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Abstract. Let E be a primarily quasilocal field, Esep a separable closure
of E, R a finite extension of E in Esep, Rab the maximal abelian subextension
of E in R, and M the minimal Galois extension of E in Esep including R. The
main result of this paper shows that the norm groups N(R/E) and N(Rab/E)
are equal, if the Galois group G(M/E) is nilpotent. It proves that this is
not necessarily true, if G(M/E) is isomorphic to any given nonnilpotent finite
group G.
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1. Introduction

This paper is devoted to the study of norm groups of finite separable ex-
tensions of primarily quasilocal fields (briefly, PQL-fields), i.e. of p-quasilocal
fields with respect to every prime number p. It has been proved in [7] that
such a field E admits one-dimensional local p-class field theory, provided that
the p-component Br(E)p of the Brauer group Br(E) is nontrivial. This theory
shows that finite abelian p-extensions of E are subject to exact analogues to
the local reciprocity law and the local Hasse symbol (cf. [25, Ch. 6, Theorem
8], [16, Ch. 2, 1.3] and [7, Theorems 2.1 and 2.2]), which leads to a satisfactory
description of the norm group of any abelian finite extension of E.
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The present paper proves that if R/E is a finite separable extension and
M is a normal closure of R over E, then the nilpotency of the Galois group
G(M/E) is a minimal sufficient condition for the validity of the norm group
equalityN(R/E) = N(Rab/E), whereRab is the maximal abelian subextension
of E in R. Our main result has been used elsewhere for describing the norm
groups of finite separable extensions of Henselian discrete valued fields whose
finite extensions are strictly PQL, and of formally real quasilocal fields (see
[10] and the references there).

The basic notions of (one-dimensional) local class field theory, used in the
sequel, are defined in Section 2. For each field E, we denote by P (E) the set of
those prime numbers p, for which there exists at least one cyclic extension of
E of degree p. Clearly, a prime number p lies in P (E) if and only if E does not
equal its maximal p-extension E(p) in a separable closure Esep of E. Let us
note that a field E is said to be p-quasilocal, if it satisfies some of the following
two conditions: (i) Br(E)p = {0} or p 6∈ P (E); (ii) cyclic extensions of E of
degree p embed as E-subalgebras in each central division E-algebra of Schur
index p. When this occurs, we say that E is strictly p-quasilocal, provided that
Br(E)p 6= {0} or p 6∈ P (E). The field E is called strictly primarily quasilocal,
if it is strictly p-quasilocal, for every prime p; it is said to be quasilocal, if its
finite extensions are PQL-fields. It has been proved in [7] that strictly PQL-
fields admit local class field theory. As to the converse, it holds in each of the
following special cases: (i) E contains a primitive p-th root of unity, for each
prime p ≥ 5 not equal to char(E); (ii) E is an algebraic extension of a global
field E0. It should also be noted that all presently known fields with local class
field theory are strictly PQL (see Proposition 2.5 and Remark 2.6).

The description of norm groups of finite extensions of strictly PQL-fields
is a major objective of local class field theory. When E is a local field, this
is achieved by describing closed subgroups of finite index in the multiplicative
group E∗ of E (see, for example, [12, Ch. IV, (6.2)]), since the norm limitation
theorem (cf. [13, Ch. 6, Theorem 8]) yields N(R/E) = N(Rab/E) whenever
R/E is a finite extension. As a part of a generalization of the whole theory,
the theorem has been extended by Moriya [21] to the case where R is separable
over E and E possesses a Henselian discrete valuation with a quasifinite residue
field Ê (see [26; 31] and [12, Ch. V] as well). The purpose of this paper is to
shed light on the scope of validity of the norm limitation theorem by proving
the following assertions:
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Theorem 1.1. Let E be a PQL-field, M/E a finite Galois extension with
a nilpotent Galois group G(M/E), and R an intermediate field of M/E. Then
N(R/E) = N(Rab/E).

Theorem 1.2. For each nonnilpotent finite group G, there exists a strictly
PQL-field E(G) and a Galois extension M(G) of E(G), for which the following
is true:

(i) E(G) is an algebraic extension of the field Q of rational numbers;
(ii) The Galois group G(M(G)/E(G)) is isomorphic to G, and

N(M(G)/E(G)) is a proper subgroup of N(M(G)ab/E(G)).

The proof of Theorem 1.2 relies on the fact that every algebraic strictly
PQL-extension E of a global field E0 possesses a certain characteristic system
{v(p) : p ∈ P (E)} of nontrivial absolute values of E (see Proposition 2.7).
This has been established in [9] and used there for proving that if R/E is a
finite extension, thenN(R/E) = N(Φ(R)/E), for some finite abelian extension
Φ(R) of E in Esep, uniquely determined by the local behaviour of R/E at v(p),
when p runs through the set of elements of P (E) dividing the degree [M : E]
of the normal closure M of R in Esep over E. It should also be pointed out that
the conclusion of Theorem 1.1 remains true without restrictions on G(M/E),
under the hypothesis that E is a quasilocal field and the natural Brauer group
homomorphism Br(E) → Br(L) is surjective, for every finite extension L of E.
This condition has been found in [10], and its role for the present research is
clarified there by providing a series of examples of a field E with the following
two properties: (i) finite extensions of E are strictly PQL-fields; (ii) the Galois
group G(Esep/E) is not pronilpotent; (iii) if R/E is a finite extension, then
N(R/E) 6= N(R1/E), for any finite abelian extension R1/E, unless the normal
closure of R in Esep over E satisfies the condition of Theorem 1.1.

