
Proceedings of the International Conference on Theory and Applications of 
Mathematics and Informatics - ICTAMI 2004, Thessaloniki, Greece 

364 

A GENETIC BASED APPROACH TO THE TYPE I 
STRUCTURE IDENTIFICATION PROBLEM 

 
by 

S.E. Papadakis, P. Tzionas, V.G. Kaburlasos,  
J.B. Theocharis 

 
 

 
Abstract. A novel approach to structure identification of type I is presented in this work. A 
simple genetic algorithm, enhanced with a local search operator is used to determine an 
optimum subset of features that actually affect the output of a system, from a set of candidate 
features selected intuitively. The problem of input selection, addressed in the bibliography as 
the type I structure identification problem, is considered to be the most important phase of the 
structure identification process. The fuzzy curve technique introduced by Lin and Cunningham 
[19] extended to fuzzy surface concept, is used as a fast modelling technique to built a coarse, 
model from a subset of the initial set of candidate inputs. In order to identify inputs that are 
interdependent, a genetic algorithm is used to guide the probing of more than one input 
simultaneously. The objective of the genetic algorithm is to determine the minimum number of 
inputs that, ideally, are necessary and sufficient to describe the system. Extensive simulation 
results on both artificial examples and real world applications were obtained in order to assess 
thoroughly the proposed approach.  
Keywords: structure identification, feature selection, modelling, input selection, fuzzy curve, 
genetic algorithms. 

Introduction 
System identification from input-output data pairs has always been one 

of the most challenging topics of engineering. Recently, artificial intelligence 
techniques, including neural networks and neuro-fuzzy models have been 
successfully used, as universal model free estimators [5], [6], [11], for 
modelling, identification and control of ill-defined real world processes. The 
number of published works on novel cognitive models, with significant 
identification capabilities of complex physical systems in a black-box fashion, 
is huge. However, the determination of the ‘proper structure’ of a model, that 
is, a model with significant identification performance and low complexity 
remains active. Sugeno and Yasukawa [13] have organized the structure 
identification problem by dividing it into two major categories, named type I 
and type II. The type II refers to defining the architecture of the model and to 
the parameter identification process (training). This type is out of the scope of 
this paper. However, Sugeno states that the first type of structure identification 
process is one hundred times more important that the second one. Type I, is 
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related to the selection of those inputs (features) that affect the output of a 
system significantly. It is subdivided into type Ia and type Ib subcategories. 
The type Ia is concerned with the definition of a set of candidate’s inputs, 
which form the feature space of the system. It is realized entirely intuitively, 
requires human knowledge about the system to be identified and also, it is the 
starting gate to modelling. Frequently, the expert who decides on the feature 
space components is misplaced, overestimating the importance of several 
inputs and increasing the complexity of the model to be built. In many cases 
the set of features that actually affects the output of the system is a subset of 
the initial set. This work focuses on the structure identification problem of type 
Ib, that is, the selection of a small subset of features that, ideally, is necessary 
and sufficient to describe the target concept. The ultimate objective of feature 
selection is to obtain a feature space with a) low dimensionality, b) retention of 
sufficient information, c) enhancement of separability in feature space, for 
example in different categories by removing effects due to noisy features, and 
d) comparability of features among examples in same category [15]. 

Researchers have attempted input selection through varied means, such 
as statistical [7] ,[10] geometrical, information-theoretic measures [1], 
mathematical programming [2], among others. 

In statistical analyses, forward and backward stepwise multiple 
regression (SMR) are widely used to select features, with forward SMR being 
used more often due to the lesser magnitude of calculations involved. The 
output here is the smallest subset of features resulting in a correlation 
coefficient value that explains a significantly large amount of the variance. 
Similarly in [12], the K–L transform was applied to the training examples to 
obtain the initial training vectors. Training is started in the direction of the 
major eigenvectors of the correlation matrix of the training examples. The main 
drawback of these approaches is that they searche for interdependent features 
in the input space ignoring the influence of each one on the output of the 
system. 

