
ACTA UNIVERSITATIS APULENSIS No 10/2005

Proceedings of the International Conference on Theory and Application of
Mathematics and Informatics ICTAMI 2005 - Alba Iulia, Romania

MEASURING THE PERFORMANCE FOR PARALLEL
MATRIX MULTIPLICATION ALGORITHM

Costel Aldea

Abstract. After configuring and activating a parallel or distributed com-
puting medium it is important to know and to have the possibility to decide if
the algorithm solved by this mechanism solves the problems in the desired time
with respect with the initial parameters of the system. For this experiment
it is configured a massage passing interface medium with many computers
working in parallel and on 2 computers of this medium there are installed two
high precision clocks GPS clocks, that use the Network Time Protocol for
the synchronization with the satellites. Further a C program that does the
matrix multiplication in parallel is implemented using the MPI libraries. For
this algorithms, using this medium and the mentioned tools some performance
monitoring measures are made.

2000 Mathematics Subject Classification: 68W10, 65Y20.

1. Introduction

Lately a good performance for the computers has been reached due to the soft-
ware and hardware components. However there are enough problems that cant
be solved on the existing hardware in the right time. World wide many teams
of researchers are doing experimental studies for constructing the future vir-
tual organization and computers using the distributed resources, such kind of
projects are grids, Internet computing, scalable computing, global computing.
When multiple users are using others users platforms then the performance
can be influenced in various and unexpected ways. For the efficient use of the
worldwide distributed platforms one use different adaptation techniques for
the distributed resource management and scheduling. Always o good question
in this direction will be if the distributed application has or not the right per-
formance and consequently the measurement of the performance parameters
for a such application.

49

C. Aldea - Measuring the performance for parallel matrix multiplication ...

In a distributed system the components work together being interconnected
and the actions in the most of cases coordinated using the message passing.
Observing this definition it is obvious that a distributed system has to deal
with: the concurrent running of the components, missing of a global clock, the
possibility for the component to fail separately. There are two very big
examples of distributed systems: the Internet and an Intranet, which is a part
of the Internet but managed by an administrator

The common use of resource it is a sufficient motivation for the construction
of the distributed systems. The resources can be managed by a server and
accessed from clients or can be encapsulated in objects such that all the other
objects can access and use them.

The common problems of the distributed system are heterogeneity of the
components, inserting and replacing the components, security, scalability, error
handling, concurrent execution and transparence.

In the following work is made the empirical approach to a distributed
system for measuring the execution time. The described experiment is con-
structed.

2.Install and configure NTP and PPS on a Linux system

The following installation and configuration steps must to be made on a
Linux system for activating the Network Time Protocol (NTP) together with
PPSkit (Pulse Per Second). The presented steps were tested on a Debian
GNU/Linux 3.0r1. Theoretically the steps are the same on all Linux distribu-
tions. As a prerequisites one must to be mentioned that on each used machine,
Debian GNU/Linux 3.0r1, it work the standard version of the kernel, 2.4.18-
bf2.4. For installation of the PPSkit the kernel must be patched, recompiled
and installed and then configured the protocol NTP. The GPS clocks with
Meinberg GPS167TGP are connected directly to the normal computers (x86)
using serial ports.

Adding PPS to the kernel
Preparation
First of all one must be assure that has the needed software. The linux

kernel website gives for downloading http://www.kernel.org/. When the right
version is taken into consideration it must be compatible with PPSkit. The
best method to reach that is to consult in parallel the PPSkit webpage where
one can see the compatible versions. If we dont have any graphical program

50

C. Aldea - Measuring the performance for parallel matrix multiplication ...

(easiest way) for visualizing the archive, like ark, then the archive must be
downloaded and consulted using tar utility:

tar tvjf PPSkit-2.1.1.tar.bz2
In the next one search the line containing ’patch-x.x.xx’
-rw-r–r– ezbs/users 301872 2003-04-28 22:12:01 PPSkit-2.1.1/patch-2.4.20
The patch doesnt work correctly if the kernel version isnt identical with

this (in this case). The best way in obtaining the two compatible versions is
to download first the patch and then with respect to the number that is inside
the archive on the website of the kernel to download the corresponding kernel
(http://www.kernel.org/). After download we copy and untar the archive in
/usr/src:

cp ./linux-2.4.20.tar.bz2 /usr/src/
cd /usr/src/
tar xvjf /usr/src/linux-2.4.20.tar.bz2
If we have more than one source for the kernel than is good to build a

symbolic link to the current version using:
ln -s /usr/src/linux-2.4.20/ linux
Then we untar the corresponding PPSkit:
cp ./PPSkit-2.1.1.tar.gz /usr/src/
cd /usr/src
tar xvzf PPSkit-2.1.1.tar.gz
cd /usr/src/linux
patch -p1 ¡../PPSkit-2.1.1/patch-2.4.20
”make config” and compiling the kernel
The new kernel must be configured and compiled:
cd /usr/src/linux/
make config
If there is installed the package ncurses (in Debian using apt-get install

libncurses5-dev), the ’make config’ command can be replaced with ’make menu-
config’. (The another alternative is ’make xconfig’). Regardless of which com-
pilation method is used, the important thing is that the next properties are
included and compiled within the kernel. The sign [*] signify that the option
is activated (answer Y when make config is running).

In the section Code maturity level options
[*] Prompt for development and/or incomplete code/drivers
In the section: Processor type and features
[*] NTP kernel support[*] NTP PPS support

51

C. Aldea - Measuring the performance for parallel matrix multiplication ...

In the section Character devices
[*] NTP PPS support on serial port[*] Support for console on serial port
After follows the compilation:
make dep
make bzImage
This phase can last long time and doesnt need assistance, so that with

respect to the computer power this can be left alone to work for a short or
long time until the compilation is ready. Then follows the modules installation
(only if it is the case):

su
make modules
make modules install
Kernel instalation
The compressed image of the kernel reside in /usr/src/linux/arch/i386/boot/

and has the name bzImage. The installation is made as follows:
cd /usr/src/linux/
su
cp arch/i386/boot/bzImage /boot/vmlinuz-2.4.20
cp System.map /boot/System.map-2.4.20
cp .config /boot/config-2.4.20
After this steps it is required also to modify the operating system boot

loader by adding one new entry with the new kernel (in the file vi /etc/lilo.conf):
image=/boot/vmlinux-2.4.20label=2.4.20read-only

After rebooting the system and running the command uname r we should
see:

uname -r2.4.20-NANO
Such that the PPS kernel is ready and follows the NTP instalation.
Install and configure NTP
In the next we download the last NTP version from the web: http://www.ntp.org/.

(direct link for download: http://www.eecis.udel.edu/ ntp/ntp spool/ntp4/ntp-
4.1.2.tar.gz)

Add the needed header filed:
mv /usr/include/sys/timex.h /usr/include/sys/timex.h.old
ln -s /usr/src/linux/include/linux/timex.h /usr/include/sys/timex.h
ln -s /usr/src/linux/include/linux/timepps.h /usr/include/sys/timepps.h
bf Untar and installation
tar xvzf ntp-4.1.2.tar.gz

52

C. Aldea - Measuring the performance for parallel matrix multiplication ...

cd ntp-4.1.2/
./configure –enable-MEINBERG
make
su
make install
Configure
For the synchronization of the NTP demon with the GPS Meinberg clock

and the PPS should be created symbolic links between the serial port 2 (where
the GPS clock is connected) and the serial port 1 (where the pulse is read):

cd /dev/
ln -s ttyS1 refclock-0
ln -s ttyS0 pps0
Then the NTP configuration file (/etc/ntp.conf) must be modified:

Configuration section

server 127.127.8.0 mode 135 prefer # Meinberg GPS167 with PPS

fudge 127.127.8.0 time1 0.0042 # relative to PPS for my hardware

server 127.127.22.0 # ATOM(PPS)

fudge 127.127.22.0 flag3 1 flag2 1 # enable PPS API

enable pps

enable stats

driftfile /etc/ntp.drift # remember the drift of the local clock

Statistics section

statistics loopstats clockstats

statsdir /var/log/ntplog

filegen peerstats file peers type day link enable

filegen loopstats file loops type day link enable

filegen clockstats file clocks type day link enable

logconfig =all

logfile /var/log/ntp.log

In the file /etc/ntp.conf must exist at lest one reference time source described
using the keyword server. Here we have the following reference time sources