Theorems 1.1 and 1.2 are proved in Sections 3 and 4, and Section 2 includes
preliminaries needed for our considerations. Throughout the paper, algebras
are understood to be associative with a unit, simple algebras are supposed to
be finite-dimensional over their centres, Brauer groups of fields are viewed as
additively presented, absolute values are assumed to be nontrivial, and Galois
groups are regarded as profinite with respect to the Krull topology. For each
algebra A, we consider only subalgebras of A containing its unit, and denote
by A∗ the multiplicative group of A. As usual, a field E is said to be formally
real, if −1 is not presentable as a finite sum of squares of elements of E. Our
basic terminology and notation concerning valuation theory, simple algebras
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and Brauer groups is standard (such as can be found, for example, in [17; 14]
and [22]), as well as those concerning profinite groups, Galois cohomology, field
extensions and Galois theory (see, for example, [27; 23] and [17]).

2. Preliminaries

Let E be a field, Esep a separable closure of E, Nr(E) the set of norm
groups of finite extensions of E, and Ω(E) the set of finite abelian extensions
of E in Esep. We say that E admits (one-dimensional) local class field theory,
if the mapping π of Ω(E) into Nr(E) defined by the rule π(F ) = N(F/E) :
F ∈ Ω(E), is injective and satisfies the following two conditions, for each pair
(M1,M2) ∈ Ω(E)× Ω(E):

The norm group of the compositum M1M2 is equal to the intersection
N(M1/E) ∩ N(M2/E) and N((M1 ∩M2)/E) equals the inner group product
N(M1/E)N(M2/E).

We call E a field with one-dimensional local p-class field theory, for some
prime number p, if the restriction of π on the set of abelian finite p-extensions
of E in Esep has the same properties. Our research is based on the fact that
the description of norm groups of finite Galois extensions with nilpotent Galois
groups reduces to the special case of p-extensions. This possibility can be seen
from the following two lemmas.

Lemma 2.1. Let E be a field and L an extension of E presentable as a
compositum of extensions L1 and L2 of E of relatively prime degrees. Then
N(L/E) = N(L1/E) ∩ N(L2/E), N(L1/E) = E∗ ∩ N(L/L2), and there is a
group isomorphism E∗/N(L/E) ∼= (E∗/N(L1/E))× (E∗/N(L2/E)).

Proof. The inclusion N(L/E) ⊆ N(Li/E): i = 1, 2 follows at once from
the transitivity of norm mappings in towers of field extensions of finite degrees
(cf. [17, Ch. VIII, Sect. 5]). Conversely, let c ∈ N(Li/E) and [Li : E] = mi:
i = 1, 2. As g.c.d.(m1,m2) = 1, this implies consecutively that [L : L2] = m1,
cm1 ∈ N(L/E), [L : L1] = m2, c

m2 ∈ N(L/E) and c ∈ N(L/E), and so proves
the equality N(L/E) = N(L1/E) ∩ N(L2/E). Since E∗/N(Li/E) is a group
of exponent dividing mi: i = 1, 2, it is also clear that N(L1/E)N(L2/E) =
E∗. These observations prove the concluding assertion of the lemma. Our
argument also shows that NL

L2
(λ1) = NL1

E (λ1): λ1 ∈ L1, whence N(L1/E) ⊆
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E∗∩N(L/L2). Considering now an element s ∈ E∗∩N(L/L2), one obtains that
sm2 ∈ N(L/E). This means that sm2 ∈ N(L1/E), and since sm1 ∈ N(L1/E),
finally yields s ∈ N(L1/E), which completes the proof of Lemma 2.1.

Lemma 2.2. Let E be a field, M a finite Galois extension of E with a
nilpotent Galois group G(M/E), R an intermediate field of M/E not equal
to E, P (R/E) the set of prime numbers dividing [R : E], Mp the maximal
p-extension of E in M , and Rp the intersection R∩Mp, for each p ∈ P (R/E).
Then the following is true:

(i) R is equal to the compositum of the fields Rp : p ∈ P (R/E), and [R :
E] =

∏
p∈P (R/E)[Rp : E];

(ii) The norm group N(R/E) equals the intersection ∩p∈P (R/E)N(Rp/E)
and the quotient group E∗/N(R/E) is isomorphic to the direct product of the
groups E∗/N(Rp/E): p ∈ P (R/E).

Proof. Statement (i) follows from Galois theory and the Burnside-Wielandt
characterization of nilpotent finite groups (cf. [15, Ch. 6, Sect. 2]). Proceeding
by induction on the number s of the elements of P (R/E), and taking into
account that if s ≥ 2, then Rp and the compositum R′

p of the fields Rp′ :
p′ ∈ (P (R/E) \ {p}), are of relatively prime degrees over E, one deduces
Lemma 2.2 (ii) from Lemma 2.1.

It is clear from Lemma 2.2 that a field E admits local class field theory
if and only if it is a field with local p-class field theory, for every p ∈ P (E).
The following lemma, proved in [8, Sect. 4], shows that the group Br(E)p
is necessarily nontrivial, if E admits local p-class field theory, for a given
p ∈ P (E).

Lemma 2.3. Let E be a field, such that Br(E)p = {0}, for some prime
number p. Then Br(E1)p = {0} and N(E1/E) = E∗, for every finite extension
E1 of E in E(p).

