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WIDE-STREAM IMPACTION OF POTENTIAL FLOW OVER

SYMMETRIC ARC-NOSED COLLECTORS

Daniel Lesnic

Abstract.The wide-stream impaction on a class of semi-infinite two-
dimensional symmetric bodies having flat or circular-arc noses placed in a
uniform potential flow of aerosols is investigated. The governing Stokes equa-
tions of motion are nonlinear differential equations involving a parameter called
the Stokes number. The study calculates analytically the critical value of the
Stokes number on the centre-line, kcr, below which no particles reach the stag-
nation point in a finite time. This in turn can help the experimentalist in de-
signing appropriate collector shapes for obtaining a better collection of small
aerosol particles.
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1.Introduction

The problem of particle deposition from an aersol stream onto obstacle (col-
lectors) of various shapes is of great importance in the mechanics of aerosols,
see Fuchs (1964). Travelling with the fluid flow at large distances, a particle
will arrive in the region of disturbance caused by the obstacle’s presence and
due to its inertia will cross the streamlines, so permitting a possible collision
with the obstacle. This phenomenon deals with the collection efficiency con-
cept, η, defined as the ratio of the number of particles actually deposited on
the obstacle to the number of particles which would have been deposited if
they had not been deviated by the fluid flow. Theoretically, the calculation
of η involves determining the fluid flow field and then finding the particle tra-
jectories by integrating the Stokes equations for the curvilinear motion of a
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spherical particle, which in non-dimensional form are, see e.g. Dunnett and
Ingham (1988),

dr

dt
= u, k

du

dt
= uf − u (1)

with the conditions at infinity

r(t)→ (−∞, h), u(r(t))→ (1, 0), as t→ −∞ (2)

where r = (x, y) is the position vector of the particle, uf = (uf , vf ) is the fluid
velocity, u = (u, v) is the particle velocity, h is a given positive number, k =
d2U0ρp/(18µl) is the Stokes number, d is the particle diameter, ρp is the particle
density, µ is the fluid dynamic viscosity, l is a characteristic dimension of the
obstacle taken to be half of the width of the wide-stream collection surface.
All distances and velocities have been non-dimensionalised with respect to l
and U0, respectively. For h = 0 we have y(t) ≡ 0 and then one obtains the
rectilinear motion of aerosol particles on the centre-line y = 0, namely,

dx

dt
= u(x(t)), k

du

dt
= φ(x(t))− u(x(t)) (3)

with the conditions at infinity

x(t)→ −∞, x′(t) = u(x(t))→ 1, as t→ −∞ (4)

where φ(x) = uf (x, 0) denotes the centre-line fluid velocity and, for simplicity,
we have written u(x) instead of u(x, 0).

The essential problem in the phenomenon under consideration, described by
eqns (1) and (2), and (3) and (4), is to determine the critical Stokes numbers,
k = Kcr and k = kcr, below which no particles may be deposited on the ob-
stacle or arrive at the stagnation point in a finite time, respectively.

Assuming that the inertial impaction is the principal mechanism of deposition,
hence neglecting interception effects, brownian motion and diffusion of aersol
particles, for a given configuration of the obstacle, the value of Kcr determines
the minimum size Dmin of the particles settling on the obstacle, whilst the
value of kcr determines the minimum size dmin of particles arriving at the stag-
nation point. According to the definition of the Stokes number, the minimum
diameters of the collected particles, Dmin and dmin, are directly proportional to
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the square root of the characteristic dimension of the obstacle, l, and inversely
proportional to the square root of the freestream velocity, U0, and particle
density, ρp, namely,

Dmin =

(
18µlKcr

ρpU0

)1/2

, dmin =

(
18µlkcr

ρpU0

)1/2

(5)

Consequently, the critical Stokes numbers Kcr and kcr may serve as a criterion
for the collection of small particles by the obstacle and at the stagnation point,
respectively. From expression (5) it can be observed that, for the same con-
ditions, the larger Kcr and kcr the more poorly will the given obstacle collect
small particles. Also from eqn.(5) it can be seen that for an obstacle (collec-
tor) of a given shape, particles are collected more efficiently by the obstacle
the higher the freestream velocity U0, or the density of particles ρp, and the
smaller the characteristic dimension of the obstacle l, or the dynamic viscosity,
µ, of the fluid.