• Meinberg GPS 167, with the IP address 127.127.8.0

53

C. Aldea - Measuring the performance for parallel matrix multiplication ...

• The Pulse-per-second transmitter (again the Meinberg clock), with the
IP address 127.127.22.0

At the IP address association one have to watch that the lest two num-
bers (127.127.y.x) are the same with the descriptor refclock for the devices
in the folder /dev. For example for the Meinberg clock is created the link
/dev/refclock-0, it results that the address in the configuration file must be
ended in 0 (server 127.127.8.0). Similar is for the PPS impulses at the serial
port 1, the link /dev/pps-0, resulting server 127.127.22.0 The mode in the line
server 127.127.8.0 mode 135 prefer is specified from the clock producer and is
different for each clock. One can see another details in the NTP archive.

Starting the NTP demon:
su
ntpd
Using the command ntp -q it could be verified if the ntpd is started and

works.

3. MPI - Message Passing Interface

MPI (Message Passing Interface) is a specification for a standard library
for message passing that was defined by MPI forum - a group consisting in
parallel computer distributors, library programmers and application special-
ists. Were developed more implementations of this specification. In the next
one use MPICH, which is a freeware distribution and that has as a main goal
combination of performance with portability.

The project that offers a portable implementation for MPI it began in the
same time with the process of it’s definition. The idea was to offer an answer to
the decisions taken by the forum and to offer an implementation who permits
definition experiments for the users even if these aren’t entirely developed.
The implementation scope was the inclusion of all the systems capable to
use the message passing. MPICH is a free and complete implementation of
the MPI specifications projected to be portable and also efficient. ”CH” from
MPICH comes from chameleon, adaptability to medium symbol and like that
symbol for the portability. Chameleons are quickly and so from the beginning
a secondary scope was a bigger portability against efficiency.

So that MPICH is a research project and also a software implementation
project. As a research project is scope is to search methods for the elements

54

C. Aldea - Measuring the performance for parallel matrix multiplication ...

describing that a parallel computer programmer must use to reach the perfor-
mance of the physical components that are at his disposal. For MPICH, was
adapted the programming constraint for use of MPI, the constraints related
to the architecture of the used machine were rejected and retained only as a
scope the high performance (bandwidth and latency for the message passing
operations). As a software project it’s scope was to promote the standards
by offering to the users a freeware and high performance implementation on
platform diversity, on the other hand the firms were helped to offer their own
implementation.

4. Matrix multiplication

Matrix multiplication is often used in numerical algorithms, graph the-
ory, digital image processing and signal processing. The matrix multiplication
is a time consuming operation ,̂ in medium a complexity O(n3), where n is
the dimension of the matrix. While all the actual application need a lot of
computations the researchers have tried to overcome this problem. Also the
advantages of the Strassens algorithm have a limited performance so that the
parallel matrix multiplication it always is a big concern.

The majority of the parallel matrix multiplication algorithms are based on
the number of the processors. Between those algorithms one can enumerate:
systolic algorithm, Cannons algorithm, Fox a̧nd Ottos algorithm, PUMMA 1,
SUMMA 2, DIMMA 3. Each of those are using the decomposition of matrix
into blocks. At the runtime a processors evaluates the partial results where it
has access. It does the successive computation with the new blocks adding the
current result to the previous result. When all the multiplications are complete
the root processor sum all the partial result and give the result.

Matrix decomposition
For the implementation of the parallel matrix multiplication the matrix A

and B are divided into blocks. There exist many methods for a good matrix
decomposition:

• one dimensional decomposition the matrix is divided horizontal. The
processor i retains the blocks i, Ablock a̧nd Bblock a̧nd send them to the
processors (i−1) a̧nd (i+1). The processors 0 a̧nd (n−1) communicate
to each other like into a ring topology.

1Parallel Universal Matrix Multiplication
2Scalable Universal Matrix Multiplication
3Distributed Independent Matrix Multiplication

55

C. Aldea - Measuring the performance for parallel matrix multiplication ...

• two dimensional decomposition in this case the matrix is divided into
quadrates. Each processors communicate with all its neighbors (north ,
south, west, east).

