose f is an increasing function on [a, b]. Then the function h : [a,b] →  R, 
defined as h(x) = f(x) + x, for any x∈[a, b] is a strictly increasing function and hence 
a one-to-one function. From lemma 3.1. it results that the function p : [a,b] →  R 
defined as: 

p(x) = h(x)g(x) = (f(x) + x)g(x) for any x∈[a, b] 
 

possesses a primitive P, say, such that P’ = p. Also, from lemma 3.1.. it results that the 
function q : [a,b] →  R defined as: 

q(x) = x . g(x)  for any x∈[a, b] 
possesses a primitive Q, say, such that Q’ = q. 
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It is obvious now that f . g = p-q and thus a primitive of the product f . g is the 
derivable function P – Q. 
 
Theorem 3.1. Let f : [a,b] →  R be a continuous function with bounded variation and 
let g : [a,b] →  R be a function possesses primitives. Then the product f . g possesses 
primitives. 
 
Proof. Since f is a continuous function with bounded variation, from Jordan’s 
theorem, there are Φ  and Ψ  two continuous increasing functions such that f = Φ  – 
Ψ . Then f . g = Φ . g - Ψ . g. now using lemma 3.2 it results that Φ . g and Ψ . g 
possesses primitives and hence, product f . g possesses primitives. 

 
Proposition 3.3. Let f : [a,b] →  R be a function with bounded variation with the 
property that there is a function g : [a,b] →  R\{0} possesses primitives such that the 
product f . g possesses primitives. Then the product f . h possesses primitives for any 
function h : [a,b] →  R possessing primitives. 

 
Proof. Let Φ : [a,b] →  R be a function defined as 

Φ (x) = f(x) . g(x)  for any x∈[a, b]. 
Then from hypothesis the functions g and Φ  possess primitives and f is with 

bounded variation. Since g(x) ≠ 0 for any x∈[a, b] and f = Φ /g, from corollary 3.3 it 
results that f is continuous. Now the conclusion of the proposition is given by the 
proposition 3.1. 

 
Definition 3.1. Two sets are said to be equipotent (or cardinal equivalent) if there is an 
univoc application between them. 

 
Proposition 3.4. For a, b ∈  R denote 

BV[a, b] = { f : [a,b] →  R   |   f is with bounded variation on [a, b]} 
B[a, b] = { f : [a,b] →  R   |   f is bounded on [a, b]} 

DP[a, b] = { f : [a,b] →  R   |   f has Darboux property on [a, b]} 
Then BV[a, b] and B[a, b] are not equipotent and so there are BV[a, b] and DP[a, b]. 
Proof. Assume, by contradiction, that there is an univoc application Φ : B[a,b] →  
BV[a, b] and take f : [a,b] →  R defined as 

f(x) = 




∩∈
∩∈

Q)-(Rb][a,     xif   1,
b][a,     xif  0, Q

. 

Obviously, f ∈  B[a, b] and 

(Φ o f)(x) = 




∩∈Φ
∩∈Φ

Q)-(Rb][a,     xif       (1),
b][a,     xif       (0), Q

. 
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Recall now that Φ (f) is a Dirichlet-type function and it is with bounded 
variation if and only if is constant, but this in contradiction with Φ  is a one-to-one 
function. Hence, BV[a, b] and B[a, b] are not equipotent.  

For the second conclusion assume again, by contradiction, that there is an 
univoc application Ψ  : BV[a,b] →  DP[a, b] and take g : [a,b] →  R defined as 

 

g(x) = 




+∈
+∈

b]b)/2,[(a     xif      1,
b)/2](a[a,     xif    0,

. 

 
Obviously, g∈  BV[a, b] and 

(Ψ o g)(x) =.




+∈Ψ
+∈Ψ

b]b)/2,[(a     xif      (1),
b)/2](a[a,     xif     (0),

 

 
Again Ψ (g) is a Dirichlet-type function and has Darboux property if and 

only if is constant, but this in contradiction with Ψ  is a one-to-one function. Hence, 
BV[a, b] and DP[a, b] are not equipotent. 
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