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MODEL 
 

by 
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Abstract. In this paper, we discuss two aspects regarding the least squares estimators in a 
parametric regression model. First, we make a numerical experiment that emphasizes the 
goodness of the least squares spline fit with respect to the polynomial fit. For the second goal 
of the paper, we implement a CV-based knots selection algorithm in Matlab 6.5 environment 
and we apply it on some test function, in order to analyse how the CV method works, in the 
knots selection for the least squares spline estimators. 
 
1. Introduction 

 
 We consider the regression model, 
 

( ) ε+= XfY , 
 
with X, Y, two random variables and ε , the error term. After a sampling, we 
obtain the observational model, 
 

( ) n1,i , =+= iii xfy ε  
 

and we suppose that ( )′= nεεεε ,...,, 21 ~ ( )IN 2,0 σ . 
 If we assume that  f  has some parametric form, well defined except 
from a finit number of unknown coefficients, then we are in the parametric 
regression setting. 
 One of the most used regression models is the polynomial regression, 
that is  
 

i
q
iqiii xxxy εαααα +++++= ...2

210 . 
 

It is well known that such a model can be estimated with the least 
squares method, after a reduction to a multiple linear model, with the 
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explicative variables, qXXX ,...,, 2 . But before make this estimation it is 
necessary to establish the form of the regression function, or more precisely, in 
this case, the polynomial’s degree. An ordinary solution to this problem is to 
estimate the model, for different values of  q and then, to compare these 
models, by performing a regression analysis, either by graphical comparison 
and/or by quantitative methods (see [7], [8], [9]). 

As an alternative, there exists some data driven selection methods that 
give the appropriate value for  q (see [4] and [8]). One of such methods is the 
cross validation method (CV). Based on this method, the optimal degree q will 
be that which minimizes the cross validation function, 

 

( ) ( ) ( )( )
2

1

1∑
=

−−=
n

i
i

i
qi xfy

n
qCV , 

where ( )i
qf −  is the regression polynomial, fitted from all data, less the i-th data. 

A leaving-out-one resampling method is used here. We obtain the fitted 
models, ( ) n1,i  , =−i

qf , from n learning samples (each one, with n-1 data), then 
we validate these models by other n test samples, formed with the one-left-out 
data. 
 We already discussed in [2] and [3], how the CV method works, in the 
case of degree selection, for the polynomial regression and in the case of 
smoothing parameter selection, for the smoothing spline regression, 
respectively.  

Also, in [2], we proposed a combined algorithm for degree selection, in 
the case of the polynomial regression. This algorithm is based either on the CV 
method and on the regression analysis techniques. 
 
Degree selection algorithm 
 
Step 1. Simulate a sample data, ( ) n1,i ,, =ii yx  and if it is necessary, order and 
weight the data, with respect to the data sites, ix . 
Step 2. For these simulated data, find a sample with p replicate values of CVq  
and the related distribution. 
Step 3. Retain the mode of the distribution, 1

CVq  and also, the mode of the 
remaining values, 2

CVq . 
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Step 4. If the fit with the 1
CVq  degree polynomial is validated by both graphical 

and quantitative regression analysis, Stop. 
   Else, follow the next step. 
Step 5. Make the regression comparative analysis for the cases 1

CVq , 2
CVq , 

11 −CVq , 11 +CVq   and establish the optimal fitting. Stop. 
 
 However, on wide data range, the polynomial regression works only as 
a local approximation method, leading to the necesity of finding a more 
flexible model. A solution to this problem could be the statement of a 
polynomial regression problem,  on each subinterval from a partition of the 
data range, dealing with a switching regression model, that bears structural 
changes in some data points. 
 In this way, the polynomial spline functions, with their great flexibility, 
arise as good estimators in such cases. We remind here that a polynomial spline 
function of m degree, defined with respect to a mesh, 

∞≤<<<<<≤−∞∆ bttta N...: 21 , is a piecewise polynomial function (the 

breaks or the function knots are Ntk ,1k , = ), with the pieces joined at the 
knots, so that the function has m-1 continuous derivatives (see [5] and [6]). 
 Thus, if we use the truncated power functions (see [5]), then we can 
write for a parametric spline regression model, the form 
 

( ) εβα +−+= +
==
∑∑ m

k

N

k
k

m

k

k
k tXXY

10

. 

