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EXPONENTIAL STABILITY OF STOCHASTIC 
DISCRETE-TIME, PERIODIC SYSTEMS IN HILBERT 

SPACES 
 

by 
Viorica Mariela Ungureanu 

 
 

Abstract. In this paper we consider the linear discrete time systems with periodic coefficients 
and independent random perturbations (see [4] for the finite dimensional case). We give 
necessary and sufficient conditions for the exponential stability property of the discussed 
systems. In  order to obtain these characterizations we use either the representations of the 
solutions of these systems obtained by the authoress in [5] or the Lyapunov equations. These 
results are the periodic versions of those given in [5]. 
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1. Introduction 
 

In this paper we treat the problem of the exponential and uniform exponential 
stability of time-varying systems described by linear difference equations, with 
periodic coefficients, in Hilbert spaces. We yield some characterizations of the 
uniform exponential stability property, which used the two representation theorems of 
the solutions of these systems given in [5]. We also prove that in the periodic case (but 
not in the general case), the uniform exponential stability is equivalent with the 
exponential stability. Another necessary and sufficient conditions for the exponential 
stability was obtained in terms of Lyapunov equations. 
 
2.Preliminaries 
 

Let H be a real separable Hilbert space and L(H) be the Banach space of all 
bounded linear operators transforming H into H. We write  〈. , .〉 for the inner product 
and  ║.║ for norms of elements and operators. We denote by a ⊗ b, a, b ∈ H the 
bounded linear operator of L(H) given by a ⊗ b(h) =  〈h, b〉 a for all h ∈ H. 
 
2.1 Nuclear operators  

The operator A ∈ L(H) is said to be nonnegative, and we write A ≥ 0, if A is self  
adjoint and 〈Ax, x〉 ≥ 0 for all x ∈ H. We say that A ∈ L(H) is a positive operator (A > 
0) if there exists γ > 0 such that A > γI, where I is the identity operator on H. For A ∈ 
L(H), A ≥ 0 we denote by A½  the square root of A (see [2]) and by  |A| the operator 
(A*A)½.  Let A ∈ L(H), A ≥ 0 and{en}n ∈ N* be an orthonormal basis in H. We define 
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Tr(A) by Tr (A)= ><∑
∞

=1

,
n

nn eAe . It is not difficult to see that Tr(A) is a well defined 

number independent of the choice of the orthonormal basis {en}n ∈ N*. 
If A ∈ L(H) we put ║A║1 =Trace(|A|)1=Trace(|A|) ≤ ∞ and we denote by C1(H) 

the set{A ∈ L(H)/║A║1 < ∞}. The elements of C1(H) are called nuclear operators. 
It is known (see [3]) that C1(H) (the operators’ trace class ) is a Banach space 

endowed with the norm  ║.║1 and for all A ∈ L(H) and B ∈ C1(H) we have AB, BA       
∈ C1(H). 

We denote by H and N the subspaces of L(H) and C1(H) formed by all self  
adjoint operators and by K (respectively K1) the cones of all nonnegative operators of 
H (respectively N ). H is a Banach space and since N is closed in C1(H) with respect to 
║.║1 we deduce that it is a Banach space, too.  

 
2.2 Covariance operators 

Let (Ω, �, P) be a probability space and ξ be a real (or H) valued random 
variable on  Ω. WE write E(ξ) for his mean value (expectation). We denote by L2  =  L2  

(Ω, �, P, H) the space of all equivalence class of H-valued random variables ξ such 
that E ║ξ║2 < ∞, (with respect to the equivalence relation ξ ~ η ⇔  E (║ξ ─ η║2) = 
0).  

It is useful to recall (see [1]) that if  ξ is a H valued random variable such as  E 
║ξ║2 < ∞, then we have 〈E(ξ), u〉 = E〈 ξ, u 〉 for all u ∈H. 

If  ξ ∈ L2, we define the operator E (ξ ⊗ ξ) : H → H, E (ξ ⊗ ξ) (u) = E(〈u , ξ〉 ξ) 
for all u ∈H.  

It is easy to see that E (ξ ⊗ ξ), which is called the covariance operator of  ξ, is a 
linear, bounded and nonnegative operator. The operator E (ξ ⊗ ξ) is nuclear and  

 ║ E (ξ ⊗ ξ) ║1 = E║ ξ ║2.                        (1) 
 

2.3 Representations of the solutions of linear discrete-time systems 
Let us consider the stochastic system 
 xn+1 = Anxn+ ξnBnxn , 

 xk= x                                                            (2) 
where n , k ∈  N, n ≥ k, An , Bn , ∈ L (H) and  ξn are real independent random variables, 
which satisfy the conditions E(ξn) = 0 and E│ ξn │2 = bn < ∞ for all n ∈ N.  

