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THE CROSS-VALIDATION METHOD IN THE 
POLYNOMIAL REGRESSION 

 
by 

Nicoleta Breaz 
 
 
Abstract. One of the methods used for the degree selection in the polynomial regression is the 
cross-validation method(CV). In this paper, we implement a CV-based algorithm, in Matlab 
6.5 medium and we apply it on some test functions. Then we analyze the results by performing 
an ordinary regression analysis. Finally, we propose a new algorithm that combines the CV 
method with the classical degree selection. 
 
1.Introduction 

We consider the regression model, 
( ) ε+= XfY , 

with X, Y, two random variables and ε , the error term. After a sampling, we obtain 
the observational model,  

( ) nixfy iii ,1   , =+= ε  

and we suppose that ( )′= nεεεε ,...,, 21  ( )IN 2,0 σ . 
 One of the most used regression models is the polynomial regression, that is  

i
q
iqiii xxxy εαααα +++++= ...2

210 . 
It is well known that such a model can be estimate with least squares method, after a 
reduction to a multiple linear model, with the explicative variables, qXXX ,...,, 2 . 
But, before make this estimation, it is necessary to establish the form of the regression 
function, or more precisely in this case, the polynom’s degree. 
 An ordinary solution to this problem is to estimate the model, for different 
values of  q  and then, to compare these models, by performing a regression analysis. 
 As an alternative, there exist some data-based selection methods that give the 
appropriate value for q. One of such method is the cross-validation method(CV). 
 
2.Degree selection based on the regression analysis 
 
 The regression analysis for a fitted model can be made, either by graphical 
comparison or quantitative methods. 

For the graphical comparison of two or more models, obtained for different 
values of q, it is necessary to plot the fitted curves versus the data and also, the 
residuals, ( ) nixaxaaye q

iqiii ,1   ,...10 =+++−= , with niai ,1, = , the least 
squares estimators. 
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 Obviously, we choose the model that is more closely to data and which has the 
residuals curve as an white noise. For a good model, the residuals need to be randomly 
scattered around zero. 
 Another graphical method is to plot the fitted curves together with the 
prediction bounds. If the prediction interval is too wide, we need to have caution about 
using such a model for prediction. 
 Also, as a quantitative comparison method, we can analyze the accuracy of the 
estimation, if we look at the confidence bounds for estimated coefficients. We cannot 
trust in a model, for that the coefficients have wide confidence intervals. 
 Another quantitative method consists in the comparison of some usual 

regression statistics as squared-R, 2R , adjusted squared-R, 
2

R , root mean square 
error, s and sum of squared residuals, 2

RS . A good model will have small values for 
2
RS  and s, respectively, values closed to one, for 2R  and 

2
R . Anyway, in the 

polynomial regression, is preferred 
2

R  instead of 2R , because 2R  depends on the 
number of explicative variables that occur linearly in the model. 
 
3.Degree selection based on the CV method 
 
 A natural way to select the polynom’s degree, q, based on data information, is 
to minimize the expected prediction error,  

( ) ( )( )2xfyEqPSE q ′−′= , 

where yx ′′,  are new data and qf  is the fitted polynom of  q degree. 
 Since additional data are not usually available, we can use just an estimator of 

( )qPSE . One of such estimator is the (leaving-out-one) cross-validation function, 
given by  

( ) ( ) ( )( )∑
=

−−=
n

i
i

i
qi xfy

n
qCV

1

21
, 

where ( )i
qf −  is the regression polynom, fitted from all data, less the i-th data. 

 A leaving-out-one resampling method is used here. We obtain the fitted 
models, ( ) nif i

q ,1, =− , from  n learning samples(each one, with 1−n  data), then we 
validate these models by other  n test samples, formed with one-leaving-out data. 
 According to (1), the cross validation function is equal to PRESSn ⋅ , where 
PRESS  is a prediction power measure for the model. Small values for PRESS  give 
models with large prediction power. So, by minimizing the CV function in respect 
with q, we obtain the appropriate degree for the polynomial model. 
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4.Numerical experiments 
 
 For computational aspects, we implement in Matlab medium, the next 
algorithm, based on the CV method: 
Algorithm 1 
Step1. Read the sample data ( ) niyx ii ,1,, =  and if is necessary, order and weight the 
data, in respect with data sites, ix . 