 
This model can be estimated with the least squares method, after a 

reduction to a multiple linear model, namely, 
 

NNmm UUZZY ββααα ++++++= ...... 11110 , 
 
with the explicative variables given by 
 

( ) .N1,k ,U

, m1,k ,
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The resulted estimator of the regression function is called the least 
squares spline estimator. 

Here, likewise in the polynomial regression, we have to estimate first, 
the degree of function, the number of knots and the location of its.  

Selection of the degree m is usually made as a result of a graphical 
analysis of data and selection of the knots number, N, depends on the desired 
amount of flexibility. Also, there are several elementary rules for selecting the 
knots. Thus, for a linear spline, the knots are placed at the points where the data 
exhibit a change in slope, and for a quadratic or cubic spline, the knots are 
placed near local maxima, minima, or inflection points in the data.  

Besides these settings, there are also data driven methods for selecting 
these parameters (see [1] and [4]). One of such methods and also, a comparison 
between polynomial and spline regression, follow in the next sections. 

 
2. CV-based best polynomial fitting 

 
 For all numerical experiments which will be made in this paper, we 
consider as a test function, a piecewise function, [ ]→− 20 ,20:f , formed by 
six pieces of cubics, having the breaks –10, -1, 0, 2, 5 and the coefficients 
given in the following table:  
 
Table 1 
          Monom 
Interval 

3x  2x  1x  0x  

[ )10,20 −−  3.5729 131.67 2288.8 11802 
[ )1,10 −−  -8.4291 -228.39 -1311.8 -200.45 
[ )0,1−  317.64 749.83 -333.55 125.62 
[ )2,0  -190.84 749.83 -333.55 125.62 
[ )5,2  55.591 -728.76 2623.7 -1845.8 
[ ]20,5  -6.9802 209.8 -2069.2 5975.6 
 

Based on this function, we simulate the data ( )ii yx , , where ix , 50,1=i , 
are the knots of a uniform partition of the interval [ ]20,20− , and iy ’s are given 
by 
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( ) 50,1, =+= ixfy iii ε , 
 

where iε ’s come from a random number generator simulating independently 
and identically distributed,  ( )500,0~ Niε , random variables. 
 For these data, we start with a polynomial fitting. In order to establish 
the appropriate degree, we have used the degree selection algorithm, reminded 
in the introductory section of this paper. For 100 replicates of the experiment, 
the following distribution of the degree CVq  is obtained: 
 









138511000
7654321

:CVq . 

 
Now, applying the second part of the algorithm, we will reduce the problem of 
the optimal degree polynomial fitting to a comparison with the regression 
analysis techniques, between the mode of the distribution, 6=CVq , and the 
cases 5=CVq  and  7=CVq . We will not present here the graphical 
comparison, but we mention that the curves for 6=CVq  and 7=CVq  have 
almost the same behaviour with respect to the data, being more appropriate 
than the curve for 5=CVq . The quantitative analysis also recommends the case 

6=CVq , in spite of the other cases. For example the adjusted squared R has the 
values  

( ) 940,05
2

==qR , 

( ) 946,06
2

==qR , 

( ) 947,07
2

==qR . 
 
Hence, we state that the CV-based best polynomial estimator with respect to 
these data is the sixth degree polynomial.  
 Anyway, the 95%-confidence bounds presented below show that the 
accuracy of the best polynomial estimation is not very good (see the magnitude 
of the confidence interval for the coefficients 6a , 5a , 4a ): 

6a  =  40,27 (-426,6; 507,1), 

5a  =  77,32 (-2,081; 156,7), 
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4a  =  14,53 (0,911; 28,16), 

3a  =  -1,034 (-1,786; -0,2822), 

2a  =  -0,1757 (-0,2656; -0,08582), 

1a  = 0,002335 (0,000746; 0,003924), 

0a  = 0,0001942 (3,79e-005; 0,0003506).  
 