The main result of [8] used in the present paper can be stated as follows:

Proposition 2.4. Let E be a strictly p-quasilocal field, for some p ∈
P (E). Assume also that R is an extension of E in E(p), and D is a central
division E-algebra of p-primary dimension. Then R is a p-quasilocal field and
the following statements are true:

(i) D is a cyclic E-algebra and ind(D) = exp(D);
(ii) Br(R)p is a divisible group unless p = 2, R = E and E is a formally

real field; in the noted exceptional case, Br(E)2 is of order 2 and E(2)/E is a
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quadratic extension;
(iii) The natural homomorphism of Br(E) into Br(R) maps Br(E)p surjec-

tively on Br(R)p; in particular, every E-automorphism of the field R is extend-
able to a ring automorphism on each central division R-algebra of p-primary
dimension;

(iv) R is embeddable in D as an E-subalgebra if and only if the degree
[R : E] divides ind(D); R is a splitting field of D if and only if [R : E] is
infinite or divisible by ind(D).

The place of strictly PQL-fields in one-dimensional local class field theory
is determined by the following result of [7]:

Proposition 2.5. Strictly PQL-fields admit local class field theory.
Conversely, a field E admitting local class field theory and satisfying the

condition Br(E) 6= {0} is strictly PQL, provided that every central division
E-algebra of prime exponent p is similar to a tensor product of cyclic division
E-algebras of Schur index p.

Remark 2.6. The question of whether central division algebras of prime
exponent p over an arbitrary field E are necessarily similar to tensor products of
cyclic E-algebras of index p is open. It is known that the answer is affirmative
in each of the following special two special cases: (i) if E contains a primitive
p-th root of unity or p = char(E) (cf. [19, (16.1)] and [1, Ch. VII, Theorem
30]); (ii) if E is an algebraic extension of a global field (cf. [2, Ch. 10, Corollary
to Theorem 5]). Also, it has been proved in [7] that finite extensions of a field
E admit local class field theory if and only if these extensions are strictly
PQL-fields.

Our next result characterizes fields with local class field theory and with
proper maximal abelian extensions, in the class of algebraic extensions of global
fields:

Proposition 2.7. Let E0 be a global field, E0 an algebraic closure of E0,
and E an extension of E0 in E0, such that P (E) 6= φ. Then the following
conditions are equivalent:

(i) E admits local class field theory;
(ii) For each p ∈ P (E), Br(E)p 6= {0} and there exists an absolute value

v(p) of E, such that the tensor product E(p)⊗E Ev(p) is a field, where Ev(p) is
the completion of E with respect to the topology induced by v(p).
When these conditions are in force, the following statements are true, for every
p ∈ P (E):
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The absolute value v(p) is uniquely determined, up-to an equivalence, the
natural homomorphism of Br(E) into Br(Ev(p)) maps Br(E)p bijectively on
Br(Ev(p))p, and E(p)⊗EEv(p) is isomorphic as an Ev(p)-algebra to the maximal
p-extension Ev(p)(p) of Ev(p).

Definition. Let E be a strictly PQL-extension of a global field E0, such
that P (E) 6= φ. By a characteristic system of E, we mean a system V (E) =
{v(p) : p ∈ P (E)} of absolute values of E, determined in accordance with
Proposition 2.7 (ii).

Note finally that if E is an algebraic extension of a global field E0, R is a
finite extension of E in Esep, then the group Nloc(R/E) of local norms of R/E
consists of the elements of E∗ lying in the norm groups N(Rv′/Ev), whenever
v is an absolute value of E, and v′ is a prolongation of v on R. It has been
proved in [9] that if E is a strictly PQL-field with P (E) 6= φ, and R′ is the
normal closure of R in Esep over E, then Nloc(R/E) ⊆ N(R/E), and both
groups are fully determined by the local behaviour of R/E at the subset of
V (E), indexed by the divisors of [R′ : E] in P (E). In this paper, we shall
need this result only in the special case where R = R′, i.e. R/E is a Galois
extension.

Proposition 2.8. Assume that E0 is a global field, E is an algebraic
strictly PQL-extension of E0 with P (E) 6= φ, and V (E) = {v(p) : p ∈ P (E)}
is a characteristic system of E. Also, let M be a finite Galois extension of E,
and P (M/E) the set of prime numbers dividing [M : E]. Then there exists a

finite abelian extension M̃ of E satisfying the following conditions:
(i) The norm groups N(M̃/E), N(M/E) and Nloc(M/E) are equal;

(ii) The degree [M̃ : E] divides [M : E]; in particular, M̃ = E, provided
that E(p) = E, ∀p ∈ P (M/E);

(iii) For each prime number p dividing [M̃ : E], the maximal p-extension

M̃p of E in M̃ has the property that M̃p ⊗E Ev(p) is Ev(p)-isomorphic to the
maximal abelian p-extension of Ev(p) in the completion Mv(p)′, where v(p)′ is
an absolute value of M extending v(p).

The field M̃ is uniquely determined by M , up-to an E-isomorphism.

It is worth mentioning that if M is an algebraic extension of a global field
E0, and E is a subfield of M , such that E0 ⊆ E and M/E is a finite Galois
extension, then N(M/E) ⊆ Nloc(M/E). Identifying M with its E-isomorphic
copy in Ev,sep, for a fixed absolute value v of E, one deduces this from the
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fact that the Galois groups G(Mv′/Ev) and G(M/(M ∩ Ev)) are canonically

isomorphic, N(M/E) ⊆ N(M/(M ∩Ev)), and NM
(M∩Ev)(µ) = N

Mv′
Ev

(µ), in case
µ ∈ M∗ and v′ is a prolongation of v on M . Moreover, it follows from Tate’s
description of Nloc(M/E)/N(M/E) [3, Ch. VII, Sect. 11.4] (see also [23, Sect.
6.3]), in the special case where E0 is an algebraic number field and E = E0,
that M/E can be chosen so that N(M/E) 6= Nloc(M/E).

