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FIXED POINTS AND MINIMAX INEQUALITIES 
 

by 
Mircea Balaj and Daniel Erzse 

 
 
Abstract. Using Fan-Glicksberg fixed point theorem we obtain in this paper a fixed point 
theorem for the composition of two Kakutani maps.As application of this we get a new fixed 
point theorem, section properties and minimax inequalities. 
 
1. Introduction 
 

In order to give a simple proof for von Neuman minimax theorem, Kakutani 
[11] extended the well-known Brower’s fixed point theorem to the case of an upper 
semicontinuous map T of a n-disk into itself. In turn, Kakutani’s theorem was 
extended to Banach spaces by Bohnenblust and Karlin [4] and to locally convex 
Hausdorf topological vector spaces by Fan [5] and Glicksberg [8]. 

Using Fan-Glicksberg fixed point theorem we obtain in this paper a fixed 
point theorem for the composition of two Kakutani maps. As application of this we get 
a new fixed point theorem, section properties and minimax inequalities. Our results 
seem to be new altough they are closely related to some known results 

 
2. Preliminaries 
 
A map (or a multifunction) YXT →:  is a function from a set X into the power set 

Y2  of Y ; that is, a function with the values ( ) YxT ⊂  for Xx∈  and the fibers 
( ) ( ){ }xTyXxyT ∈∈=− : for Yy∈ . Given two maps ZYTYXS →→ :,:  then 

composition ZXST →:o is defined by  
( )( ) ( )( ) ( ) ( ){ }xSyyTxSTxST ∈∪== :o . 

Let X and Y be topological spaces. A map YXT →:  is said to be upper 
semicontinuous (u.s.c.) if for each closed set YF ⊂  the lower inverse of F under T, 
that is ( ) ( ){ }φ≠∩∈=− FxTXxFT :  is a closed subset of X or, equivalently, if for 
each open set YG ⊂ , the upper inverse of G under T, that is 

( ) ( ){ }FxTXxGT ⊂∈=+ :  is an open subset of X. Note that if Y is compact 
Hausdorff and ( )xT  is closed for each Xx∈  , then T is upper semicontinuous if and 
only if the graph of T, that is ( ) ( ){ }xTyYXyx ∈×∈ :,  is closed in X × Y . Recall 
also that the composition and the product of two u.s.c. are u.s.c., too. 
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If X is a topological space and Y is a convex subset of a topological vector 
space we define the classes of maps ( )YXK ,ˆ  and ( )YXK ,  as follows: 

( ) TYXKT ⇔∈ ,ˆ is u.s.c. with compact values; 

( ) ( )YXKTYXKT ,ˆ, ∈⇔∈  and ( ) φ≠xT  for each Xx∈ . 
Throughout this paper, we assume that any topological space is Hausdorff. 

 
3. Main result 
 

The starting point is the following fixed point theorem: 
 
Theorem 1. Let X, Y be two nonempty compact convex sets, each in a locally convex 
topological vector space. Then for every two maps ( ) ( )XYKTYXKS ,,, ∈∈ , the 
composition ST o  has a fixed point. 
 
Proof. Consider the diagram 
 

 
 

where  ( ) ( )xyyxp ,, =  and  ( )( ) ( ) ( )xSyTxyST ×=× , .It is easy to see that 
[ ] ( )YXYXKpST ××∈× ,o , hence by the Fan-Glicksberg fixed point theorem [5, 
8], the map [ ] pST o×  has a fixed point. Therefore for some ( ) YXyx ×∈00 ,  we 
have ( ) ( )( )0000 ,, xySTyx ×∈ . Then 0000 , SxyTyx ∈∈ and consequently 

( )( )00 xSTx o∈ . 
The previous result is a particular case of Theorem 4 in [12]. On the other 

hand since any fixed point for ST o  is a coincidence point for the maps T and S, 
Theorem 1 is equivalent with Theorem 4 in [9]. 

The next two results are direct consequences of Theorem 1. 
 