Even the experimental investigations, which present numerous difficulties be-
cause of the particle interception effect, cannot determine exactly the cut-off
value of the Stokes number for which the collection efficiency, η, becomes zero.

In the previous years, there has been much controversy regarding the incon-
sistency of the values of kcr and Kcr in the empirical, numerical and theoret-
ical works, but all these have been elucidated (theoretically) by Lesnic et al.
(1994a) and to summarise, the main result is as follows.

Theorem 1.
(i) For the potential flow past symmetrically convex collectors

kcr =
1

4a
(6)

where a = −φ′(x0) and x0 is the stagnation point of the centre-line where
φ(x0) = 0. If further the fluid velocity is finite everywhere on the obstacle then

Kcr =
1

4a
. (7)

(ii) For the potential flow past symmetrically concave collectors

1

4m
≤ kcr ≤

1

4a
(8)
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where m = −φ′(x′
0) and x′

0 is the inflexion point of the centre-line fluid velocity
where φ′′(x′

0) = 0.

(iii) For the slow viscous flow past symmetrically collectors

1

4m
≤ kcr. (9)

The purpose of this study is to apply this theorem for calculating mainly the
critical Stokes number kcr for a wide-class of semi-infinite two-dimensional
symmetric collectors having flat and circular-arc noses as placed in a potential
free stream of aerosols. These bodies are streamlined semi-infinite collectors
of Rankine-type for which analytical solutions for the fluid flow field were de-
veloped by Hess (1973). Various types of shaped-collectors and other classical
potential theories on wide-stream impaction onto obstacle are discussed and
compared.

2.Streamlined collectors

A large class of analytic solutions for the fluid flow field can be generated
indirectly via Rankine’s idea based on the use of flow singularities, such as
sources, vortices and dipoles. Each singularity gives rise to a velocity field
that satisfies the basic potential-flow equations except at the singularity itself,
similarly as a Green’s function. Such flows are superimposed upon a uniform
stream. Any streamline of the resulting flow may be considered as the bound-
ary of an obstacle, the flow about which is given by adding the individual
flows of the singularities of the uniform stream. Proper distribution of sin-
gularities and proper selection of a streamline yield flows about interesting
families of bodies (collectors), which in turn can be used by experimentalists
for the practical design of collectors with respect to maximizing their collec-
tion efficiencies. More clearly, one can think inversely (indirectly) of the fluid
flow field generating the collector rather viceversa as is the traditional direct
approach in which the collector gives the flow field. In this way, one can
control the properties of the field such that they generate optimal shapes of
collectors. This class of analytical solutions were derived by Hess (1973) us-
ing methods that have features of both direct and inverse solutions. While
the general method of classical potential flow without separation distributes a
source density on a complete closed body,e.g. a Rankine body, the new method
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distributes sources on a partial open body, e.g. a Rankine half body. Fur-
thermore, the importance of including separation in the potential flow models
past objects has been stressed in Lesnic et al. (1994b). For arbitrary shaped
collectors the fluid velocity can be evaluated numerically using the boundary
element method, as described by Hess and Smith (1966), although analytical
solutions can be obtained for a circular arc and for a straight line, as given
in section 4. In this study, we aim to calculate the critical Stokes number on
the centre-line, kcr, associated with this class of potential flow fields and to
compare the results obtained with those from the other theories based on the
potential flow over bodies with or without separation.