In [16] genetic algorithms were used for feature selection by encoding 
the initial set of n features as n-element bit string with 1 and 0 representing the 
presence and absence respectively of features in the set. The authors used 
classification accuracy as the fitness function (for genetic algorithms, while 
selecting features) and obtained good neural network results compared to 
branch and bound and sequential search algorithms. However, later in was 
shown in [9] that classification accuracy may be a poor fitness function 
measure when searching for reducing the dimension of the feature set. Also, the 
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time complexity of the method is overwhelming due to the training process 
required for each input combination. 

Rough sets theory was also used to determine the degree of dependency 
of sets of attributes for selecting binary features. Features leading to a minimal 
preset decision tree, which is the one with minimal length of all paths from root 
to leaves, were selected. Similarly, best first search was used, stopping after a 
predetermined number of non-improving node expansions [15]. Similar 
algorithms such as the IDG take the positions of examples in the instance space 
to select features for decision trees. They limit their attention to boundaries 
separating examples belonging to different classes, while rewarding 
(penalizing) rules that separate examples from different (same) classes [15]. 
Decision trees generated using the proposed algorithm had better accuracy. The 
implied drawback of this hierarchical approach is that the structure of a 
decision tree is depended on the specific sequence of features to be tested apart 
from the features themselves. 

Neural networks were also used to measure the contribution of individual 
input features to the output of the neural network [15]. These methodologies 
have to undergo the time-consuming training process of the network used to 
test every input combination.  

The most popular feature selection methods in machine learning 
literature are variations of sequential forward search (SFS) and sequential 
backward search (SBS) [15]. SFS (SBS) obtains a chain of nested subsets of 
features by adding (subtracting) the locally best (worst) feature in the set. The 
serious weakness of this approach is that it adds or subtracts one feature at a 
time. It results in trapping the search in local minima, because it fails to encode 
the probing of all the potential combinations. 

In [19] Lin and Cuningham proposed a very fast method for input 
selection introducing the fuzzy curve concept. A fuzzy curve is a non-linear 
continue curve, which establishes a connection between a specific input and the 
output, performing a projection of the multidimensional input output space on 
the (probed input)- output space. The height of the projected output is the 
measure of importance of the specific input. If the height is sizeable the 
respective input is considered significant. On the other hand, a substantial 
(noisy) inputs result in a flat fuzzy curve. The basic advantage of this approach 
is the linear time complexity of the probing process, with respect to the number 
of inputs. The serious weakness of the method arises from the fact that the 
probe of a particular input ignores the impact of rest set. Hence, a specific input 
could be rejected when it is probed as stand-alone, but it could be significant 
when it is combined with another one. On the contrary, potential 
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interdependent inputs could be characterized significant when tested 
independently. In this paper we introduce the fuzzy surface concept as an 
extension of the fuzzy curve in an entirely different way. We take advantage of 
the fast model building capabilities derived from the concept of fuzzy curve 
and a genetic based probing of more than one input simultaneously, to cope 
with the weakness mentioned above. 

The proposed method 
Let us consider an m-input single output system described by a nonlinear 

function of the form: )(xfy = , where ]...,,..[ 1 mj xxxx =  and and y denotes the 
output of the system. Also, let q℘  denotes the observation input output data set 

comprising q m-input/output patterns: { }qkyx kk
mq ,...,1),,(1,, ==℘ . Let 

},...,,...,,{ 21 mjm xxxx=ℑ  be the set of candidate input set representing the input 

vector (feature space). Also let ( )!
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derived from the set of m candidates’ inputsℑ , excluding the empty subset, 
equals 12 −m . Given a specific subset ln,ℑ  the respective l,,nq℘  of the specific 
n-inputs /output data observation data points is derived as a subset of 1,,mq℘ . 
For each n-input - output datum on l,,nq℘  a fuzzy rule with crisp output is 
created in the following form: 
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Each bell-shaped function is located at k
jx ; the parameter jσ  has a fixed 

value per input variable, equal to 5-15% of the jx  variable range. A fuzzy rule 
base is generated comprising q rules, R k , k=1,...,q in the form of equation (1) . 
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Having determined the product as the fuzzy implication method and using the 
centroid defuzzyfication technique, the output of the fuzzy model is given by 
the formula: 
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Equation (3) provides a continuous and parameter free surface, which 
approximates the input output data, and behaves as a fuzzy model. The mean 
absolute percentage error is used to estimate the quality of the approximation: 
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Since the number of rules equals the number of data, the risk of over 
fitting the data set is major. In order to estimate the validation of the model the 
data set is subdivided into two subsets. Each subset comprises one half (q/2) of 
input output patterns. The fuzzy surface is built on the first data subset l,,2/ nq℘  
and it is evaluated on the whole data l,,nq℘  according to (4).  