3. Norm groups of intermediate fields of finite Galois
extensions with nilpotent Galois groups

The purpose of this Section is to prove Theorem 1.1. Clearly, our assertion
can be deduced from Galois theory, Lemma 2.2 and the following result:

Theorem 3.1. Let E be a p-quasilocal field, M/E a finite p-extension of
E, and R an intermediate field of M/E. Then N(R/E) = N(Rab/E).

Proof. In view of Lemma 2.3 and Proposition 2.4 (ii), one may consider only
the special case in which p ∈ P (E) and Br(E)p is an infinite group. Suppose
first that R is a Galois extension of E. It follows from Galois theory that then
the maximal abelian extension in R of any normal extension of E in R is itself
normal over E and contains Rab as a subfield. Since the intermediate fields of
R/E are p-quasilocal fields, these observations show that it is sufficient to prove
the equality N(R/E) = N(Rab/E), under the hypothesis that G(R/E) is a
Miller-Moreno group, i.e. a nonabelian group with abelian proper subgroups.
For convenience of the reader, we begin the consideration of this case with the
following elementary lemma:

Lemma 3.2. Assume that P is a Miller-Moreno p-group. Then the follow-
ing is true:

(i) The commutator subgroup [P, P ] of P is of order p, the centre Z(P )
of P equals the Frattini subgroup Φ(P ), and the group P/Φ(P ) is elementary
abelian of order p2;

(ii) A subgroup H of P is normal in P if and only if [P, P ] ⊆ H or H ⊆
Φ(P );

(iii) The quotient group of P by its normal subgroup H0 is cyclic if and only
if H0 is not included in Φ(P ); in particular, this occurs in the special case of
H0 = P0.[P, P ], where P0 is a subgroup of P that is not is not normal in P ;

156



I.D. Chipchakov - On nilpotent Galois groups and the scope of ...

(iv) If P is not isomorphic to the quaternion group of order 8, then it
possesses a subgroup P0 with the property required by (iii).

Proof. It is well-known that Φ(P ) is a normal subgroup of P including
[P, P ], and such that P/Φ(P ) is an elementary abelian p-group of rank r ≥
1; this implies the normality of the subgroups of P including Φ(P ). Recall
further that r ≥ 2, since, otherwise, P must possess exactly one maximal
subgroup, and therefore, must be nontrivial and cyclic, in contradiction with
the noncommutativity of P . On the other hand, it follows from the noted
properties of Φ(P ) that if k is a natural number less than r and S is a subset
of P with k elements, then the subgroup P (S) of P generated by the union
Φ(P )∪S is of order dividing |Φ(P )|.pk; in particular, P (S) is a proper subgroup
of P . Since proper subgroups of P are abelian, these observations show that
Φ(P ) ⊆ Z(P ) and r = 2. At the same time, the noncommutativity of P ensures
that P/Z(P ) is a noncyclic group, whence it becomes clear that Φ(P ) = Z(P ).
Let h be an element of P \ Φ(P ). Then there exists an element g ∈ P ,
such that the system of co-sets {hΦ(P ), gΦ(P )} generates the group P/Φ(P ).
Using the fact that [P, P ] ⊆ Φ(P ) = Z(P ) and hp ∈ Z(P ), one obtains by
direct calculations that each element of [P, P ] is a power of the commutator
h−1g−1hg := (h, g), and also, that (h, g)p = 1. This completes the proof
of Lemma 3.2 (i), and thereby, implies Lemma 3.2 (ii). The latter part of
Lemma 3.2 (iii) follows from the former one and Lemma 3.2 (ii). As Φ(P )
consists of all non-generators of P (cf. [15, Ch. 1, Theorem 2]), the systems
{h, g} and {h.[P, P ], g.[P, P ]} generate the groups P and P/[P, P ], respectively.
Therefore, the quotient group P/[P, P ]〈h〉) is cyclic, which proves the former
part of Lemma 3.2 (iii). The concluding assertion of the lemma can be obtained
from the classification of Miller-Moreno p-groups [20] (cf. also [24, Theorem
444]), namely, the fact that if P is not isomorphic to the quaternion group of
order 8, then it has one of the following presentations:

P1 = 〈g1, h1, z : gp
m

1 = hp
n

1 = zp = 1, g1z = zg1, h1z = zh1, h1g1h
−1
1 = g1z〉,

m ≥ n ≥ 1 (P1 is of order Pm+n+1);

P2 = 〈g2, h2 : gp
m

2 = hp
n

2 = 1, h2g2h
−1
2 = g1+pm−1

2 〉, m ≥ 2, n ≥ 1, pm+n > 8
(P2 is of order pm+n).

Clearly, the subgroup of Pi generated by hi is not normal, for any index
i ≤ 2 and any admissible pair (m,n), so Lemma 3.2 is proved.

We continue with the proof of Theorem 3.1 (under the hypothesis that
Br(E)p is infinite). By Proposition 2.4 (ii) and (iv), this means that Br(Λ)p 6=
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0, for every finite extension Λ of E in E(p). The proposition also ensures that
Λ is strictly p-quasilocal, whence, by [7, Theorem 2.1], it admits local p-class
field theory. Suppose first that G(R/E) is not isomorphic to the quaternion
group Q8. It follows from Galois theory and Lemma 3.2 that then the extension
R/E possesses an intermediate field L for which the following is true:

(3.1) (i) R = LRab and L is not normal over E;
(ii) The intersection L ∩ Rab := F is a cyclic (proper) extension of E of

degree [L : E]/p.