We denote by X(n, k), n ≥ k ≥ 0 the random evolution operator associated with 
the linear system (2) i.e X (k, k) = I and X(n, k) = (An-1+ ξn-1 Bn-1)…(Ak+ξkBk) for all 
n& > k. 

If xn = xn (k, x) is the solution of the system (2) then it is unique and xn (k, x) = 
X(n, k)x. 

It is not difficult to see that E(xn ⊗ xn) is a nuclear , nonnegative operator and 
║E(xn ⊗ xn)║1 = E║xn║2.                                            (3) 
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We consider the linear operator Un : N →  N , 
 Un(Y ) = AnYA*

n  + bnBnYB*
n                                 (4) 

Which is well-defined because N  is a (left and right) ideal of space L(H). 
Since║Un(Y)║1 ≤ (║An║2 + ║Bn║2)║Y║1 we deduce that Un ∈ L(N ). We associate to 
(2) the deterministic system defined on N : 

 yn+1 = Unyn ,                                                (5) 
 yk = R , R ∈ N’                

If Y(n, k) is the evolution operator associated with the system (5) then Y(n, k) = 
Un-1Un-2 …Uk if n-1 ≥ k and Y(k, k) = I , where I is the identity operator on N. Since, Un  
∈ L(N ) it follows that Y(n, k) ∈ L(N ) for all n ≥ k ≥ 0. 

Let us denote by yn = yn(k, R) the solution of (5) with yk = R ∈ N ; it is clear that 
it is unique and   yn(k, R) =  Y(n, k) (R) for all n, k  ∈ N, n ≥ k, R  ∈ N. 

The fallowing theorem gives a representation of the covariance operator 
associated to the solution of (2) by using the evolution operator Y(n, k). 

 
Theorem 1 (see [5])If xn = xn(k, x) is the solution of (2), then  E(xn  ⊗  xn) is the 
solution of the system (5) with the initial condition yk = x ⊗ x. So  

 E║X(n, k)x║2 = ║Y(n, k) (x ⊗ x)║1                  (6) 
for all  n ≥ k ≥ 0 and x ∈ H. 

We consider the mapping Qn : H →  H  
 Qn(S) = *

nA SAn+bn
*
nB SBn ,                          (7) 

where  An , Bn and bn = E│ξn│2  < ∞ are defined as above. 
It is easy to see that Qn is a linear and bounded operator. 
Let us define the operator T(n, k) by T(n, k) = QkQk+1…Qn-1 ∈ L(H ) for all n-1 ≥ 

k and T(k, k) = I, where I is the identity operator on H . 
 

Theorem 2 [5] If X(n, k) is the random evolution operator associated with the system 
(2) then we have 

〈T(n, k)(S)x, y〉 = E 〈S X (n, k)x, X (n, k)y〉                                      (8) 
for all n ≥ k ≥ 0, S ∈ H  and x, y ∈ H. 

The following lemma is known (see [6]). 
 

Lemma 3   Let T ∈L(H ). If T(K) ⊂  K  then║T║ = ║T(I)║, where I is the identity 
operator on H. 

 
Since Qp(K) ⊂  K for all p ∈ N we deduce that T(n, k) (K) ⊂  K . Then║ T(n, 

k)║ = ║T(n, k)(I)║. 
The following theorem establishes a relation between the operator T(n, k) and 

the evolution operator Y(n, k). 
 

Theorem 4  [5]  If H is a real Hilbert space then 
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 ║Y(n, k) (x ⊗ x)║1 = 〈 T(n, k)(I)x, x〉   
and 

 ║T(n, k)║ = ║Y(n, k)║1 , 
where ║Y(n, k)║1 =

1, 1

sup
=∈ TNT
║Y(n, k)(T)║1 and I is the identity operator on H. 

 
2.4 Periodic solutions of stochastic discrete-time systems 

If Ñ  ∈ N, Ñ >1 we say that the sequence An  ∈ L(H) (respectively bn ∈ R) is Ñ-
periodic if An+Ñ = An (respectively b n+Ñ = bn), n ≥ 0. 

