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FREE SURFACE

Sergejs Nazarovs

Shallow wake flows are flows behind obstacles where water depth is much
smaller than the transverse scale of the flow. Limited water depth prevents
three-dimensional instabilities and acts as a suppression factor thus limiting
growth of perturbations. Hence the development of the shallow wakes is dif-
ferent from the wakes in deep water. Several authors have used the linear
stability theory in order to understand when shallow flows become unstable.
Two-dimensional depth-averaged Saint-Venant equations are usually used for
the analysis under the following assumptions: 1) the independence of the ve-
locity distribution on the vertical coordinate and 2) the independence of water
depth h on the spatial coordinates x, y and time t (so-called ”rigid-lid” as-
sumption). However, errors introduced by both assumptions have not been
evaluated. This paper presents the results of linear stability analysis of shal-
low wake flows with bottom friction performed with and without rigid-lid as-
sumption. Momentum correction coefficients in the x and y directions are
used in order to take the non-uniformity of the velocity distribution in the
vertical direction into account. The stability of the flow is governed by the
set of equations forming an eigenvalue problem. The linear stability of the
base flow is determined by the real parts of the eigenvalues. If the real parts
of all eigenvalues are positive, the flow is said to be linearly stable. On the
other hand, if the real part of at least one eigenvalue is negative, the flow is
said to be linearly unstable. The linear stability results are presented for the
classic hyperbolic secant wake profile. The linear stability problem is solved
by a pseudo spectral collocation method based on Chebyshev polynomials. It
is shown that the stability boundary is quite sensitive to the variation of the
momentum correction coefficients and the ”rigid-lid” assumption.
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In particular, neglecting of the momentum correction coefficients may lead
to a systematic bias that underestimates critical transition values marking the
boundary of instability.

2000 Mathematics Subject Classification: Applied Mathematics.

1. Introduction

Wake flows (flows behind obstacles, such as islands) are considered shal-
low if the transverse scale of the flow is much larger than the vertical scale
(water depth). Experiments show that limited water depth has a strong in-
fluence on the development of flow instabilities. In particular, evolution of
three-dimensional instabilities is prevented due to small vertical scale, but
transverse growth of perturbations is hampered by bottom friction. As a re-
sult, development of wakes in shallow water is different from the ones in deep
water.

However, vortex structures observed in shallow water in many cases re-
semble very much flow patterns in deep water. For example, photograph Nr.
173 by Van Dyke [6] shows formation of eddies organized into a vortex street
behind an obstacle in shallow water although the Reynolds number for this
case is 107 [6]. Note that vortex street pattern in unbounded flows is limited
to much smaller Reynolds numbers.

The stability of shallow flows has been analyzed in literature both experi-
mentally and theoretically [1], [2], [3], [5]. Two main assumptions are usually
being made in order to facilitate the analysis under the shallow water model.
The essence of the first assumption is that the free surface of the flow is not
perturbed and acts as ”rigid-lid” (so-called ”rigid-lid” assumption). Accord-
ing to the second assumption, the velocity is supposed to be independent on
vertical coordinate. This assumption results from the fact that the governing
equations for shallow flow are the depth-averaged.

In some cases, however, the two assumptions may not be appropriate. Fluc-
tuations of bottom friction coefficient and changes in flow geometry can result
in appreciable deviation of the real flow from above-mentioned assumptions.
In order to take into account the non-uniformity of velocity distribution, mo-
mentum correction coefficients were applied by several authors [8], [9].

The present paper makes an attempt to evaluate the influence of both
”rigid-lid” and uniform velocity distribution assumptions on the stability anal-
ysis of shallow wake flows. Momentum correction coefficients are used in this
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paper in order to evaluate influence of non-uniformity of velocity distribution.
The stability of the flow is analyzed for various values of the momentum correc-
tion coefficients. The Froude number is used in order to evaluate the influence
of ”rigid-lid” assumption on stability characteristics of shallow flows.

2.Problem Formulation

The governing equations for shallow flow can be obtained by integrating
Euler equations with respect to vertical coordinate and have the form
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where x and y are spatial coordinates, t is time, u and v are depth-averaged
velocity components in the x and y directions respectively, h is water depth, g
is acceleration due to gravity, F (y) is the forcing function, S0x = −∂zb(x, y)/∂x
and S0y = −∂zb(x, y)/∂y are the bed slopes, zb is distance from the bottom,
cf is the friction coefficient defined by the equation

1
√

cf

= As + Bsln(R
√

cf )

where As and Bs are coefficients defined in [7]. Shear stress at the boundary is
modelled by the Chezy formula τwx = 1

2
cfρu

√
u2 + v2 and τwy = 1

2
cfρv

√
u2 + v2,

where ρ is density, τwx and τwy are wall shear stresses along the x and y direc-
tions respectively.

The coefficients β1, β2, and β3 in equations (1-3) are the momentum cor-
rection coefficients which are introduced in order to take into account non-
uniformity of velocity distribution in the vertical direction. The momentum
correction coefficients are defined as follows:
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β1 =
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where u and v are velocity components, but U and V are depth-averaged
velocity components in the x and y directions respectively.

Introducing characteristic length b and the characteristic velocity U0, we
choose the measure of time in the form b/U0. Rewriting the equations in
dimensionless form, we obtain:
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where ud = u/U0, td = tU0/b, xd = x/b, hd = h/H0, yd = y/b, F̃ (yd) =
bF (yd)/U

2
0 , H0 is undistributed water depth and Fr is Froude number, repre-

senting the ratio of inertia and gravity forces, that is defined by the expression
Fr = U0/

√
gH0.