It is clear from (3.1) (ii) that L/F is a cyclic extension of degree p. Let σ
and ψ be generators of the Galois groups G(L/F ) and G(F/E), respectively.
Fix an element ω of F ∗, denote by ∆ the cyclic F -algebra (L/F, σ, ω), and by
ψ̄ some embedding of L in E(p) as an E-subalgebra, inducing ψ on F . By
Proposition 2.4 (iii), ψ is extendable to an automorphism ψ̃ of ∆ as an algebra
over E. Observing also that ψ̄(L) 6= L and arguing as in the proof of [5, Lemma
3.2], one concludes that there exists an F -isomorphism ∆ ∼= (L/F, σ, ψ(β)β−1),
for some β ∈ F ∗. Hence, by [22, Sect. 15.1, Proposition b], ωβψ(β)−1 is an
element of the norm group N(L/F ). In view of [7, Lemma 3.2], this means
that ω ∈ N(Rab/F ) if and only if ωβψ(β)−1 ∈ (N(L/F ) ∩N(Rab/F )). Since
F 6= E and G(R/E) is a Miller-Moreno group, R/F is an abelian extension,
so it follows from (3.1) (i) and the availability of a local p-class field theory on
F that N(R/F ) = N(L/F ) ∩ N(Rab/F ). As NF

E (ω) = NF
E (ωβψ(β)−1), our

argument and the transitivity of norm mappings in towers of finite extensions
prove that N(R/E) = N(Rab/E).

Assume now that p = 2 and G(R/E) is a quaternion group of order 8.
It this case, by Galois theory, Rab is presentable as a compositum of two
different quadratic extensions E1 and E2 of E; one also sees that R/E1 and
R/E2 are cyclic extensions of degree 4. Let ψ1 be an E1-automorphism of
R of order 4, σ1 an E-automorphism of E1 of order 2, and γ an element of
R∗

ab not lying in N(R/Rab). The field E1 is 2-quasilocal, which implies the
existence of a central division E1-algebra D of index 4, such that D⊗E1 Rab is
similar to the cyclic Rab-algebra (R/Rab, ψ

2
1, γ). Using again Proposition 2.4,

one concludes that D is isomorphic to the cyclic E1-algebra (R/E1, ψ1, ρ), for
some ρ ∈ E∗

1 . Therefore, there exists an Rab-isomorphism (R/Rab, ψ
2
1, γ)

∼=
(R/Rab, ψ

2
1, ρ), and by [22, Sect. 15.1, Proposition b], γρ−1 ∈ N(R/Rab).

By Proposition 2.4 (iii), the normality of R over E, and the Skolem-Noether
theorem (cf. [22, Sect. 12.6]), σ1 is extendable to an automorphism σ̃1 of
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D as an algebra over E, such that σ̃1(R) = R. In addition, our assumption
on G(R/E) indicates that (σ̃1ψ1)(r) = (ψ3

1σ̃1)(r), for each r ∈ R∗. It is now
easy to see that D is isomorphic to the cyclic E1-algebras (R/E1, ψ

3
1, σ1(ρ))

and (R/E1, ψ
3
1, ρ

3). Hence, by [22, Sect. 15.1, Proposition b], ρ3σ1(ρ)
−1 lies in

N(R/E1). Taking also into account that γρ−1 ∈ N(R/Rab) and NRab
E1

(γρ−1) =

ρ−2NRab
E1

(γ), one concludes that NRab
E1

(γ).(ρσ1(ρ)
−1) ∈ N(R/E1). This result

shows that NRab
E (γ) ∈ N(R/E), which completes the proof of Theorem 3.1 in

the special case where R/E is a Galois extension.

Suppose finally that R is an arbitrary extension of E in E(p) of degree
pm, for some m ∈ N, and denote by R0 the maximal normal extension E in
R. Proceeding by induction on m and taking into account that R0 is strictly
p-quasilocal and R0 6= E, one obtains that now it suffices to prove Theorem
3.1 in the special case where R 6= R0 and R is abelian over R0, and assuming
that the conclusion of the theorem is valid for each intermediate field of R/E
not equal to R. Our inductive hypothesis indicates that then there exists an
embedding ψ of R in E(p) as an E-subalgebra, such that ψ(R) 6= R. It is
easily verified that R0 = ψ(R0) and ψ(R)/R0 is an abelian extension; hence, R
and ψ(R) are abelian extensions of the intersection R∩ψ(R) := R1. Observing
also that R1 is a p-quasilocal field, one gets from [7, Theorem 2.1] that R∗

1 =
N(R/R1)N(ψ(R)/R1). This, combined with the transitivity of norm mappings

in towers of finite extensions, and with the fact that ψ(NR
R0

(λ)) = N
ψ(R)
R0

(ψ(λ)),
for each λ ∈ R∗, implies that N(R/E) = N(R1/E). Since R1 6= R,Rab ⊆ R0 ⊆
R1, the proof of Theorem 3.1 can be accomplished by applying the obtained
result and the inductive hypothesis.

The concluding result of this Section is of interest because it is not known
whether Henselian discrete valued fields with local class field theory are strictly
PQL.

Corollary 3.3. Let (E, v) be a Henselian discrete valued field with local
class field theory, M/E a finite Galois extension with a nilpotent Galois group,
and R an intermediate field of M/E. Then N(R/E) = N(Rab/E).

Proof. It suffices to consider the special case of a proper p-extension M/E.