We need the following hypothesis: 
H1 : The sequences An , Bn ∈ L(H) and bn = E│ ξn │2 are Ñ-periodic, where An , 

Bn  and ξn are the coefficients of the system (2). We have the following proposition:  
 
Proposition 5 If H1 holds and T(n,k), Y(n,k) are the operators introduced in the 
previous subsection then 

 a) T(n + Ñ, k + Ñ) = T(n,k) and T(nÑ, 0) = T(Ñ,0)n, n ≥ k ≥ 0, 
 b) Y(n + Ñ, k + Ñ) = Y(n,k) and Y(nÑ, 0) = T(Ñ,0)n, n ≥ k ≥ 0, 
 c) E ║xn+Ñ (k + Ñ,x)║2 = E║xn (k,x)║2 for all  n ≥ k ≥ 0. 
 

Proof. Since the operators Un ,Qn introduced by (4), respectively (7) are Ñ – periodic, 
the statements a) and b) follows from the definitions of  T(n,k) and Y(n,k). 

From the relation (6) we obtain 
 
E ║xn+Ñ (k+Ñ, x)║2 = ║Y (n+Ñ, k+Ñ) (x⊗ x)║1 
 

and c) is a consequence of b).   ■ 
 
Remark 6 Assume H1 holds. From the definition of T(n, k) (respectively Y(n,k) ) we 
deduce that if 0 ≤ r1, r2 <Ñ and α ≠ β then 

 T(αÑ + r1, βÑ + r2) = T (Ñ, r2) T(Ñ,0)α-β-1 T(r1, 0) 
and 

 Y (αÑ + r1, βÑ + r2) = Y (r1, 0) Y(Ñ,0)α-β-1 Y(Ñ, r2). 
 

3. Uniform exponential stability 
 

Definition 7 We say that the system (2) is uniformly exponentially stable if there exist   
β ≥ 1, a ∈  (0,1) and n0 ∈  N such that we have 

 E║ X (n,k)x║2 ≤ βan-k║x║2 (9)
   
for all n ≥ k ≥ n0 and x ∈  H. 
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Definition 8 The system (2) is exponentially stable if there exist β ≥ 1, a ∈  (0,1) and 
n0 ∈  N such that we have 

 E║ X (n,0)x║2 ≤ βan-kE║X (k, 0)x║2 (10) 
for all n ≥ k ≥ n0 and x ∈H. 

 
From Theorems 2, 9 and the above definitions we obtain the following results. 
 

Theorem 9 The following statements are equivalent: 
a) the system (2) is uniformly exponentially stable; 
b) there exist β ≥ 1, a ∈  (0,1) and n0 ∈  N such that ║Y (n, k)║1 ≤ βan-k for all n 

≥ k ≥ n0.; 
c) there exist β ≥ 1, a ∈  (0,1) and n0 ∈  N such that ║T (n, k)║ ≤ βan-k for all n ≥ 

k ≥ n0 . 
 

Theorem 10 The system (2) is exponentially stable if and only if there exist β ≥ 1, a 
∈  (0,1) and n0 ∈  N such that  

 ‹T (n, 0)(I) x, x› ≤ βa n – k ‹T(k,0) (I) x, x› 
for all n ≥ k ≥ n0  and x∈H. 
 

Remark 11 If the system (2) is uniformly exponentially stable, then it is exponentially 
stable. 

The converse is not generally true. 
Counter - example. Let us consider the system (2), where Bn = 0, A0∈  L(H) is such 
as Ker A0 ≠{0}, P0 is the projection on Ker A0 and An = 2P0 for all n ≥ 1. 

Then for all 0>≥ kn  or kn ≥>1  we get ( ) 00, =xnX  and (10) holds. If we put 

{ }0,1max2 A=β  and 
2
1

=a  then for all { }1,0∈= kn  or 0,1 == kn  we get (10). 

Consequently (2) is exponentially stable. 
For all 1>> kn  we have ( ) .2..., 01 xPxAAxknX kn

kn
−

− ==  
We assume, by contradiction that (2) is uniformly exponentially stable. Then 

there exist ( )1,0,1 ∈≥ aβ  such that ( ) 22, xaxknX kn−≤ β  for all .,0 Hxkn ∈≥≥  Thus, 

for all Hxkn ∈>> ,1  we get 22
02 xaxP knkn −− ≤ β  and ( ) .2

4
2

0 xxP kna −
≤ β As 

∞→− kn , we deduce 00 =P , and we deny the hypothesis. Hence (2) is not uniformly 
exponentially stable. 
 