Theorem 2. Let X, Y be two nonempty compact convex sets, each in a locally convex 
topological space, YXS →:  a map with nonempty values and open fibers and 

( )YXKT ×∈ . Then ST o  has a fixed point. 
 
Proof. It is well known that under the hypothesis of our theorem S admits a 
continuous selection (see Ben-El-Mechaiekk, Deguire and Granas [2, 3]). In other 
words there is a continuous function YXs →:  such that ( ) ( )xSxs ∈  for all Xx∈ . 
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Since ( )YXKs ,∈ , by Theorem 1 there exists Xx ∈0 such that ( )( )00 xsTx o∈ . 
Obviously 0x  is a fixed point for  ST o . 
 
Theorem 3. Let X, Y be two nonempty compact convex sets, each in a locally convex 
topological vector space and M, N be two open subsets of X×Y such that 

YXNM ×=∪ . Suppose that the following conditions are satisfied: 
 
(i) For each  ( ){ }MyxYyXx ∉∈∈ ,: , is convex; 
(ii) For each ( ){ }NyxYyXy ∉∈∈ ,: ,  is convex. 
Then at least one of the following assertion holds: 
(a) There exists a point Xx ∈0 such that { } MYx ⊂×0 . 
(b) There exists a point Yy ∈0 such that { } NyX ⊂× 0 . 
 
Proof. Let ( ) MYXM \×=′  and ( ) NYXN \×=′ . Define  

XYTYXS →→ :,:  by putting 

 
Since M ′  is closed in X × Y , each S(x) is closed in Y and the graph of S is 

closed in X × Y . Hence S is u.s.c. and by (ii) it follows that ( )YXKS ,ˆ∈ . 

Similarly we can prove that ( )YXKT ,ˆ∈  . 
Suppose that both assertions (i) and (ii) are not true. Then for each Xx∈  there exists 

Yy∈  such that ( ) Myx ′∈, , that is ( )YXKS ,∈   and similarly ( )YXKT ,∈ . By 
Theorem 1, ST o  has a fixed point, or equivalently, there exists ( ) YXyx ×∈00 ,  
such that ( )00 xSy ∈  and ( )00 yTx ∈ . Then, ( ) NMyx ′∩′∈00 ,  which contradicts 

YXNM ×=∪ . 
 
Corollary 4. Let X, Y be two nonempty compact convex sets, each in a locally convex 
vector topological space and N be an open subset of X × Y satisfying: 
 
(i) There exists a map ( )YXKT ,∈  such that  NgraphT ∈ . 
(ii) For each ( ){ }NyxXxYy ∉∈∈ ,:, is convex. 
Then there exists a point Yy ∈0  such that { } NyX ⊂× 0 . 
 
Proof. Consider the set 

graphTYXM \×=  
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Since ( )YXKT ,∈  it readily follows that: 
 

 
 
Moreover YXNM ×=∪  . The conclusion follows from Theorem 3.  
 
Corollary 5. Let X be a nonempty compact convex subset of a locally convex vector 
topological space and M be an open subset of X×X satisfying: 
(i) ( ){ } MMxxx ⊂∈=∆ :,  
(ii) For each ( ){ }MyxXyXx ∉∈∈ ,:,  is convex. 
Then there exists a point Xx ∈0  such that { } MXx ⊂×0 . 
 
Proof. Apply Theorem 3 in the case ∆×== \, XXNXY  and observe that the 
assertion (b) in the conclusion of this theorem cannot take place.  
 
Theorem 6. Let X, Y, M, N be as in Theorem 3. Suppose that for each Xx∈  there 
exists an open subset (possibly empty) xO  of Y such that: 
(iii) For each ( ){ }NyxYyOXx x ∈∈⊂∈ ,:, . 
(iv) YxXx =∪ ∈ . 
Then there exists Xx ∈0  such that { } MYx ⊂×0 . 
 
Proof. It suffices to prove that under conditions (iii) and (iv) the assertion (b) of the 
conclusion of Theorem 3 does not hold. 