Then p ∈ P (E), and by [6, Theorem 2.1], Ê(p)/Ê is a Zp-extension, where

Ê is the residue field of (E, v). If p 6= char(Ê) and Ê does not contain a
primitive p-th root of unity, this means that E(p)/E is a Zp-extension with
finite subextensions inertial over E (see, for example, [4, Lemma 1.1]), so our
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assertion becomes trivial. In view of Theorem 3.1, it remains to be seen that
E is p-quasilocal in the following special cases: (i) Ê contains a primitive p-th

root of unity; (ii) char(Ê) = p. If char(Ê) = p and char(E) = 0, this result
has been obtained in [6, Sect. 2], and if char(E) = p, it is contained in [7,
Proposition 2.4]. The Henselian property of v implies in case (i) the existence
of a primitive p-th root of unity in E, (ii) which reduces our assertion to a
special case of [7, Proposition 2.4].

4. On nonnilpotent finite Galois extensions of strictly
PQL-fields algebraic over Q

Our objective in this Section is to prove Theorem 1.2 by applying the gen-
eral properties of algebraic strictly PQL-extensions of global fields established
in [9]. Proposition 2.7 and [11, Sect. 2, Theorem 4] indicate that if E is an
algebraic extension of a global field E0, F is an intermediate field of E/E0,
and for each p ∈ P (E), w(p) is the absolute value of F induced by v(p),
then the groups Br(F )p and Br(Fw(p))p are nontrivial. Therefore, our research
concentrates as in [9] on the study of the following class of fields:

Definition 4.1. Let E0 be a global field, E0 an algebraic closure of E0,
F an extension of E0 in E0, P a nonempty set of prime numbers for which
Br(F )p 6= {0}, and {w(p) : p ∈ P} a system of absolute values of F , such that
Br(Fw(p))p 6= {0}, p ∈ P . Denote by Ω(F, P,W ) the set of intermediate fields
E of E/F with the following properties:

(i) E admits local class field theory and P (E) = P ;
(ii) The characteristic system {v(p) : p ∈ P} of E can be chosen so that

v(p) is a prolongation of w(p), for each p ∈ P .

The existence of the system {w(p) : p ∈ P} appearing in Definition 4.1
follows from global class field theory (cf. [30, Ch. XIII, Sect. 3] and [9,
Proposition 1.2]), and some of the main results of [9] about the set Ω(F, P,W )
can be stated as follows:

Proposition 4.2. With assumptions and notations being as above, Ω(F,
P,W ) is a nonempty set, for which the following assertions hold true:

(i) Every field E ∈ Ω(P,W ;F ) possesses a unique subfield R(E) that is a
minimal element of Ω(P,W ;F ) (with respect to inclusion);
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(ii) If E is a minimal element of Ω(F, P,W ), p ∈ P and Fw(p) is the closure
of F in Ev(p), then the degrees of the finite extensions of Fw(p) in Ev(p) are not
divisible by p.

Proposition 4.2 plays a crucial role in the proof of the following precise
form of Theorem 1.2.

Proposition 4.3. Let G be a nonnilpotent finite group, P the set of all
prime numbers, w(p) the normalized p-adic absolute value of the field Q of
rational numbers, for each p ∈ P , and W = {w(p) : p ∈ P}. Then there
is a field E ∈ Ω(Q, P ,W ) possessing a Galois extension M in Q, such that
G(M/E) is isomorphic to G and N(M/E) 6= N(Mab/E).

Proof. Our argument relies on several observations described by the fol-
lowing four lemmas.

Lemma 4.4. Let E be an algebraic strictly PQL-extension of Q with
P (E) 6= φ, and let {v(p) : p ∈ P (E)} be a characteristic system of E.
Assume also that M/E is a finite Galois extension such that G(M/E) is
nonnilpotent, each prime p dividing [M : E] lies in P (E) and Mv(p)′/Ev(p)
is a p-extension with G(Mv(p)′/Ev(p)) isomorphic to the Sylow p-subgroups of
G(M/E), where v(p)′ is an arbitrary absolute value of M extending v(p). Then
N(M/E) 6= N(Mab/E).

Proof. By the Burnside-Wielandt theorem, the assumption that G is non-
nilpotent means that it possesses a maximal subgroup H that is not nor-
mal. Let p be a prime number dividing the index |G : H|, Ap the max-
imal p-extension of E in M , Hp a Sylow p-subgroup of H, Gp a Sylow p-
subgroup of G(M/E) including Hp, and K, Kp and Mp the intermediate
fields of M/E corresponding by Galois theory to H, Hp and Gp, respec-
tively. It follows from Galois theory and the normality of maximal sub-
groups of finite p-groups that Ap ∩ K = E, which indicates that (ApK)/K
is a p-extension with G((ApK)/K) isomorphic to G(Ap/E). The extensions
(ApKp)/Kp and (ApMp)/Mp have the same property, since the choice of K,Kp

and Mp guarantees that the degrees [Kp : K] and [Mp : E] are not divis-
ible by p. This implies that [(ApKp) : Kp] = [(ApMp) : Mp] = [Ap : E]
and [(ApKp) : Mp] = [(ApMp) : Mp].[Kp : Mp]. Thus it turns out that
ApMp ∩Kp = Mp, which means that Gp is of greater rank as a p-group than
G(Ap/E), and because of Proposition 2.8, proves Lemma 4.4.

Lemma 4.5. Let F be an algebraic number field, P the set of all prime
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numbers, W = {w(p) : p ∈ P} a system of absolute values of F fixed as in
Definition 4.1, M0/F a finite Galois extension, and for each prime p dividing
[M0 : F ], let M0,w(p)′/Fw(p) be a normal extension with a Galois group iso-
morphic to the Sylow p-subgroups of G(M0/F ), where w(p)′ is an arbitrary
prolongation of w(p) on M0. Assume also that E is a minimal element of
Ω(F, P ,W ), V (E) = {v(p) : p ∈ P} is a characteristic system of of E, and
M = M0E. Then M/E is a Galois extension satisfying the conditions of
Lemma 4.4, and the Galois groups G(M/E) and G(M0/F ) are canonically
isomorphic.