• general two dimensional composition the matrix is divided into tem-
plates of processors with two dimension. Each processor communicate
with its neighbors like in the case of the simple two dimensional decom-
position. IN plus in this case are possible not only quadrate templates
(for example 2× 3 a̧nd 3× 4 with 6 a̧nd respectively 12 processors).

• scattered two dimensional decomposition the matrix is divided in some
sets of blocks. Each block contain a number of elements equal with the
number of processors and each element from a set of blocks is divided
with respect to the two dimensional templates of processors. The two
dimensional templates of processors are containing 2 × 2, 2 × 3, 3 × 3,
3× 4 a̧nd 4× 4 structures for 4, 6, 9, 12 a̧nd respectively 16 processors.

Fox
The Fox algorithm divides the matrix into data blocks. If the matrix has

dimMatrix elements and the program is executed on nrProcs processors then
the number of blocks is equal with the number of processors and the size of a
block is: block size = dimMatrix/nrProcs x, where nrProcs x is the number
of horizontal processes. For simplify, in our case are used only quadrate matrix
and then nrProcs x = |

√
nrProcs|.

At the beginning the root process reads and then sends the second matrix in
block forms to the other processes so that each process has the corresponding
block from the second matrix.

In parallel each of the process receive the matrix block.
For each process (root and the other) the result block is initialized with

null.
For each line from the first matrix are send to each process the correspond-

ing diagonal elements from the first matrix. It makes the product between
those elements and the block from the previous step. The diagonal is shifted
to the left and the block from the second matrix is shifted to the bottom using
the message passing with the neighbor processes.

The root process computes also the final result after receiving the partial
results.

The MPI matrix multiplication program is passing three types of messages:

56

C. Aldea - Measuring the performance for parallel matrix multiplication ...

• send one block from the second matrix to each process (from type DATA B)

• send the block diagonals from the first matrix (from type DATA A)

• send at the end the partial result to the root process (from type RE-
SULT).

Example:
M̂atrix multiplication on 4 processors:

(
1 2
1 2

) (
3 4
3 4

)
(

1 3
1 3

) (
2 4
2 4

)

(

4 3
1 3

) (
2 1
2 4

)
(

1 2
3 2

) (
3 4
4 1

)
 =

(

21 23
21 23

) (
31 25
31 25

)
(

21 24
21 24

) (
30 25
30 25

)

Where, usually, the value 31 from the line one of the result matrix is ob-
tained like that 31 = 1 × 2 + 2 × 2 + 3 × 3 + 4 × 4. Using the Fox algorithm
this value is obtained in the process 1 (describing with 0,1,.. the processes)
like that: product between the lines of the block and the diagonal of the cor-

responding block from the first matrix (1, 2)
(

2 1
2 4

)
a̧nd it obtain:

(
2 1
4 8

)
Next the diagonal is shifted o the left and the block from the second matrix is
shifted to the bottom and successively are made the following products:(

2 4
3 4

)
with the elements of diagonal (2, 3)(

3 4
4 1

)
with the elements of diagonal (3, 4)(

4 1
2 1

)
with the elements of diagonal (4, 1)

Sum of this results:(
2 1
4 8

)
+

(
4 8
9 12

)
+

(
9 12
16 4

)
+

(
16 4
2 1

)
=

(
31 25
31 25

)
give a block of the final result.
Some result using a MPI implementation of the Fox algorithm
For the Fox algorithm the following data were collected running the pro-

gram 100 times:

• Total running time with matrix dimension 1600x1600, 16 processes on
16 coputers, one processor each:

57

C. Aldea - Measuring the performance for parallel matrix multiplication ...

Measured Int. Int. start Int. stop

63.956421852	17:06:16 0.886212826	17:07:20 0.842634678
63.547276974	17:07:20 0.845926762	17:08:24 0.393203735
63.516219616	17:08:24 0.396577597	17:09:27 0.912797213
63.519518852	17:09:27 0.915988207	17:10:31 0.435507059
63.520165443	17:10:31 0.438711405	17:11:34 0.958876848
63.511228085	17:11:34 0.962056398	17:12:38 0.473284483
63.518872261	17:12:38 0.476442337	17:13:41 0.995314598
63.507167101	17:13:41 0.998455524	17:14:45 0.505622625
63.522676706	17:14:45 0.508868694	17:15:49 0.031545401
63.504557371	17:15:49 0.034837484	17:16:52 0.539394855
63.520976305	17:16:52 0.542572260	17:17:56 0.063548565
63.532964230	17:17:56 0.066716194	17:18:59 0.599680424

Table 1: Total running time - matrix product 1600x1600/16 processes/16 com-
puters

• barrier time, from the arriving of the root process to the barrier until
the barrier is passed.