3.Rankine-type flows

The idea of obtaining an inverse solution by superposition of point sources
was put forward by Rankine in 1871. The simplest Rankine-type flow is ob-
tained from a uniform stream velocity U0 = (U0, 0) parallel to the x−axis and
a point source of strength Q located at the origin (0, 0). The fluid velocity
field uf = (uf , vf ), in non-dimensional quantities, is then given by, see Hess
(1973),

uf = (uf , vf ) =

(
1 +

x

x2 + y2
,

y

x2 + y2

)
. (10)

The velocity becomes zero at the stagnation point (x0, y0) = (−1, 0). The
streamline which bifurcates at this stagnation point is taken as a body contour
and is given by, see Milne-Thomson (1950, p.196),

x−1 = y−1tan(y). (11)

This body is semi-infinite and symmetric about the x−axis. Being convex to
the uncoming flow Levin’s theorem, see Levin (1961), applies and thus

kcr = Kcr = − 1

4φ′(x0)
=

1

4
. (12)

For comparison, it is interesting to compare the values (12) with the critical
Stokes values obtained for the potential flow without separation past a circular
cylinder, namely, kcr = Kcr = 1/8, see Langmuir and Blodgett (1946).
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4.Other semi-infinite two-dimensional symmetric collectors
having flat and circular arc-noses

4.1 Flat-Nosed Collector

Consider a flat-nosed collector (partial body, obstacle) consisting of a straight
line lying along y−axis from −l to l. Then the potential fluid velocity field of a
uniform stream of velocity U0 along the x−axis, in non-dimensional quantities,
is given by, see Hess (1973),

uf (x, y) = 1 +
1

π

[
tan−1

(
1− y

x

)
+ tan−1

(
1 + y

x

)]
vf (x, y) =

1

2π
ln

(
(1 + y)2 + x2

(1− y)2 + x2

)
. (13)

The velocity becomes zero at the stagnation point (x0, y0) = (0, 0). The up-
per streamline which bifurcates at this stagnation point is taken as the body
contour and it is given implicitly by, see Hess (1973), for y > 0

3πP − 2Ptan−1(P ) + ln(1 + P 2) = πQ− 2Qtan−1(Q) + ln(1 + Q2) (14)

where P = y−1
x

, Q = y+1
x

. This body is semi-infinite and symmetric about the
x−axis. Being convex to the oncoming flow Levin’s theorem, see Levin (1961),
applies and thus

kcr = − 1

4φ′(x0)
=

π

8
. (15)

For comparison, it is interesting to compare the value (15) with the critical
Stokes values obtained for the potential flow with or without separation past
a flat plate. For the potential flow without separation past a flat plate the
fluid velocity is given by −uf + ivf = (x + iy)/(x2 − y2 + 1 + 2ixy)1/2, see
Milne-Thomson (1968, p.172), and therefore φ(x) = −x/(x2 + 1)1/2 and thus
kcr = 1/4. However, the speed of the fluid flow becomes infinite at the edges
of the plate for both the potential flow without separation and the flat-nosed
collector models, so that these solutions cannot represent the complete motion
past an actual plate. In fact, Golovin and Putnam (1962) observed that for
the potential flow past a flat plate without separation Kcr < kcr and numerical
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calculations of Lesnic et al. (1993) showed that Kcr ≈ 0.212. From this dis-
cussion, as the speed of the flow past a flat- nosed collector at the edge (0,1) is

still infinite but it has a weaker (logarithmic) singularity vf (0, y) = 1
π
ln
(

1+y
1−y

)
than the (algebraic) singularity of the potential flow without separation past
a flat plate vf (0, y) = y

(1−y2)1/2 , one expects that 0.212 ≤ Kcr ≤ π/8 ≈ 0.392.

For the potential flow with separation past a flat plate, the speed is finite at
the edges of the plate giving a more realistic mathematical model for which
kcr = Kcr = 4

4+π
, see Fucs (1964, p.164). For completeness the critical Stokes

numbers on the centre-line for the potential flow past a recessed trap collector
consisting of a straight line lying along the y−axis from −l to l and extend-
ing to infinity has been calculated, for which the fluid velocity is given by
uf (x, y) = − sinh(πx)

cosh(πx)+cos(πy)
, vf (x, y) = sin(πy)

cosh(πx)+cos(πy)
, see Brun et al. (1948).