Proof. Denote by P (M0/F ) the set of prime divisors of [M0 : F ]. The
minimality of E and Proposition 4.2 (ii) imply that M0,w(p)′ ⊗Fw(p)

Ev(p) is a
field isomorphic toMv(p)′ over Ev(p), where v(p)′ is a prolongation of v(p) onM0,
for each p ∈ P (M0/F ). This, combined with the fact that the groups G(M/E)
and G(Mv(p)′/Ev(p)) embed in G(M0/F ) and G(M/E), respectively, and also,
with the condition on the extension M0,w(p)′/Fw(p), proves that G(M/E) is
isomorphic to G(M0/F ).

Lemma 4.6. Let M/E be a Galois extension with a Galois group G em-
beddable in the symmetric group Sn, for some n ∈ N. Then there exists a
polynomial f(X) ∈ E[X] of degree n with a root field (over E) equal to M .

Proof. Denote by s the number of G-orbits of the set {1, ..., n}, fix a system
{gj : j = 1, ..., s} of representatives of these orbits, and for each index j, let
Uj be the intermediate field of M/E corresponding by Galois theory to the
stabilizer StabG(gj) := Gj. It is easily verified that [Uj : E] = |G : Gj|,∑s

j=1 |G : Gj| = n, and ∩sj=1Vj = {1}, where Vj is the intersection of the
subgroups of G conjugate to Gj, for each j ∈ {1, ..., s}. Therefore, one can
take as f(X) the product

∏s
j=1 fj(X), where fj(X) is the minimal polynomial

over E of any primitive element of Uj over E, for any j.

Lemma 4.7. Let E0 be an algebraic number field, n an integer number
greater than one, and Pn the set of prime numbers ≤ n. Assume that E0 pos-
sesses a system {w(p) : p ∈ Pn} of pairwise nonequivalent absolute values, such

that the completion E0,w(p) admits a Galois extension M̃p with G(M̃p/E0,w(p))
isomorphic to the Sylow p-subgroups of the symmetric group Sn, for any p ∈ Pn.
Then there exists a Galois extension M0 of E0 with G(M0/E0) isomorphic to

Sn, and such that the completion M0,w(p)′ is E0,w(p)-isomorphic to M̃p, for each
p ∈ Pn, and any prolongation w(p)′ of w(p) on M .
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Proof. It follows from Lemma 4.6 and the assumptions of the present
lemma that M̃p is a root field over E0,w(p) of a separable polynomial fp(X) =
Xn +

∑n
j=1 cp,jX

n−j ∈ E0,w(p)[X], for any p ∈ Pn. Since the absolute values
w(p) : p ∈ Pn are pairwise nonequivalent, the weak approximation theorem
(cf. [17, Ch. XII, Sect. 1]) and the density of E0 in E0,w(p) ensure, for each
real positive number ε, the existence of a polynomial gε(X) ∈ E0[X] equal to
Xn+

∑n−1
j=0 bε,jX

n−j, and such that w(p)(bε,j−cp,j) < ε, for every p ∈ Pn. This
enables one to deduce from Krasner,s lemma (cf. [18, Ch. II, Proposition 3])
that if ε is sufficiently small, then the quotient rings E0,w(p)[X]/fp(X)E0,w(p)[X]
and E0,w(p)[X]/gε(X)E0,w(p)[X] are isomorphic as E0,w(p)-algebras, which im-

plies that M̃p is a root field of gε(X) over E0,w(p), for each p ∈ Pn. When this
occurs, it becomes clear from Galois theory and the obtained result that the
root field of gε(X) over E0 is a normal extension of E0 with a Galois group
Gε of order divisible by n! As Gε obviously embeds in Sn, this means that
Gε

∼= Sn, so Lemma 4.7 is proved.

We are now in a position to prove Proposition 4.3. Retaining assumptions
and notations in accordance with Lemma 4.5, note that every intermediate
field K of M0/E0 possesses a system {ν(p) : p ∈ P (M0/E0)} of absolute values,
such that ν(p) is a prolongation of w(p) and Mν(p)′/Kν(p) is a normal extension
with a Galois group isomorphic to the Sylow p-subgroups of G(M0/K), for
each p ∈ P (M0/K). To show this, take a prime p ∈ P (M0/K), fix a Sylow
p-subgroup P of G(M0/K) as well as a Sylow p-subgroup P0 of G(M0/E0)
including P , and denote by F0 and F the extensions of E0 in M0 corresponding
by Galois theory to P0 and P , respectively. The local behaviour of M0/E0 at
w(p)′/w(p) implies the existence of a prolongation τ0(p) of w(p) on F0, such
that F0,τ0(p) is a completion of E0 with respect to w(p); moreover, it becomes
clear that τ0(p) is uniquely extendable to an absolute value τ(p) of M0 (cf. [3,
Ch. II, Theorem 10.2]). Observing that [F : F0] = |P0 : P | and p does not
divide [F : K], one concludes that the absolute value ν(p) of K induced by τ(p)
has the required property. Since finite groups of order n are embeddable in the
symmetric group Sn, for each n ∈ N (Cayley’s theorem), the obtained result
and the previous three lemmas indicate that Proposition 4.3 will be proved, if
we show the existence of an algebraic number field E0 satisfying the conditions
of Lemma 4.7.

