LOCALLY COMPACT BAER RINGS

by Mihail Ursul

Abstract. Locally direct sums [W, Definition 3.15] appeared naturally in classification results for topological rings (see, e.g.,[K2], [S1], [S2], [S3], [U1]). We give here a result (Theorem 3) for locally compact Baer rings by using of locally direct sums.

1. Conventions and definitions

All topological rings are assumed associative and Hausdorff. The subring generated by a subset A of a ring R is denoted by $\langle A \rangle$. A *semisimple* ring means a ring semisimple in the sense of the Jacobson radical. A non-zero idempotent of a ring R is called *local* provided the subring eRe is local. The closure of a subset of a topological space X is denoted by \overline{A} . The Jacobson radical of a ring R is denoted by J(R). A *compact* element of a topological group [HR, Definition (9.9)] is an element which is contained in a compact subgroup. The symbol ω stands for the set of all natural numbers. All necessary facts concerning summable families of elements of topological Abelian groups can be found in [W, Chapter II,10, pp.71-80].

If R is a ring, $a \in R$, then $a^{\perp} = \{x \in R: ax=0\}$.

Recall that a ring R with identity is called a *Baer ring* if for each $a \in R$, there exists a central idempotent ε such that $a^{\perp}=R\varepsilon$.

The following properties of a Baer ring are known:

i) Any Baer ring does not contain non-zero nilpotent elements.

Indeed, let $a \in R$, $a^2=0$. Let $a^{\perp}=R\epsilon$, where ϵ is a central idempotent of R. Then $a=a\epsilon=0$.

ii) If R is a Baer ring, $a,b \in R$, n a positive natural number and $b^n a=0$, then ba=0.

Indeed, $b^{n-1}ab=0$, hence $b^{n-1}aba=0$. Continuing, we obtain that $(ba)^n=0$, hence ba=0.

Recall [K1,p.155] that a topological ring R is called a *Q-ring* provided the set of all quasiregular elements of R is open (equivalently, R has a neighbourhood of zero consisting of quasiregular elements).

Definition 1. A topological ring R is called *topologically strongly regular* if for each $x \in R$ there exists a central idempotent e such that $\overline{Rx} = Re$.

We note that a topologically strongly regular ring has no non-zero nilpotent elements.

Let $\{R_{\alpha}\}_{\alpha\in\Omega}$ be a family of topological rings, for each $\alpha\in\Omega$ let S_{α} be an open subring of R_{α} . Consider the Cartesian product $\prod_{\alpha\in\Omega} R_{\alpha}$ and let $A=\{\{x_{\alpha}\}\in\prod_{\alpha\in\Omega} R_{\alpha}:$ $x_{\alpha}\in S_{\alpha}$ for all but finitely many $\alpha\in\Omega\}$. The neighborhoods of zero of $\prod_{\alpha\in\Omega} S_{\alpha}$ endowed with its product topology form a fundamental system of neighborhoods of zero for a ring topology on A. The ring A with this topology is called the *local direct sum* [W,Definition 31.5] of $\{R_{\alpha}\}_{\alpha\in\Omega}$ relative to $\{S_{\alpha}\}_{\alpha\in\Omega}$ and is denoted by $\prod_{\alpha\in\Omega} (R_{\alpha}:S_{\alpha})$. **Definition 2.** A topological ring R is called a *S-ring* if there exists a family $\{R_{\alpha}\}_{\alpha\in\Omega}$ of locally compact division rings with compact open subrings S_{α} with identity such that R is topologically isomorphic to the locally direct product $\prod_{\alpha\in\Omega} (R_{\alpha}:S_{\alpha})$.

We will say that an element x of a topological ring R is *discrete* provided the subring Rx is discrete.

2. Results

Lema 1. Let $R_1, ..., R_m$ be a finite set of division rings. If $\{e_{\gamma} : \gamma \in \Gamma\}$ is a family of non-zero orthogonal idempotents of $R = R_1 \times ... \times R_m$ it is finite.