Dropping the subscript ”d”, we seek a perturbed solution for equations
(7-9) in the form:

u = U(y) + û(y)e−λt+ikx (10)

v = v̂(y)e−λt+ikx (11)

h =
H0

b
+ ĥ(y)e−λt+ikx (12)
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where k is a wavenumber and λ = λr + iλi is a complex eigenvalue.
Substituting (10-12) into (7-9), and performing linearization in the neigh-

borhood of the base flow, we obtain a system of ordinary differential equations:
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with the boundary conditions

v(±∞) = 0 (16)

where s =
cf b

H0
, u = u(y), v = v(y) and h = h(y).

3.Solution Method

Using a substitution
x = 2

π
arctan(y); y ∈ (−∞; +∞); x ∈ [−1; 1],

we represent the functions v(x), u(x) and h(x) in the form of fundamental
interpolation polynomials:
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where ak, bk and ck are unknown constants, but Tn(x) is an n-order Cheby-
shev polynomial that has the form Tn(x) = cos(n ∗ arccos(x)). The points

xk, defined by the expression xk = cos (2k−1)π
2n

, are the zeroes of the Cheby-
shev polynomial of order n, that is, (Tn(xk) = 0). It is obvious that the term
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Tn(x)
(x−xk)T ′
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is equal to zero, if x = xj, where xj is a zero of an n-order Cheby-

shev polynomial, and j 6= k. If x = xk then using the Taylor series expansion
of Tn(x) about the point x = xk we obtain:
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(21)

Using the collocation method and choosing zeroes of Chebyshev polynomi-
als as the collocation points we obtain

(A− λB)d = 0 (22)

where A and B are two complex-valued matrices. Vector d has the form
d = a1, a2, ..., an, b1, b2, ..., bn, c1, c2, ..., cn

Solving the generalized eigenvalue problem (22), for given s and k we obtain
a set of eigenvalues λ.

The real parts of eigenvalues λ determine linear stability of the base flow.
The flow is said to be linearly stable, if real parts of all λ are positive. If the real
part of the eigenvalue λ of at least one mode is negative then a perturbation
grows exponentially with time and the flow is said to be linearly unstable.
Numerical methods can be used in order to find for a given wavenumber k a
value of s, for which one mode has λr equal to zero, while all other λ have
positive real parts. That enables to build the neutral stability curve, that is
defined as a set of points in the (k,s)-plane for which one λ has the real part
equal to zero, while real parts of all other λ are positive. The critical value,
sc of the parameter s is defined as the coordinate of the highest point of the
curve, or sc = max(s(n)(k)).

The sc parameter is very important in linear stability analysis. The flow is
stable for all k if the value of s is higher than sc, and flow is unstable for some
k if s < sc.

4.Results and discussion
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This paper presents an attempt to evaluate the influence of ”rigid-lid”
assumption and momentum correction coefficients on the value of sc parameter.
The rigid-lid assumption is evaluated by solving problems (13-15) numerically
for different values of Froude number as well as b/H0 parameter that is the
ratio of the characteristic width of the wake and water depth and comparing
the critical values, sc, of the parameter s. The assumption of uniform velocity
distribution across the vertical coordinate is evaluated by solving problems
(13-15) for different values of momentum correction coefficients β1 and β2.

The values of sc have been calculated for the following values of the pa-
rameters Fr, b/H0, β1, and β2:

Fr = 0.0001, 0.1, 0.2.
b/H0 = 5, 50.
β1 = 1.00, 1.05, 1.10.
β2 = 1.00, 1.05, 1.10.
The critical values of the stability parameter for finite Froude number Fr

and various values of parameter b/H0 are compared with those obtained under
”rigid-lid” assumption by Kolyshkin&Nazarovs [4].

The results (in terms of percentage difference) are shown in Figure 1.

The two values of the parameter b/H0 are chosen since the condition
b/H0 �1 is consistent with the shallow water approximation. It is seen that
although the stability boundary is quite sensitive to variations of Froude num-
ber, the error in determining the sc parameter is below 6% if Froude number
is less than 0.2 for the case b/H0=5, and if the Froude number is less than 0.1
for the case b/H0=50. The Froude number FrH (based on the undisturbed

water depth) is related to Fr by means of the formula FrH = Fr
√

b/H0. The
parameter FrH for real island wakes is in the range 0.1-0.2. So, the ”rigid-lid”
assumption is precise enough for calculation of the sc parameter for the range
of Froude numbers typical for shallow flows.

Figure 2 presents results of the comparison of the sc parameter calculated
for different values of momentum correction coefficients β1 and β2. The results
are compared to the values of sc calculated for β1=1.00 and β2=1.00 that
corresponds to the case when the velocity non-uniformity across the vertical
coordinate is not taken into account. As it can be seen, for some combination
of the values of β1 and β2 the relative error can reach 10%. The increase of β1

leads to growth of sc, so the flow becomes more unstable. The β2 coefficient
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Figure 1: The percentage difference ∆ between the values of the sc with and
without the rigid-lid assumption for the case b/H0=5 and b/H0=50.
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Figure 2: The percentage difference ∆ between the values of the sc for depth-
averaged equations (β1 = 1, β2 = 1) and equations with correction factors
(β1 > 1, β2 > 1).
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has, in its turn, stabilizing effect on the flow, but its influence diminishes
with the growth of β1. Unfortunately, the values of coefficients β1 and β2 for
real island wakes are not known. However as the error in determining the sc

parameter may grow with increased values of β1 (the stability boundary can be
underestimated with increase of β1) it might be important to know the values
of β1 and β2 for analyzed shallow flows.
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