TENSOR PRODUCTS OF MODULES

by

Alina Alb

The notion of a tensor product of topological groups and modules is important in theory of topological groups, algebraic number theory. The tensor product of compact zero-dimensional modules over a pseudocompact algebra was introduced in [B] and for the commutative case in [GD], [L]. The notion of a tensor product of abelian groups was introduced in [H]. The tensor product of modules over commutative topological rings was given in [AU]. We will construct in this note the tensor product of a right compact *R*-module A_R and a left compact *R*-module $_RB$ over a topological ring *R* with identity. Some properties of tensor products are given.

Notation ω stands for the set of all natural numbers. If A is a locally compact group, K a compact subset of it and $\varepsilon > 0$, then $T(K,\varepsilon) := \{\alpha \in A^* : \alpha(K) \subseteq \varphi(O\varepsilon)\}$, where φ is the canonical homomorphism of R on R/Z = T. If m, n are natural numbers then [m, n] stands for the set of all natural numbers x such that $m \le x \le n$.

Let *R* be a topological ring with identity and A_R , $_RB$ compact unitary right and left *R*-modules, respectively. A continuous function $\beta : A \times B \to C$, where *C* is a compact abelian group, is said to be *R*-balanced if it is linear on each variable, i.e., $\beta(a_1+a_2,b) = \beta(a_1,b) + \beta(a_2,b)$ and $\beta(a,b_1+b_2) = \beta(a,b_1) + \beta(a,b_2)$ for each *a*, a_1 , $a_2 \in A$, b, b_1 , $b_2 \in B$, and $\beta(ar, b) = \beta(a, rb)$ for each $a \in A$, $b \in B$, $r \in R$.

A pair (C, π) where *C* is a compact abelian group and $\pi : A \times B \to C$ is a *R*-balanced map is called a tensor product of A_R and $_RB$ provided for each compact abelian group *D* and each *R*-balanced mapping $\alpha : A \times B \to D$ there exists a unique continuous homomorphism $\alpha : C \to D$ such that the following diagram commutes,

$$\begin{array}{ccc} A \times B & \stackrel{\pi}{\longrightarrow} & C \\ \alpha \searrow & & \hat{\alpha} \\ & & D \end{array}$$

i.e., $\alpha = \hat{\alpha} \circ \pi$.

Remark. If A_R , $_RB$ are compact right and left *R*-modules, respectively, *C* a compact abelian group, $\pi : A \times B \to C$ a R-balanced mapping and $\alpha : C \to C_1$ a continuous homomorphism, then $\alpha \circ \pi : A \times B \to C_1$ is a *R*-balanced mapping.

Proposition. The tensor product, if it exists, is unique up to a topological isomorphism.

Proof. Let (C, π) be a tensor product of A_R and $_RB$. Then the subgroup C_1 of C generated by elements $\pi(a, b), a \in A, b \in B$ is dense in C. Denote by p the canonical

homomorphism of *C* on *C*/ \hat{C}_1 . Consider the trivial R-balanced mapping π_1 of $A \times B$ in C/\hat{C}_1 , i.e., $\pi_1(a,b) = 0$ for every $a \in A$, $b \in B$. Then $\pi_1 = 0 \circ \pi = p \circ \pi$. By the definition of a tensor product p = 0, hence $C = \hat{C}_1$.

Let now (C, π) and (C_1, π_1) be two tensor products of A_R and $_RB$. Then there exist continuous homomorphisms $\alpha : C \to C_1$ and $\beta : C_1 \to C$ such that $\pi_1 = \alpha \circ \pi$, $\pi = \beta \circ \pi_1$. Then $(\alpha \circ \beta)(\pi_1(a, b)) = \alpha(\beta(\pi_1(a, b))) = \alpha(\pi(a, b)) = \pi_1(a, b)$ for each $a \in A$, $b \in B$, hence $\alpha \circ \beta = 1_{C_1}$. In an analogous way, $(\beta \circ \alpha)(\pi(a, b)) = \beta(\alpha(\pi(a, b))) = \beta(\pi_1(a, b)) = \pi(a, b)$ for each $a \in A$, $b \in B$, hence $\beta \circ \alpha = 1_C$. Therefore, C and C_1 are topologically isomorphic.

We will prove the existence of the tensor product for any compact right *R*-module A_R and any compact left *R*-module $_RB$. It will be denoted by $A \otimes_R B$.

Theorem 1. If A_R is a compact unitary right *R*-module and $_RB$ is a compact left unitary *R*-module over a topological ring *R* with identity then there exists the tensor product $A \otimes_R B$.

Proof. Let *F* be the discrete group of all *R*-balanced mappings f of $A \times B$ in T having the following properties:

i) f(ar, b) = f(a, rb) for all $r \in R$, $a \in A$, $b \in B$

ii) there exists a neighborhood V of zero of R such that f(av, b) = 0 for all $v \in V, a \in A, b \in B$.

Consider the dual group $C = F^*$.