Fix a natural number n > 1 as well as an odd integer m > n!, suppose
that Pn is defined as in Lemma 4.7, put ñ =

∏
p∈Pn

p, and denote by Φ0 the

163



I.D. Chipchakov - On nilpotent Galois groups and the scope of ...

extension of Q in Q obtained by adjoining a root of the polynomial Xm − ñ.
Also, let Γs = Q(δs+δ

−1
s ), Φs = Φ0(δs+δ

−1
s ), where δs is a primitive 2s-th root

of unity in Q, for any s ∈ N, and Φ∞ = ∪∞s=1Φs. The choice of Φ0 indicates
that the p-adic absolute value of Q is uniquely extendable to an absolute value
w0(p) of Φ0, for each p ∈ Pn; one obtains similarly that the 2-adic absolute
value of Q has a unique prolongation ws(2) on Φs, for every s ∈ N (cf. [3, Ch.
I, Theorem 6.1]), and also, a unique prolongation w∞ on Φ∞. Furthermore,
our argument proves that Φs,ws(2)/Q2 : s ∈ N and Φ0,w0(p)/Qp : p ∈ Pn, p > 2,
are totally ramified extensions of degrees 2s.m and m, respectively. We first
show that Φ0,w0(p) admits a Galois extension with a Galois group isomorphic to
the Sylow p-subgroups of Sn, provided that p ∈ (Pn \ {2}). Note that Φ0,w0(p)

does not contain a primitive p-th root of unity. This follows from the fact that
m is odd whereas p − 1 equals the degree of the extension of Qp obtained by
adjoining a primitive p-th root of unity (cf. [12, Ch. IV, (1.3)]). Hence, by the
Shafarevich theorem [28] (cf. also [27, Ch. II, Theorem 3]), the Galois group
of the maximal p-extension of Φ0,w0(p) is a free pro-p-group of rank m + 1. In
view of Galois theory, this means that a finite p-group is realizable as a Galois
group of a p-extension of Φ0,w0(p) if and only if it is of rank at most equal to
m+1. The obtained result, combined with the fact that m > n! and the ranks
of the p-subgroups of Sn are less than n!, proves our assertion. Taking now
into consideration that Φs/Φ0 is a cyclic extension of degree 2s, one obtains
by applying [3, Ch. II, Theorem 10.2] and [17, Ch. IX, Proposition 11] that
Φs,ws(p) is a cyclic extension of Φ0,w0(p) of degree dividing 2s, for each absolute
value ws(p) of Φs extending w0(p). It is therefore clear from Galois theory
that Proposition 4.3 will be proved, if we show that Φs,ws(2) admits a normal
extension with a Galois group isomorphic to the Sylow 2-subgroups of Sn, for
every sufficiently large index s. Identifying Φ0,w0(2) with the closure of Φ0 in
Φ∞,w∞ , one obtains from the uniqueness of the prolongation w∞/w0(2) that
Φ∞∩Φ0,w0(2) = Φ0 and the compositum Φ∞Φ0,w0(2) := Φ∞,2 is a Z2-extension of
Φ0,w0(2). This implies that Br(Φ∞,2)2 = {0} and Φ∞,2(2) 6= Φ∞,2, which means
that G(Φ∞,2(2)/Φ∞,2) is a free pro-2-group of countably infinite rank (cf. [27,
Ch. II, 5.6, Theorem 4 and Lemma 3] and [29, p. 725]). Hence, finite 2-groups
are realizable as Galois groups of normal extensions of Φ∞,2. In particular,
there exists a 2-extension T∞,2 of Φ∞,2 with G(T∞,2/Φ∞,2) isomorphic to the
Sylow 2-subgroups of Sn, so it follows from [8, (1.3)] that one can find an index
s̃ and a Galois extension Ts̃,2 of Φs̃,ws̃(2) in T∞,2, such that Ts̃,2 ⊗Φs̃,ws̃(2)

Φ∞,2 is
isomorphic to T∞,2 as an algebra over Φs̃,ws̃(2). In view of the general properties
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of tensor products (cf. [22, Sect. 9.4, Corollary a]), this implies that if s is an
integer ≥ s̃, then the Φs,ws(2)-algebra Ts̃,2⊗Φs̃,ws̃(2)

Φs,ws(2) := Ts,2 is a field, and

more precisely, a Galois extension of Φs,ws(2) with G(Ts,2/Φs,ws(2)) isomorphic
to the Sylow 2-subgroups of Sn. Furthermore, in this case, the field Φs := E0

and its absolute values ws(p), p ∈ Pn, satisfy the conditions of Lemma 4.7,
which completes the proof of Proposition 4.3 (and Theorem 1.2).

It would be of interest to know whether every nonnilpotent finite group
G is isomorphic to the Galois group of a finite Galois extension M(G)/E(G),
for a suitably chosen strictly PQL-field E(G). Proposition 2.7 of [9] gives an
affirmative answer to this question (with E(G) algebraic over Q and P (E(G))
equal to the set of prime numbers), in case the Sylow p-subgroups of G are
abelian, for every prime p dividing the order o(G) of G. Let now P (G) be the
set of prime divisors of o(G), and for each p ∈ P (G), let Np be the minimal
normal subgroup of G of p-primary index, np the rank of G/Np as a p-group,
Gp a Sylow p-subgroup of G, and pmp the exponent of Gp. Applying Lemma 4.5
and modifying the proof of [9, Proposition 2.7], one obtains the same answer,
if some of the following two conditions is in force, for each p ∈ P (G): (i)
the natural short exact sequence 1 → Np → G → G/Np → 1 splits; (ii) the
quotient group of G/Np by its commutator subgroup is of order pnpmp . In
particular, this occurs, if G is a symmetric group of degree ≥ 3, the exponent
of G is a square-free number, or G equals its commutator subgroup.
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