The following theorem gives necessary and sufficient conditions for the uniform 
exponential stability of the system (2), which satisfies the hypothesis H1 and 
establishes the equivalence between the exponential stability and the uniform 
exponential stability. 
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Theorem 12 The following assertions are equivalent: 
a) the system (2) is uniformly exponentially stable< 

b) ( ) 00,~lim
2
=

∞→
xNnXE

n
 uniformly for ;1, =∈ xHx  

c) ( )( ) ;10,~
<NnTρ  

d) ( )( ) ;10,~
<NnYρ  

e) the system (2) is exponentially stable. 
 We denote by ( )Aρ  the spectral radius of A. 
 
Proof. The implication )) ba ⇒  is a consequence of the Definition 7. We will prove 

).) ab ⇒  From Theorem 2 we have ( ) ( )( ) .,0,~0,~ 2
xxINnTxNnXE =  

Since ( ) 00,~lim
2
=

∞→
xNnXE

n
 uniformly for 1, =∈ xHx  we deduce that for all 

0>ε  there exists Ν∈)(εn  such that ( ) ε<
2

0,~ xNnXE  for all ( )εnn ≥  and 

.1, =∈ xHx  

Therefore ( )( ) ε<xxINnT ,0,~  for all )(εnn ≥  and 1, =∈ xHx  or equivalently 

( )( ) ε<INnT 0,~  for all )(εnn ≥ . 

Let 
2
1

=ε . From Lemma 3 and the last considerations we deduce that there 

exists ( ) Ν∈2
1n  such as ( ) .0,~)( 2

1
2
1 <NnT  We denote .~)(ˆ

2
1 NnN =  

If knkn ≥Ν∈ ,, , then there exist Nrrrr ˆ,,,,, 2121 <Ν∈γα  such as 
.ˆ,ˆ

21 rNkrNn +=+= γα  
If γα ≠  we use the Remark 6 and we have ).0,()0,ˆ(),ˆ(),( 1

1
2 rTNTrNTknT −−= γα  

Then  

 .)0,()0,ˆ(),ˆ(),( 1
1

2 rTNTrNTknT
−−

≤
γα

 

If we denote ),(max
ˆ0

knTM
Nnk ≤≤≤

=  and Na ˆ
1

)( 2
1= , we obtain 

.42),( 22 ˆ
21ˆ

knkn aMaMknT N
rrN

−− ≤≤
−+

 

If γα =  we have .2),(
21

knkn
rr Maa

a
MknT −−
−

≤≤  Now, we take MM 24 2 >=β  

(as 1>M ) and we deduce that knaknT −≤ β),(  for all 0≥≥ kn . The conclusion 
follows from Theorem 9. 

„a) ⇒  c)”. From T.2.38 of [2] we have 
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 n
n

n n

n
NnTNTNT )0,~(lim)0,~(lim))0,~((

∞→∞→
==ρ  

 
If 0n  is as in the Definition 7 then ,)~,~~()0,~(

~
00

NnaNnNnNnTNnT β≤+=  

(Theorem 9). Thus 

 ,1lim)0,~(lim
~~
<≤≤

∞→∞→

Nn Nn

n
n

n
aaNnT β  

 
and the conclusion follows. 

 

„c) ⇒  b)” Let 1)0,~(lim))0,~(( <==
∞→

sNTNT n n

n
ρ  and let 0>ε  be such that 

.1<=+ αεs  
Then, there exist Ν∈0k  such that for all 0kn ≥ we have nnNT α≤)0,~(  and 

nNnT α≤)0,~(  (by Proposition 5). Thus 0)0,~(lim =
∞→

NnT
n

 or equivalently 

.0))(0,~(lim =
∞→

INnT
n

 Using again Theorem 9 we get the conclusion. Since „b) ⇒  a)” 

we get „c) ⇔  a)”. 
„c) ⇔  d)” From Proposition 5 and Theorem 4 we have 
 
 

11
)0,~()0,~()0,~()0,~( nn NYNnYNnTNT === . 

Since 

)),0,~(()0,~(lim)0,~(lim))0,~((
1

NYNYNTNT n n

n
n n

n
ρρ ===

∞→∞→
 

we obtain the conclusion. 
Now, we prove the equivalence between the uniform exponential stability and 

the exponential stability. 
The implication “a) ⇒  d)” is true (see Remark 11). 
We only have to prove „d) ⇒  a)”. From Theorem 10 we see that there exist 

)1,0(,1 ∈≥ aβ  and Ν∈0n  such that we have xxIkTaxxInT kn ,))(0,(,))(0,( −≤ β  for all 

0nkn ≥≥  and Hx∈ . 
By Lemma 3 we get )0,()0,( kTanT kn−≤ β  for all 0nkn ≥≥  and 

 NnnNN nTaNnT
~

0
)(~~

)0,(0,~( 0−≤ β  

for all 0nn ≥ . Then it is clear that 1)0,~(lim
~
<≤

∞→

Nn
n

aNnT  and d) ⇒  c). Since c) ⇒  

a), we obtain the conclusion. The proof is complete.    
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4. The uniform exponential stability and the Lyapunov equations 

 
On the space H we consider the Lyapunov equation 
 IPQP nnn += + )( 1   

 (11) 
where Qn is the linear bounded operator given by (7). 