Define $\pi : A \times B \to C$ as follows: If $(a, b) \in A \times B$, then put $\pi(a, b)(f) := f(a, b)$ for each $f \in F$. It is easy to prove that π is a *R*-balanced mapping. Let, for example, $a \in A$, $r \in \mathbb{R}$, $b \in B$. Then for each $f \in F$, $\pi(ar, b)(f) = f(ar, b) = f(a, rb) = \pi(a, rb)(f)$, hence $\pi(ar, b) = \pi(a, rb)$.

We affirm that π is continuous. Let W be any neighborhood of zero of C. Then there is an $\varepsilon > 0$ and a finite subset K of F such that $T(K, \varepsilon) \subseteq W$. Since all $f \in K$ are continuous at (0, 0), there exist neighborhoods U, V of zeros of A and B, respectively, such that $f(U \times V) \subseteq \varphi(O_{\varepsilon})$ for all $f \in K$. Then $\pi(U \times V) \subseteq W$. Indeed, if $f \in K$, $u \in U$, $v \in V$, then $\pi(u, v)(f) = f(u, v) \in \varphi(O_{\varepsilon})$, and so $\pi(u, v) \in T(K, \varepsilon)$. We proved that $\pi(U \times V) \subseteq W$, hence π is continuous at (0,0),

Let $a \in A$, *K* a finite subset of *F* and $\varepsilon > 0$. Since every $f \in K$ is continuous there exists a neighborhood *V* of zero of *B* such that $f(a, V) \subseteq \varphi(O_{\varepsilon})$ for each $f \in K$. Then $\pi(a, V) \subseteq T(K, \varepsilon)$. Indeed, if $v \in V$, then for each $f \in K$, $\pi(a, v)(f) = f(a, v) \in \varphi(O_{\varepsilon})$. Therefore $\pi(a, V) \subseteq T(K, \varepsilon)$. i.e., π is continuous at (a, 0). By symmetry π is continuous at $(0, b), b \in B$. We proved that π is a continuous *R*-balanced map.

We will prove now that *C* is the tensor product of *A* and *B*. Let $\alpha : A \times B \to X$ be a *R*-balanced map in a compact abelian group *X*. We define a homomorphism $\lambda : X^* \to F$ as follows: for every $\gamma \in X^*$, $\gamma \circ \alpha : A \times B \to T$ is a *R*-balanced mapping of $A \times B$

in T, i.e., $\gamma \circ \alpha \in F$. Put $\lambda(\gamma) = \gamma \circ \alpha$, $\gamma \in X^*$. We claim that λ is a homomorphism. Indeed, let γ_1 , $\gamma_2 \in X^*$. Then for each $a \in A$, $b \in B$, $\lambda(\gamma_1 + \gamma_2)(a, b) = (\gamma_1 + \gamma_2)(\alpha(a, b)) = \gamma_1(\alpha(a,b)) + \gamma_2(\alpha(a, b)) = \lambda(\gamma_1)(a, b) + \lambda(\gamma_2)(a, b) = (\lambda(\gamma_1) + \lambda(\gamma_2))(a, b) \Rightarrow \lambda(\gamma_1 + \gamma_2) = \lambda(\gamma_1) + \lambda(\gamma_2)$.

Let $\lambda^* : F^* \to X^{**}$ be the conjugate homomorphism for λ . Put $\hat{\alpha} : F^* \to X$, $\hat{\alpha} = \omega^{-1} \circ \lambda^*$, where ω is the canonical topological isomorphism of X on X^{**} . We affirm that $\alpha = \hat{\alpha} \circ \pi$. Indeed, fix $(a, b) \in A \times B$. Then $\alpha(a, b) = \hat{\alpha} (\pi(a, b)) \Leftrightarrow \alpha(a, b) = \omega^{-1}(\lambda^*(\pi(a, b))) \Leftrightarrow \omega(\alpha(a, b)) = \lambda^*(\pi(a, b)) \Leftrightarrow \omega(\alpha(a, b)) = \pi(a, b) \circ \lambda$. The last equality is true \Leftrightarrow for each $\gamma \in X^*$, $\omega(\alpha(a, b))(\gamma) = (\pi(a, b) \circ \lambda)(\gamma) \Leftrightarrow \gamma(\alpha(a, b)) = \pi(a, b)(\lambda(\gamma)) \Leftrightarrow \gamma(\alpha(a, b)) = \pi(a, b)(\gamma \circ \alpha) \Leftrightarrow \gamma(\alpha(a, b)) = (\gamma \circ \alpha)(a, b) \Leftrightarrow \gamma(\alpha(a, b)) = \gamma(\alpha(a, b))$ which is true.

The uniqueness of $\hat{\alpha}$. It is sufficient to prove that the set { $\pi(a, b) : a \in A$, $b \in B$ } generates $A \otimes_R B$ as a topological group. It is well known from the duality theory that if X is a locally compact abelian group and S a subgroup of X* which separates points then S is dense in X*. We affirm that the subgroup $D = \langle \{ \pi(a, b) : a \in A, b \in B \} \rangle$ separates points of F. Indeed, let $0 \neq \zeta \in C$, then there exists $(a, b) \in A \times B$ such that $0 \neq \zeta(a, b) = \pi(a, b)(\zeta)$, i.e., D separates points of F. Therefore, α is unique.