Proof. Assume the contrary, i.e., let there exists an infinite family $\{e_n : n \in \omega\}$ of non-zero orthogonal idempotents. Then $\operatorname{Re}_0 \subset \operatorname{Re}_0 + \operatorname{Re}_1 \subset \ldots$ is a strongly increasing chain of left ideals, a contradiction.

Theorem 2. A locally compact totally disconnected ring R is a S-ring if and only if it satisfies the following conditions:

i) R is topologically strongly regular,

ii) every closed maximal left ideal of R is a two-sided ideal and a topological direct summand as a two-sided ideal,

iii) every set of orthogonal idempotents of R is contained in a compact subring.

Proof. We note that if a locally compact totally disconnected ring satisfies the conditions i)-iii), then every its idempotent is compact.

(⇒) Let $R=\prod_{\alpha\in\Omega} (R_{\alpha}:S_{\alpha})$, where each R_{α} is a locally compact totally disconnected ring with identity e_{α} and S_{α} is an open compact subring of R_{α} containing e_{α} .

i) Obviously.

ii) Let $x = \{x_{\alpha}\} \in \mathbb{R}$. Denote $\Omega_0 = \{\alpha \in \Omega : x_{\alpha} \neq 0\}$. Then $\varepsilon = \{\varepsilon_{\alpha}\}$, where $\varepsilon_{\alpha} = 0$ for $\alpha \notin \Omega_0$ and e_{α} otherwise, is a central idempotent of \mathbb{R} . Obviously, $x = x\varepsilon$, hence $\overline{Rx} \subseteq \overline{R\varepsilon} = R\varepsilon \subseteq R\varepsilon x \subseteq R\overline{x}$ and so $\overline{Rx} = R\varepsilon$.

iii) We claim that every closed maximal left ideal of R has the form $\{0_{\alpha_0}\} \times \prod_{\beta \neq \alpha_0} (R_{\beta} : S_{\beta})$ for some $\alpha \in \Omega_0$. Indeed, every set of this form is a closed

maximal left ideal of R.

Conversely, let I be a closed left ideal of R. Assume that $pr_{\alpha}(I)\neq 0$. for every $\alpha \in \Omega$. Then $pr_{\alpha}(I)=R_{\alpha}$ for every $\alpha \in \Omega$. There exists $y=e_{\alpha} \times \prod_{\delta \neq \alpha} x_{\delta} \in I$ and so $e'_{\alpha} = e_{\alpha} \times \prod_{\beta \neq \alpha} 0_{\beta} \in I$. For any $x \in R$, $x \in \overline{\langle e'_{\alpha} \ x : \alpha \in \Omega \rangle} \subseteq I$, a contradiction.

It follows that there exists $\alpha_0 \in \Omega$ such that $I \subseteq \{0_{\alpha_0}\} \times \prod_{\beta \neq \alpha_0} (R_{\beta} : S_{\beta})$. Since I is a maximal left ideal, $I = \{0_{\alpha_0}\} \times \prod_{\beta \neq \alpha_n} (R_{\beta} : S_{\beta})$.

(\Leftarrow) Let now be ring R a totally disconnected locally compact ring satisfying i)iii). Then R is is semisimple. Indeed, the Jacobson radical of R is closed [K2]. If $0\neq \epsilon \in J(R)$, then $\overline{Rx} = R\varepsilon$, ϵ is a central idempotent. Then $0\neq \epsilon \in J(R)$, a contradiction.

Then the intersection of all left maximal closed ideals will be equal to zero. It follows that any idempotent of R is central. Let I_0 is a closed left ideal of R. By assumption I_0 is a two-sided ideal and there exists an ideal R_0 such that $R=R_0\oplus I_0$ is a topological direct sum. Evidently, R_0 is a locally compact division ring; denote by e_0 the identity of R_0 . Obviously, e_0 is a compact central idempotent of R.

Assume that we have constructed a family $\{e_{\alpha}: \alpha < \beta\}$ of orthogonal idempotents such that each Re_{α} is a locally compact division ring. By iii) the family $\{e_{\alpha}: \alpha < \beta\}$ lies in a compact subring, hence it is summable. Denote $\sum_{\alpha < \beta} e_{\alpha} = e$ and assume that R(1-

e) $\neq 0$. Consider the Peirce decomposition R=Re \oplus R(1-e). The ring R(1-e) satisfies the condition of Theorem. If R(1-e)=0, then e is the identity element of R. Assume that

 $R(1-e)\neq 0$. Then there exists a non-zero idempotent $0\neq e_{\beta}\in R(1-e)$ such that $R(1-e)e_{\beta}=Re_{\beta}$ is a locally compact division ring.