It has to be pointed out that the complexity of the aforementioned fuzzy 
model is preventive for using it as a regular model in order to identify the 
system. Nevertheless, it is a coarse model that can be easily built, avoiding any 
time-consuming adaptation processes. Parameters jσ  play a very important 
role in the proper identification of the system properly. If the values of the 
parameters are extremely small the fuzzy surface-based model results in over 
fitting the data increasing l,,nqE  due to poor generalization. On the other hand, 
very large value of the parameters jσ  result in inadequate identification 
performance increasing the l,,nqE , due to poor identification. Empirical studies 
have shown that a value calculated by the formula:  

( ) qkxx k
j

k
jj ,...,1,)min()max( =−⋅= δσ  Where ]15.0,05.0[∈δ   (5) 

is appropriate option. Moreover, this calculation is adopted in [19]. Therefore, 
all values of the tunable parameters are calculated by the formula (5) 
overcoming any iterative time-consuming processes.  
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For each subset l,nℑ  a fuzzy surface l,nFS  can be built on l,,2/ nq℘  according to 
equation (3). For each l,nFS  an evaluation measure l,nR , related both to the 
modeling performance and to the complexity of lnFS , , is defined by the 
formula: 

)1,0()1(
*100
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,,
, ∈⋅−+⋅= w

m
nw

E
E

wR nq
ln

l    (6) 

where mEE q ,...,1),max( ,1,max == ll . It is used for the normalization of l,,nqE  
values. The smaller the value of l,nR  the greater the importance of the 
respective lnFS , . If a specific subset l,nℑ  comprises non-important inputs, then 
both terms in (6) increase, raising the respective lnR ,  value. Inserting 
significant inputs or deducting negligible ones the respective terms in (6) 
decrease resulting in lower lnR ,  values. In the case that two input combinations 
are equivalent the preferred combination is the one with the lowest order n. 
Therefore, the objective of the proposed input selection method is to track 
down the subset l,nℑ  with the minimum l,nR  value, among all the 12 −n  
subsets derived from the set of candidate’s inputs mℑ . 

The genetic algorithm 
In the case that the cardinality m of mℑ  is small, the probing of all 

possible combinations is feasible. On the contrary, for a large set of candidates’ 
inputs the number of combinations is prohibitively high. In general, the 
minimization of the measure given in (6) can be formulated as a combinatorial 
unconstrained optimization problem. A simple genetic algorithm with binary 
encoding, adaptive mutation and crossover rate [18], is applied. In this paper 
the chromosome of each individual consists of m genes of one bit. Each bit 
encodes the presence ‘1’ or absence ‘0’ of a particular input variable 

mjx j ,...,1=  to the construction of a specific mn ℑ⊆ℑ l, . Hence, the 
phenotype of each individual represents a specific subset l,nℑ  to be validated. 
The fitness function, used to assess the quality of each individual, is given by 
equation (6). In order to enhance the search performance of the genetic 
algorithm, a specific local search operator, namely Digital Hill climbing 
Operator (DHCO) [17] is applied to the elite of each generation. This operator 
selects randomly a relatively small number of bits (i.e. 4 bits) from the elite’s 
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chromosome and derives all the potential chromosomes (15 chromosomes) by 
permuting the selected bits and keeping the rest ones intact. The chromosome 
with the best fitness value is adopted as the new elite chromosome replacing 
the initial one. 

Experimental results 
In order to highlight some functional aspects of the proposed approach 

two artificial examples are examined initially. Then, the method is applied on 
two real world applications: the Fisher Iris recognition Benchmark and the Box 
& Jenkins [4] gas furnace problem.  