3. Least squares spline fitting versus polynomial fitting  

 
 In order to emphasize the quality of the spline estimator, with respect to 
that of the polynomial estimator, we have fitted the same data with a cubic 
spline function (of third degree), having as knots of multiplicity 1, the breaks 
of the test function, namely,  -10, -1, 0, 2, 5 and the end knots,  -20, 20, of 
multiplicity 4. In this regard, for illustrate the goodness of spline fitting against 
the best degree polynomial fitting, we have plotted in the following figure, 
these two fittings, together with the test function and the data.  
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Figure 1 

 
We can observe that, due to its flexibility, the spline curve comes more 

close to the data than the polynomial curve does. Moreover, the spline curve 
reconstructs well enough the test function, while the polynomial curve doesn’t. 
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4. CV-based knots selection in the least squares spline regression 
 

Simillary with the polynomial case, we propose here a data driven 
method for the selection of the least squares spline knots, based on a CV-like 
function,  
 

( ) ( ) ( )( )∑
=

−−=
n

i
i

i
iN xfy

n
CV

N
1

21
λλ . 

 
In this expression,  ( )i

N
f −
λ  is the least squares spline estimator, with the knots 

given by { }NN ttt ,...,, 21=λ , obtained by leaving out the i-th data from the 

sample. The optimal set of knots, N̂λ̂ , will be derived by minimizing, for fixed 

N, the expression ( )NCV λ , thus resulting the estimator Nλ̂  and then , by 

obtaining N̂λ̂ , with N̂ the minimizer of ( )NCV λ̂ . A weighted version of this 
function (the generalized cross validation function, see [4]) was already used in 
this regard. 
 In order to show how this method works, we implemented the 
following CV-based algorithm in the Matlab 6.5 environment. 
 
Knots selection algorithm 
   
Step 1. Read the data ( )ii yx , , ni ,1= . 
Step 2. For various sets of knots, determine the least squares fitting spline, 

( )i
N

f −
λ . 

Step 3. For the cases considered in the previous step, calculate ( )NCV λ . 
Step 4. Determine CV

Nλ , for which   
( ) ( )N

CV
N CVCV

N

λλ
λ

min= . 

Stop. 
 We run this algorithm on the same simulated data as in the previous 
sections. Starting with the information contained in the shape of the observed 
data curve (see figure 1), we choose m=3 as the degree of the spline estimator. 
As competitors, we propose the following four sets of knots: 
  
S1={-20, -20, -20, -20, -10, -1, 0, 2, 5, 20, 20, 20, 20}, 
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S2={-20, -10, -1, 0, 2, 5, 20}, 
S3={-20, -20, -20, -20, -10, -1, 0, 5, 20, 20, 20, 20}, 
S4={-20, -20, -20, -20, -11, -2, 0, 1, 4, 20, 20, 20, 20}. 
 
The first set is that which was used in the previous section. With respect to the 
first set, the second set gives up to the multiplicity of  the end knots and the 
third to the knot  t=2. The last set is choosed according to the elementary rools, 
reminded in the introductory section. Thus, we place the knots near local 
minima, maxima or inflection points in the data. Certainly, our expectations on 
the optimal knots are for the first set, this set being actualy formed with the 
breaks of the test function. 
 In what follows, we will see if the proposed CV-based algorithm can 
selects the optimal knots. For 100 replicates of the algorithm, with different 
seeds of the random number generator, we obtain the following mean values of 
the cross validation function,  ( )NCV λ , corresponding to the four sets of knots: 
 
314914,756972, 
13638912,940932,  
620668,166187, 
389896,095517. 
 

It can be observed that the first set of knots, S1 (the breaks of the test 
function), followed by the sets S4, S3, S2 (in this order), is that selected by the 
CV method. As the following plots show, this hierarchy is validated also by the 
graphical comparison of these four spline fits. For the clarity of the pictures 
sake, we plot in the first figure, the cases S3, S2  and in the second figure, the 
cases S1, S4. In both figures, we also plot the data and the test function. 
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Figure 3 

 
We can see that the curves from the first figure fit he data poorly, while the 
curves from the last figure, indicate good fits. Anyway, the better is the curve 
corresponding to the set S1. Therefore, the cross validation method selects the 
appropriate set of knots in the least squares spline regression. 
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