This process may be continued and we obtain a family $\{e_{\alpha}: \alpha \in \Omega\}$ of orthogonal idempotents such that $1=\sum_{\alpha \in \Omega} e_{\alpha}$ is the identity of R and each R e_{α} is a division ring.

Fix a compact open subring W of R. We claim that R topologically isomorphic to $\prod_{\alpha \in \Omega}$ (Re_{α}:We_{α}). Indeed, put $\psi(r)=(r_{\alpha})$ for each $r \in R$. Firstly we will prove that ψ is defined correctly. Let U be an open subring of R such that rU \subseteq W. There exists a finite

subset $\Omega_0 \subseteq \Omega$ such that $e_{\alpha} \in U$ for all $\alpha \notin \Omega_0$. Then for each $\alpha \notin \Omega_0$, $re_{\alpha} \in rU \subseteq W \Rightarrow$ $re_{\alpha} \in W e_{\alpha}$.

It is easy to prove that ψ is an injective continuous ring homomorphism of R in $\prod (Re_{\alpha}:We_{\alpha})$.

 $\alpha \in \Omega$

 ψ is dense in $\prod_{\alpha \in \Omega}$ (Re_{α}:We_{α}): It suffices to show that $\psi(R) \supseteq \bigoplus_{\alpha \in \Omega} Re_{\alpha}$. Indeed, if $r = r_{\alpha_1} + ... + r_{\alpha_n} \in R_{\alpha_1} + ... + R_{\alpha_n}$, then $\psi(r) = r$.

 ψ is open on its image: Indeed, if U is a compact open subring of R then there exists a compact open subring U_1 of R such that $U_1W \subseteq U \cap W$. There exists a finite subset $\Omega_0 = \{\alpha_1, \dots, \alpha_n\} \subseteq \Omega$ such that $e_\alpha \in U_1$ for all $\alpha \notin \Omega_0$. Choose a compact open subring U_2 of R such that $U_2 e_{\alpha i} \subseteq U$ $i \in [1,n].$ Then for $\Psi(\mathbf{U}) \supseteq U_2 e_{\alpha_1} \times \ldots \times U_2 e_{\alpha_n} \times \prod_{\alpha \neq \alpha_1, \ldots, \alpha_n} W e_{\alpha} :$ We claim that if $u_1,...,u_n \in U_2, w_\alpha \in W_\alpha, \alpha \neq \alpha_1,...,\alpha_n,$ then the family $\{u_i e_i : i \in [1, n]\} \cup \{w e_\alpha : \alpha \neq \alpha_1, ..., \alpha_n\}$ is summable. It suffices to show that the family $\{we_{\alpha} : \alpha \neq \alpha_1, ..., \alpha_n\}$ is summable in W. Let V be an arbitrary open ideal of W. There exists a finite subset $\Omega_1 \subseteq \Omega$, $\Omega_1 \supseteq \Omega_0$ such that $e_\alpha \in V$ for all $\alpha \notin \Omega_1$. Then for each $\alpha \notin \Omega_1$, $w_{\alpha} = w_{\alpha} e_{\alpha} \in WV \subseteq V$, therefore we have for each $\Omega_2 \subseteq \Omega$, $\Omega_2 \cap \Omega_1 = \emptyset$, $\sum_{\beta \in \Omega_{\gamma}} w_{\beta} \in V. \text{ Therefore } \{we_{\alpha} : \alpha \neq \alpha_{1}, ..., \alpha_{n}\} \text{ is summable in R.}$