 
Theorem 13 Assume H1 holds. The system (2) is uniformly exponentially stable if 
and only if there exist the positive operators 1~,10 ..., −NPPP  such that Pn satisfies the 
equation (11) for 2~,...,0 −= Nn  and 

 .)( 01~1~ IPQP NN += −−   (12)
    
Proof. Let us prove the implication „⇒ ”. We consider the linear operator 

∑ ∑
∞

+=

∞

=
− =+=

1
1 ))(,()(...

nk nk
knn InkTIIQQP  which is well-defined as the series ∑

∞

=nk

nkT ),(  

converges in R (by the hypotensis). We will prove that nP  is N~  - periodic. 
Indeed 

 ∑ ∑
∞

+=

∞

=
+ ++=+=

Nnk nq
Nn INnNqTINnkTP

~
~ ))(~,~())(~,(  

and by Proposition 5 we get ∑
∞

=
+ ==

nq
nNn PInqTP ))(,(~ . Since  

 

∑ ∑
∞

+=

∞

+=
−−++ =+=++=+

2 1
1111 )(...)()(...)(

nk nk
nknnknnnn PIIQQIIQIQQQIPQ   

we deduce that nP  is a solution of (11). Thus nP  satisfy the equation (11) for 
2~,...,0 −= Nn  and .)( 01~1~ IPQP NN += −−  As KKknT ⊂))(,(  we see that .0>≥ IPn  the 

proof of this implication is complete. 
“⇐ ” Let 1~,...,1,0, −= NnPn  be positive operators such that (11) holds for 

2~,...,1,0 −= Nn  and (12) fulfill. For all Ν∈n  there exist unique Nrr ~0,, 11 <≤Ν∈α  
such as 1

~ rNn +=α  and we define the sequence 
1rn PP = . Then IPQP nnn += + )( 1  for all 

Ν∈n . Thus IPnnTP nn ++= + ))(,1( 1  and 
2

1 ),(),(,),())(,1(),(,),( xknXExknXxknXPnnTExknXxknXPE nn ++= +  for all 
kn ≥ . From Theorem 2 we obtain 
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2

1 ),(,))(,1(),(),(,),( xknXExxPnnTknTxknXxknXPE nn ++= +  

 2
1 ),(,))(,1( xknXExxPknT n ++= +  

 2
1 ),(),1(,),1( xknXExknXxknXPE n +++= + . 

 
From the hypothesis we deduce that there exist 0, >Γγ  such that for all Ν∈n  
 IPI n Γ<<γ   (13) 
So  

 ≥xknXxknXPE n ),(,),(  
 .),(,),(),1(,),1( 1

1 xknXxknXPExknXxknXPE nn Γ+ +++  
We have 
 xknXxknXPExknXxknXPE nn ),1(,),1(),(,),()1( 1

1 ++≥− +Γ  
and, by induction, 

 .),1(,),1(,)1( 1
11 xknXxknXPExxP nk

kn ++≥− +
−+

Γ  

From (13) it follows 2112 )1(),1( xxknXE kn −+
Γ−Γ≤+γ . If we take 

Γ
Γ −=≥= 11,1 αβ γ  and 00 =n  we obtain the conclusion. The proof is complete.   ■ 

 
 

Proposition 14 If the system (2) is uniformly exponentially stable then the equation 
(11) has a unique periodicN −~

 and positive solution. 
 

Proof. Let Ν∈nRn ,  be another N~ -periodic and positive )0( >nR  solution of (11). 
We have Ν∈−=− ++ nRPQRP nnnnn ),( 11  and, by induction, 

).)(,( knknnn RPnknTRP ++ −+=−  If 0>Γ  is such that IRP nn Γ<,  for all Ν∈n  we get 
.),(2)(),( nknTRPnknTRP knknnn +Γ≤−+≤− ++  From the hypotheses and from 

the Theorem 9 we have 0),(lim =+
∞→

nknT
k

 for all Ν∈n . As ∞→k  we obtain 

nn RP =  for all Ν∈n . The proof is complete.    
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