We will denote below $\pi(a, b)$, where $a \in A$, $b \in B$ by $a \otimes b$.

Theorem 2. If A, B are zero-dimensional compact right and left R-modules then $A \otimes_{R} B$ is zero-dimensional.

Proof. Let $f \in F$; then f is a continuous *R*-balanced map of $A \times B$ in T. Let *V* be a neighborhood of zero of T which does not contain a non-zero subgroup. For every $a \in A$ there exist a neighborhood U_a and an open subgroup $V^{(a)}$ of *B* such that $f(U_a \times V^{(a)}) \subseteq V$. There exist $a_1, \ldots, a_n \in A$ such that $A = U_{a_1} \cup \ldots \cup U_{a_n}$. Denote $V_0 =$

 $V^{a_1} \cap \ldots \cap V^{a_n}$. We obtain immediately that $f(A, V_0) \subseteq V$, hence $f(A, V_0) = 0$.

Let $B = V_0 \cup (b_1 + V_0) \cup ... \cup (b_k + V_0)$. Then $f(A \times B) \subseteq f(A, b_1) + ... + f(A, b_k)$. Each subset $f(A, b_1), ..., f(A, b_k)$ is a compact zero-dimensional subgroup of T. Therefore $f(A, b_1) + ... + f(A, b_k)$ is a finite subgroup of T. It follows that there exists $m \in \omega$ such that mf = 0, i.e., F is a torsion group. It is well known that F^* is zero-dimensional.

The author learned recently that a particular analogue of Theorem 2 was proved by Hofmann (see, [HM]).

Theorem 3. If A_R or $_RB$ is connected then $A \otimes _RB = 0$.

Proof. Assume that *B* is connected. Let *V* be a neighborhood of zero of T which does not contain non-zero subgroups. Fix $\xi \in C$. There exists a neighborhood V_0 of 0 of *B*

such that $\xi(A \times V_0) = 0$ (as in the proof of the previous theorem). Since *B* is generated by V_0 , $\xi(A \times B)=0$. We obtained that F = 0, hence C = 0.

Let A_R be a compact right *R*-module and $_RB$ a compact left *R*-module over a topological ring *R*. If $X \subseteq A$, $Y \subseteq B$, then we will denote by $[X \otimes Y]$ the closure of the

subgroup of $A \otimes_R B$ generated by elements of the form $\sum_{i=0}^n x_i \otimes y_i$, $x_i \in X$, $y_i \in Y$,

 $n \in \omega$.

Theorem 4. If A_R and $_RB$ are compact zero-dimensional left and right *R*-modules then the family $[U \otimes B] + [A \otimes V]$, where *U* runs all open subgroups of *A* and *V* runs all open subgroups of *B* is a fundamental system of neighborhoods of zero of $A \otimes_R B$.

Proof. The subgroup $\langle x \otimes y : x \in A, y \in B \rangle$ is dense in $A \otimes_R B$. Let *U* be an open subgroup of *A* and *V* an open subgroup of *B*. There exist finite symmetric subsets $F \subseteq A$, $K \subseteq B$ such that A = F + U, B = K + V. For each $x \in F$, $y \in K$, $u \in U$, $v \in V$, $(x + u) \otimes (y + v) = x \otimes y + x \otimes v + u \otimes y + u \otimes v$. Since A/U is finite, there exists $k \in \omega$ such that $kA \subseteq U$. Consider the finite subsets $H = \{(lx) \otimes y : l \in [0, k-1], x \in F, y \in K\}, H_1 = [l]H$. It is evidently that $C = H_1 + [U \otimes B] + [A \otimes B]$, hence $[U \otimes B] + [A \otimes B]$ is open.

Let *W* be an open subgroup of $A \otimes_R B$. By continuity of the mapping $\pi : A \times B \to A \otimes_R B$ and compactness of *A* and *B* there exist an open subgroup *U* of *A* and an open subgroup *V* of *B* such that $U \otimes B \subseteq W$, $A \otimes V \subseteq W \Rightarrow [U \otimes B] + [A \otimes V] \subseteq W$.

Acknowledgment. The author is grateful to professors Mitrofan Ciobanu and Mihail Ursul for their constant interest and helpful suggestions in this work.

References

- [1] A. Alb and M. Ursul, Tensor products of compact rings (submitted).
- [2] A. Brumer, Pseudocompact Algebras, Profinite Groups and Class Formations, Journal of Algebra, 4 (3) (1966).
- [3] A. Grothendieck and J. Dieudonné, Éléments de Géométrie Algébrique, Publ. Math. IHES, Chapter O_{I}, Section 7.7.
- [4] K.H. Hofmann, Tensorprodukte lokal kompakter abelscher Gruppen, J. reine angew. Math. 261 (1964), p. 134-149.
- [5] K.H. Hofmann and S.A. Morris, Compact groups with large abelian subgroups, Math. Proc. Camb. Phil. Soc. 133 (2002), p. 235-247.
- [6] M. Lazard, Groupes Analytiques p-adiques, Publ. Math. IHES.

Author:

Alb Alina, Mathematics Department, University of Oradea, Romania, dalb@uoradea.ro