Example I 
The first example concerns the importance evaluation of the inputs for a 

three-input one output non-linear function [19]: 

]3,0[,,   ,5x)]3sin(5.1[ 3213
2

2
5.1

1 ∈+−= xxxxxy    (7) 

300 input output data pairs 300,...,2,1,],,,[ 321 =kyxxx k  were produced. 
The first 150 were used to build the fuzzy surfaces and all the 300 data to 
calculate the l,,nqE  in (6). For each pair the input values 321 ,, xxx  are randomly 
generated within the interval ]3,0[  and the output is calculated according to (7). 
In (6), the value of the weight w equals 8.0=w . Since the number of candidate 
inputs is small, all the combinations were evaluated without genetic 
optimization. The evaluation results are illustrated in Table 1, ranked in 
ascending order with respect to their importance. It is apparent that the 
combination comprising all the inputs is the most important one. Moreover, a 
ranking of the importance of each individual input is possible by examining the 
results for 1=n . The order 312 ,, xxx  is also recognized in [19]. The time 
required to evaluate all the combinations was 0.38 sec on a Pentium III 1.2Ghz 
computer. 
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n  l  ln,ℑ  lnR ,  
3 1 321 ,, xxx  9.10 
2 1 21 , xx  25.04 
2 2 32 , xx  28.13 
1 1 2x  46.51 
2 3 31 , xx  47.65 
1 2 1x  65.80 
1 3 3x  80.06 

Table 1: Input Evaluation for (7) 
 

Note that the results in Table 1 are not mutually exclusive. Let f  be a 
comparative operator regarding the relative importance of two objects. i.e. 

ba f  indicates that ‘a’ is more important than ‘b’. The implication: 
tsrxxxxxx srtstr ,,∀⇔ ff      (8) 

has to be satisfied [8]. For example: 323121 xxxxxx ff ⇔ . This reliability 
constraint is confirmed in Table 1. 

Example II 
The next example is a modification of the previous one. A fake input is 

added to the input space, which has no impact to the output of the system. 
Equation (7) is modified as follows: 

]3,0[,,,   ,5x)]3sin(5.1[ 43213
2

2
5.1

1 ∈+−= xxxxxxy      
    (9) 

The input data points are created extending each input vector kxxx ],,[ 321 , 
created in the previous example with one more component, which represents 
the 4x  input value. Hence, 300 data points in the form 

300,...1,],,,,[ 4321 =kyxxxx k are created. The 4x  values are random number in 
the range [0,3]. The first 150 data is used to craft the fuzzy surfaces, as in 
Example I. After applying the proposed method, the best combination was 

321 ,, xxx  with 93.81,3 =R . The input variable 4x  is clearly rejected. The 
combination 4321 ,,, xxxx  that comprises the 4x  input was valuated with 

21.211,4 =R which is 225% greater than the best combination. Additionally, the 
input 4x  was valuated with 43.854,1 =R as the worst option.  
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Example III 
In this example we are dealing with the examination of our method in the 

case of interdependent inputs. Suppose we have a system governed by the non 
linear equation:  

)sin(310)sin()sin( 123
4

21 xxwherexxxy ⋅=++= −      
    (10) 

The inputs 21 , xx  are interdependent, while the input 3x  affects slightly the 
output. 300 input-output data pairs were generated in a manner similar to 
Example I. The input vector comprises random numbers in [0,3] range and the 
output for each input vector is calculated by (10). The evaluation of the inputs 
shows that the best combination was 1x . Both the 2x  and the 3x  inputs were 
rejected. Note that following to the methodology referred to [19] the input 2x  
is detected as an important input because it provides a non-flat fuzzy curve.  

The Fisher Iris Benchmark  
The second example is a real world application, the well-known Fisher 

Iris benchmark. This benchmark comprises four candidates inputs that 
represent measured attributes of a crinum family such as sepal-length, petal 
length etch. The lilies are classified into three categories represented by an 
integer number from 1 to 3, according to their attributes. The data set consists 
of 150 input-output data points. Our method is applied to track down the 
attributes, which are necessary and sufficient to describe a classification 
system. The first 75 points were used for building the fuzzy surfaces. The 
proposed input selection method suggests the combination 4321 ,,, xxxx  as the 
best one, with 10.31,4 =R . The next best in order was 43 , xx  with 18.31,3 =R . All 
combinations comprising the 2x  input obtain relatively large values and the 2x  
valuated as standalone was the worst option. Following, the methodology 
presented in [19], the input 2x  would be rejected due to a flat fuzzy curve 
although its combination with the rest inputs affects considerably the output of 
the system. This a major advantage of the proposed algorithm. Introducing a 
pseudo input to the set of candidates inputs as in Example II, and reapplying 
our input selection algorithm the combination 4321 ,,, xxxx  is recognized again 
as the most important one acquiring a valuation 46.21,4 =R . The combination 