Since Y is compact there exists a finite set { } XxxxA n ⊂= ,...,, 21 such that 

ix
n
i OY 1=∪= . Let { }nii ≤≤1:α  be a continuous partition of unity subordinated to 

the open covering { }niO
ix ≤≤1:  of the compact Y, that is, for each [ ]1,0:, →Yi iα  

is continuous; 

 
Define a continuous function YXp →:  by 
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Let ( ) ( ){ }0: >∈= yAxyJ ii α . Then ( ) ( ){ }yJixyp i ∈∈ :conv . For each 
( )yJxi ∈  we have xOy∈ , hence by (iii), ( ) Nyxi ∉, . Since the sets 
( ){ }NyxXx ∉∈ ,:  are convex (see condition (ii) in Theorem 3) we infer 

( )( ) Nyyp ∉,  for each Yy∈ , hence the assertion (b) of the conclusion of Theorem 
3 does not hold.  
 
Theorem 7. Let X, Y be two nonempty compact convex sets each in a locally convex 
vector topological space and IRYXgf →×:,  two functions satisfying: 
(i) gf ≤ ; 
(ii) f  is upper semicontinuous and g is lower semicontinuous on X ×Y. 
(iii) For each ( )⋅∈ ,, xfXx  is quasiconcave on Y . 
(iv)  For each ( )ygYy ,, ⋅∈  is quasiconcave on X. 
Then, given any βαβα <∈ ,, IR , at least one of the following assertions holds: 
(a) There exists Xx ∈0  such that ( ) α<yxf ,0  for each Yy∈ . 
(b) There exists Yy ∈0  such that ( ) β>0, yxf  for each Xx∈ . 
 
Proof. Apply Theorem 3 to the sets:  
 

 
 

From the hypothesis (i) – (iv) it follows readily that M, N are open in X × Y,  
YXNM ×=∪  and assumptions (i) – (iii) of Theorem 3 are verified. The desired 

result follows now from Theorem 3.  
It would be of some interest to compare the next minimax inequality with the 

generalizations of the Neumann minimax theorem obtained by Simons [14] and 
Nikaido [13]. 
 
Corollary 8. Under the hypotheses of Theorem 7 the following inequality holds: 
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Proof. First let us observe that if  f  is upper semicontinuous on X ×Y , then for each 
( )⋅∈ ,, xfXx  is also an upper semicontinuous function of y on Y and therefore its 

maximum ( )yxfYy ,max ∈  on the compact set Y exists. Similarly ( )yxgXx ,inf ∈  can 

be replaced by ( )yxgXx ,min ∈ . 
Suppose the conclusion were false and chose two real numbers βα ,  such that 

 
We prove that neither the assertion (a) nor the assertion (b) of the conclusion 

of Theorem 7 cannot take place. 
If (a) happens, then  

 
If (b) happens, then 

 
 

The origine of our two last results goes back to Fan’s minimax inequalities 
[6]. Close results have been obtained by Allen [1], Granas and Liu [9], Fan [7] and Ha 
[10]. 
 
Theorem 9. Let X, Y, f, g be as in Theorem 7. If YXT →:  is a map with nonempty 
values, then the following inequality holds: 

 
 
Proof. We may assume that ( ) ( ) −∞>∈ yxfxTy ,inf . Apply Theorem 7 in the case 

( ) ( ) ( ) ( ) εβα −== ∈∈ yxfyxf xTyxTy ,inf,,inf  where 0>ε  is arbitrarly fixed. Since 
the values of  T are nonempty, the assertion (a) of the conclusion of Theorem 7 cannot 
take place. It follows that there exists Yy ∈0 such that 

 
Clearly this implies the desired minimax inequality.  
 
Corollary 10. Let X be a nonempty compact subset of a locally convex topological 
vector space and RXXgf →×:,  two functions satisfying: 
(i) gf ≤ . 
(ii) f  is upper semicontinuous and g is lower semicontinuous on X ×X. 
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(iii) For each ( )⋅∈ ,, xfXx  is quasiconcave on Y . 
(iv) For each  ( )ygYy ,, ⋅∈ is quasiconcave on X. 
Then we have 

 

 
Proof. Apply Theorem 9 with X = Y , T(x) = {x}. 
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