Step 2. For each nii ,1, = , determine the fitted polynom of q degree, ( )i
qf − , based on 

the leaving-out-one resampling. 
Step 3. Calculate the value of ( )qCV  function. 
STOP. 
 In order to obtain q, for which ( )qCV  is minimum, the following adequate 
step must be added: 
Step 4. Calculate ( )qCV  for integer and strictly positives different values of q. 
 The appropriate value of q is CVq , with  

( ) ( )qCVqCV
qCV min= . 

 In this paper, we search q from 1 to 7. 
 In order to see how it works the CV selection, we first consider a fourth degree 
polynom as a test function. The goal of the CV method will be to reconstitute the 
degree of the polynom from noisy data, obtained by the test function and the random 
number generator. 
 Let be the test function 

( ) 52736 234
1 +−++= xxxxxf  

and for the beginning, the sample of exact data, ( ),, ii yx where 
100

ixi =  and 

( ) 100,1  ,1 == ixfy ii . 
 The implementation of the algorithm 1, in Matlab medium, gives us the 
following values for ( )qCV : 

q 1 2 3 4 5 6 7 
( )qCV  2,92357 0,09029 0,00093 0 0 0 0 

 
 We mention that the zeros are in fact, some values of 29101 −⋅ , magnitude 
order, so are insignificantly different from zero. 



Nicoleta Breaz-The cross-validation method in the polynomial regression 

 70

Now we use noisy data, namely ( )ii yx , , with 
100

ixi =  and 

( ) 100,1  ,1 =+= ixfy iii ε , where 100,1  , =iiε , come from a random number 

generator simulating independently and identically distributed, ( )1,0;0N , random 
variables.  
 If we set to 0 the seed of the random number generator, after applying the 
algorithm 1, we obtain the value 4=CVq . 
 Otherwise, if we repeat the simulation for 100 replicates, with distinct seeds, 
we obtain an average of CVq  equal to 4,37. But, tacking into account the  possible 
values for q, the average is not very representative. So, we look at the distribution of 
the values of CVq , in order to retain the most frequently case.  
 For the same 100 replicates of average 4,37, we obtain the distribution 









561863800
7654321

:CVq . 

 Now, we can conclude that, 4=CVq  is the optimal value since it occurs in 
63% of the cases. 
 Consequently, the CV method recognizes the degree of the test function. 
 However, if the data are very noisy, the comparison of CVq  with the real q 
from the test function will not be relevant, anymore. So, for the validation of the 
results obtained by the CV method, it is necessary to perform an ordinary regression 
analysis. 
 After we perform this analysis in the case of the mentioned data, we obtain 
that the case 4=q  has a small advantage, from statistics comparison point of view 
and 3=q  is recommended by the accuracy of confidence bounds. Consequently, the 
CV method can be viewed as a selection method between two appropriate values 
indicated by the regression analysis. Anyway, the CV method selects one of the most 
recommended cases by the regression analysis and does this, in a more simple manner, 
with less time. 
 Next, we will consider another test function that is not a polynomial one so we 
validate the CV method just in the regression analysis and not by comparison with the 
real degree. 

 Let be ( ) xx exf 2
2 35 −+=  and the data ( )ii yx , , with 

100
ixi =  and 

( )  ,2 iii xfy ε+= ( )1,0 ;0~ Niε , 100,1 =i . 
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 If  we set the seed of random number generator at 0, we obtain by applying 
algorithm 1, the value 2=CVq . Else, if we repeat the algorithm for 100 replicates, 
with different seeds, we obtain the distribution 









43379740
7654321

:CVq , 

with average 2,64. 
 So, after a quick view on the distribution, we retain the value 2=CVq , as the 
appropriate fitting polynomial degree. 
 On the other side, we make the comparative analysis for polynomial fittings, 
with 7,1=q . 
 For simplicity, we plot in the following figure just the first degree fitting 
polynomial and the second degree fitting polynomial, versus the data. But we need to 
mention that in a complete plot, with all seven fitting curves, the curves for 7,3=q  
are not too different from the curve, 2=q . 
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Fig. 1 
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 We can see that we must eliminate the case 1=q , since it is not close enough 
to data and its residuals present some trend, consequently, this case doesn’t offer a 
satisfactory fitting. 
 For more deep analysis, in the following plot, we look at the 95%-prediction 
bounds of the fitting curves. Again, for simplicity, we plot just the second degree 
fitting polynomial and the sixth degree fitting polynomial.  