43 , xx  is again the next best option with 52.21,2 =R , while the combination 
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54321 ,,,, xxxxx  that comprises the fake input 5x  is worst enough obtaining 
valuated 85.131,5 =R . Moreover, the 5x  input is the last in order option. 

The Gas Furnace Problem 
The Box & Jenkins [4] gas furnace problem, a well-known real world 

application, is considered to estimate the validity of the proposed method. This 
dynamic problem involves a single input u(t) that represents the gas flow at 
time t, and a single output y(t) which corresponds to the 2co  concentration in 
the exhaust gas of the furnace. The intention of many modeling techniques [4], 
[13], [19] is the prediction of y(t), utilizing past values of both the input u(t) 
and the output y(t). The candidates input set consists of 20 inputs u(t), u(t-
1),….,u(t-10), y(t-1),y(t-2),….y(t-10) that is 576,048,11220 =− combinations. 
The targeted output is y(t). The genetic algorithm mentioned in section 0 is 
applied to track down the combination with the minimum lnR ,  value. The 
chromosome of the algorithm comprises 20 bits and the fitness function is 
given by (6). A population of 25 individuals was employed. After 50 
generations the best individual achieved a fitness score of 83.261,3 =R  
suggesting )]1(),4(),2([ −−−= tytutux  as the most effective input combination. 
It has to be pointed out that different methods in literature consent regarding 
the number of inputs to be used, but result in a different subset of the same 
order 3=n . In [13], the proposed input subset was: 

)]1(),4(),3([ −−−= tytutux , in [19] the three most important inputs were: u(t-
5),u(t-6),y(t-1) and in [3]: )]1(),5(),4([ −−−= tytutux . In order to assess the 
validity of each result a feed forward neural network that consists of one 
hidden layer that comprises 20 neurons, three inputs and a single output is used 
as a modeling tool for testing the different combinations in a relatively fair 
manner, overcoming any complex modeling details referred to each one. The 
Leverbeng-marquat method is applied to train each neural network for 1000 
epochs. The mean square error (mse) is used as a performance measure to 
estimate both the identification and prediction quality of each network. The 
simulation results are summarized in Table 2. 
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Input Selection R Training Error 
(mse) 

Checking Error 
(mse) 

u(t-2),u(t-4),y(t-
1) 

26.83 0.032 0.68 

u(t-5),u(t-6),y(t-
1) 

42.77 0.070 1.12 

u(t-4),u(t-5),y(t-
1) 

35.60 0.061 0.67 

u(t-3),u(t-4),y(t-
1) 

28.61 0.031 0.73 

Table 2: comparison of the proposed input selection approach 
 

From the experimental results it is clearly shown that the proposed input 
selection method tracks down the input vector with the greater impact to the 
output of the system. Additionally, the importance measure l,nR  is highly 
correlated with the importance of each combination. The total simulation time 
was in average 4.33 minutes on a Pentium III computer 1.2Ghz and the total 
number of tested combinations by the genetic algorithm was: 50 generations * 
(25 evaluations per generation for the reproduction+16 evaluations per 
generation for DHCO operator)=2048. 

Conclusion 
A novel, fast and consistent (in terms of equation 8) approach for 

calculating the importance of each subset of features, that together are assumed 
to influence the output of a system, from a set of candidates features 
determined intuitively, is presented in this work. The proposed methodology 
gets rid of the fast modeling property of the fuzzy curve technique, extended to 
the fuzzy surface concept. A genetic based search is used to encode the probing 
of all the potential feature combinations, providing the advantage of detecting 
potentially interdependent inputs. Extended simulation results confirm the 
effectiveness of the proposed method.  
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