Denote
$$x = u_1 e_{\alpha_1} + ... + u_n e_{\alpha_n} + \sum_{\alpha \neq \alpha_1,...,\alpha_n} w_{\alpha}$$
. Then $x \in U$ and $\psi(x) =$

$$u_1 e_{\alpha_1} \times ... \times u_n e_{\alpha_n} \times \prod_{\alpha \neq \alpha_1,...,\alpha_n} W_{\alpha} .$$
 We have proved that $\psi(U)$
$$\supseteq U_2 e_{\alpha_1} \times ... \times U_2 e_{\alpha_n} \times \prod_{\alpha \neq \alpha_1,...,\alpha_n} W e_{\alpha} .$$

Theorem 3. Let R be a totally disconnected locally compact Baer ring. Then R is topologically isomorphic to a locally direct sum of locally compact Baer Q-rings which are locally isomorphic to locally compact Q-rings without nilpotent elements and without discrete elements.

Proof. Let V be a compact open subring of R. Each idempotent of R is central. There exists an idempotent $e \in R$ and a family $\{e_a\}_{\alpha \in \Omega}$ of orthogonal local idempotents of V such that $e=\sum_{\alpha \in \Omega} e_{\alpha}$. Then R is topologically isomorphic to a direct topological product $\prod_{\alpha \in \Omega} (R_{\alpha}: Ve_{\alpha})) \times R(1-e)$.

Rings Re_{α} , $\alpha \in \Omega$, R(1-e) are local Q-rings. It suffices to show that every locally compact Baer Q-ring is locally isomorphic to a Q-ring without non-discrete elements.

Let V be an open compact quasiregular subring of R. We affirm that an element $x \in R$ is discrete if and only if xV=0. Indeed, if x is a discrete element then there exists a neighbourhood U of zero such that $Rx \cap U=0$. Choose a neighbourhood W of zero such that $Wx \subseteq V$. Then, evidently, Wx=0. There exists a natural number n such that $V^n \subseteq W$. Then $v^n x=0$ for each $v \in V$, hence xv=0. Then xV=0=Vx. (Actually we proved that in a topological ring without non-zero nilpotent elements the notion of a discrete element is symmetric.)

Denote by I the set of all discrete elements of R. Then I is an ideal of R. We affirm that $I \cap V=0$: if $x \in I \cap V$, then xV=0, hence $x^2=0$ which implies that x=0.

We affirm that R/I has no non-zero nilpotent elements: if $x^2 \in I$, then $x^2V=0$. Then $x^2v=0$ for every $v \in V$, hence xv=0. We proved that xV=0, therefore $x \in I$.

We claim that R/I has no non-zero discrete elements. Let $x \in R, xW \subseteq I$ for some neighbourhood W of 0_R . Then xWV=0, hence xVn=0 for some natural number n, hence xV=0, and so $x \in I$.

References

- [HR] E.Hewitt and K.A.Ross, Abstract Harmonic Analysis. Volume I. Structure of Topological Groups. Integration Theory. Group Representations. Die Grundlehren der Mathematischen Wissenschaften. Band 115. Springer-Verlag, 1963.
- [H] K.H.Hofmann, Representations of algebras by continuous sections, Bulletin of the American Mathematical Society, 78(3)(1972),291-373.
- [K1] I.Kaplansky, Topological rings, Amer.J.Math.,69(1947),153-183.
- [K2] I.Kaplansky, Locally compact rings. II.Amer. J. Math., 73(1951), 20-24.
- [S1] L.A.Skorniakov, Locally bicompact biregular rings. Matematicheskii Sbornik (N.S.) 62(104)(1963),3-13.
- [S2] L.A.Skorniakov, Locally bicompact biregular rings. Matematicheskii Sbornik (N.S.) 69(11)(1966),663.

- [S3] L.A.Skorniakov, On the structure of locally bicompact biregular rings. Matematicheskii Sbornik (N.S.) 104(146)(1977),652-664.
- [U1] M.I.Ursul, Locally hereditarily linearly compact biregular rings. Matematicheskie Issled.,48(1978),146-160,171.
- [U2] M.I.Ursul, Topological Rings Satisfying Compactness Conditions, Kluwer Academic Publishers, Volume 549,2002.
- [W] S.Warner, Topological Rings, North-Holland Mathematics Studies 178, 1993.

Author:

Mihail Ursul, University of Oradea, Romania