In this plot, the solid curve, together with the dashed curves, correspond to the 
case 2=q  and the remaining curves are for the case 6=q . The cases 3=q  and 

4=q  are likewise to 2=q  and the cases 5=q  and 7=q  are likewise to 6=q . 
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Fig. 2 

 
We observe that, out of the data range, the prediction interval for 6=q  is too 

wide, so we cannot trust in the prediction on the sixth degree polynomial fitting and 
we obtain the same conclusion, for 5=q  and 7=q . 
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 Consequently, just the cases 2=q , 3=q  and 4=q  remain in the 
competition. For these cases, we extend the plot interval, in order to compare the 
width of the prediction intervals. 
 The following plot contains the cases 2=q  and 4=q  and we observe that 

4=q  has more wide prediction interval, than 2=q . Again, for 2=q , we have the 
solid curve, together with the dashed curves. 
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Fig. 3 

  
After a comparison between 2=q  and 3=q , we obtain the same 

conclusion: from this point of view, the case 2=q  is more appropriate. 
 Anyway, for these last three cases, we make also a quantitative comparison 
and we obtain the following values for the regression statistics: 
  

           Statistics 
Degree 

2
RS  2

R  s 

2 0,7318 0,9781 0,0869
3 0,7308 0,9779 0,0872
4 0,7261 0,9778 0,0874
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Since the case 2=q  is recommended by 
2

R  and s, respectively the case 
4=q  is recommended by 2

RS , once again the balance is favorably for 2=q . 
 Also, the following 95%-confidence bounds for the coefficients indicate more 
accuracy in estimation, for the case 2=q . 
 
Second-degree polynomial coefficients and confidence bounds: 
 
       5,611) (5,148;  5,382 =a , 
       3,749),- (-4,231;  3,99- 1 =a   
       4,042) (3,936;  3,9890 =a .   
 
Third-degree polynomial coefficients and confidence bounds: 
 
       1,087) (-0,7469;  0,1701 3 =a ,  
       6,53) (3,713;  5,122 2 =a , 
       3,271)- (-4,499;  -3,8851 =a ,         
       4,052) (3,908;  3,98 0 =a . 
 
Fourth-degree polynomial coefficients and confidence bounds: 
 
       2,204) (-5,096;  1,446- 4 =a ,  
       10,52) (-4,34;  3,091 3 =a ,  
       8,226) (-1,788;  3,219 2 =a , 
       2,201)- (-4,706;  -3,4531 =a ,  
       4,049) (3,865;  3,957 0 =a .   
 
 After all these analyses, we conclude that the most appropriate polynomial 
fitting, for the data ( )ii yx , , coincides with the CV-case, 2=q . 
 The following plot contains the test function, the data and the second degree 
fitting polynomial. 
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Fig. 4 

 
After these numerical experiments, we can state that the CV-method works 

enough well, in the degree selection. Anyway, for an optimal fitting, it is necessary to 
use, not just a single method, but more and then, the most appropriate fitting will be 
that, with more recommendations. 
 With these considerations in mind, we propose a composed algorithm for 
degree selection, that is cheaper than a full regression analysis and in the same time, is 
more precisely than algorithm 1. 
Algorithm 2  
Step 1. Find a sample with p replicates values of CVq  and the related distribution. 

Step 2. Retain the mode of the distribution, 1
CVq  and also, the mode of the remaining 

values, 2
CVq . 

Step 3. If the fitting with polynomial of order 1
CVq  is validated by both, graphical and 

quantitative regression tests, STOP. 
Else, follow the next step. 
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Step 4. Make the comparative analysis for the cases 1
CVq , 2

CVq , 11 −CVq , 11 +CVq  and 
establish the optimal fitting. 
STOP. 
 Obviously, for nonsimulated data, the distribution of replicates isn’t exist, so 
at the step 4, we compare just the case CVq , with 1−CVq  and 1+CVq . 
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