Using formula (6) kcr = 1
2π

is obtained for a recessed trap. For a flat narrow
jet striking a plane at right angles an impingement instrument, see Fucs (1964,
p.153, 164), kcr = 2

π
.

4.2 Concave Circular Arc

This section considers the case where a circular arc is concave to the on-
coming uniform flow and thus part (ii) of Theorem 1 will apply. The arc is
assumed to have a unit radius centered at the origin and to be symmetric
about the x−axis with its angle extending from −β to β. The fluid velocity
for the concave circular arc-nosed collector in potential flow can be calculated
from Hess (1973), and is given by

uf (x, y) = 1 +
1

π

∫ β

−β

(x− cos(φ))(cos(φ) + sin(β)
π−β

)

(x− cos(φ))2 + (y − sin(φ))2
dφ,

vf (x, y) =
1

π

∫ β

−β

(y − sin(φ))(cos(φ) + sin(β)
π−β

)

(x− cos(φ))2 + (y − sin(φ))2
dφ (16)

After some calculus, the values a = 0.0211, m = 0.28, x0 = −0.55 for β = π/2
and a = 0.0001, m = 0.274, x0 = −1.48 for β = 5π/6 are obtained. These val-
ues of β have been previously chosen for the design of directional dust gauges,
see Bush et al. (1976) and Ralph and Hall (1989). Using the inequalities (8)
one obtains the estimates shown in Table 1. Of considerable interest is the
observation that as β increases towards π, i.e. the collector becomes closer
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to a blunt body with a nozzle, whilst the lower limit 1/(4m) for kcr remains
almost constant, the upper limit 1/(4a) increases rapidly, highlighting the fact
that the critical Stokes number kcr is likely to increase.

4.3 Convex Circular Arc

Again the arc is symmetric about the x− axis, has unit radius, and has
an angle extending from −β to β, but is oriented convexly to the oncoming
uniform flow. Then the fluid velocity for the convex circular arc-nosed collector
in potential flow can be calculated from Hess (1973), and is given by

uf (x, y) = 1 +
1

π

∫ β

−β

(x− cos(φ))(cos(φ)− sin(β)
π+β

)

(x− cos(φ))2 + (y − sin(φ))2
dφ,

vf (x, y) =
1

π

∫ β

−β

(y − sin(φ))(cos(φ)− sin(β)
π+β

)

(x− cos(φ))2 + (y − sin(φ))2
dφ (17)

After some calculus the values a = 0.0980 for β = π/2 and a = 0.0976 for
β = 77.45π/180 are obtained. This latter angle β is a ‘natural’ point of
separation of the incompressible flow from a circular cylinder, see Hess (1973).
Using (6) and (7) the values of kcr shown in Table 1 are obtained.

5.Conclusions

In this paper the calculation of the critical Stokes number for the wide-
stream impaction of potential flow over a new class of streamlined, symmetric
collectors has been performed. The results for kcr are summarised in Table
1. From Table 1 the performances of each streamlined collector for collecting
small size particles at the centre-line can be assessed. In particular, it can
be seen that, on the centre-line, the Rankine-type collector will collect small
particles, whilst the convex and concave collectors will collect only larger par-
ticles. Of course, the proposed new class of arc-nosed collectors remains to be
validated experimentally in a future work.
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Table 1: The values of the critical Stokes number on the centre-line for various
arc-nosed collectors.

Collector kcr

Rankine 1/4 = 0.25
Flat nosed π/8 ≈ 0.392

Convex circular 2.551
arc (β = π/2)

Convex circular 2.561
arc (β = 77.45π/180)

Concave circular 0.89 < kcr < 11.85
arc (β = π/2)

Concave circular 0.91 < kcr < 2500
arc (β = 5π/6)
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