--
0.000726938	19:00:11 0.771681309	19:00:11 0.772408247
0.000687838	19:01:15 0.320037603	19:01:15 0.320725441
0.000654459	19:02:18 0.862794161	19:02:18 0.863448620
0.000651360	19:03:22 0.410071373	19:03:22 0.410722733
0.000653982	19:04:25 0.965284824	19:04:25 0.965938807
0.000690937	19:05:29 0.517423630	19:05:29 0.518114567
0.000693560	19:06:33 0.065347672	19:06:33 0.066041231
0.000698090	19:07:36 0.627914667	19:07:36 0.628612757
0.000684977	19:08:40 0.199651957	19:08:40 0.200336933
0.000654221	19:09:43 0.754739046	19:09:43 0.755393267
0.000693560	19:10:47 0.306187391	19:10:47 0.306880951
0.000651360	19:11:50 0.843770266	19:11:50 0.844421625
--

Table 2: Barrier time - matrix product 1600x1600/16 processes/16 computers

• time from the blocking send start until its end.

--
| 0.051883936 | 21:50:03 0.699914455 | 21:50:03 0.751798391 |

58

C. Aldea - Measuring the performance for parallel matrix multiplication ...

0.051164389	21:50:03 0.769125462	21:50:03 0.820289850
0.051176548	21:50:03 0.837716818	21:50:03 0.888893366
0.051173449	21:50:03 0.906309843	21:50:03 0.957483292
0.051983595	21:50:03 0.975007772	21:50:04 0.026991367
0.051350117	21:50:04 0.045039177	21:50:04 0.096389294
0.051228285	21:50:04 0.113791943	21:50:04 0.165020227
0.051254272	21:50:04 0.182529688	21:50:04 0.233783960
0.051250458	21:50:04 0.251266003	21:50:04 0.302516460
0.051243305	21:50:04 0.320041656	21:50:04 0.371284962
0.051254749	21:50:04 0.388795614	21:50:04 0.440050364
0.051229477	21:50:04 0.457580328	21:50:04 0.508809805
--

Table 3: Send time - matrix product 1600x1600/16 processes/16 computers

• Total running time with matrix dimension 1600x1600, 64 processes on
16 computers, one processor each:

66.639107704	19:57:23 0.129729986	19:58:29 0.768837690
65.565699816	19:58:29 0.775774956	19:59:35 0.341474771
65.337359190	19:59:35 0.348362684	20:00:40 0.685721874
65.387441397	20:00:40 0.692636728	20:01:46 0.080078125
66.049248219	20:01:46 0.087269306	20:02:52 0.136517525
65.443219423	20:02:52 0.143181562	20:03:57 0.586400986
65.751941919	20:03:57 0.593228102	20:05:03 0.345170021
65.998049498	20:05:03 0.352014780	20:06:09 0.350064278
65.667123795	20:06:09 0.356660128	20:07:15 0.023783922
65.155098915	20:07:15 0.031222105	20:08:20 0.186321020
65.658370495	20:08:20 0.193147659	20:09:25 0.851518154
65.561710596	20:09:25 0.858139992	20:10:31 0.419850588

Table 4: Total running time - matrix product 1600x1600/64 processes/16 com-
puters

• barrier time, from the arriving of the root process to the barrier until
the barrier is passed.

--
| 0.002666950 | 13:53:45 0.603855610 | 13:53:45 0.606522560 |
| 0.002766371 | 13:54:50 0.567428112 | 13:54:50 0.570194483 |

59

C. Aldea - Measuring the performance for parallel matrix multiplication ...

0.002991438	13:55:55 0.517137766	13:55:55 0.520129204
0.002712965	13:57:01 0.281398535	13:57:01 0.284111500
0.003050327	13:58:06 0.224049568	13:58:06 0.227099895
0.003218651	13:59:11 0.019721031	13:59:11 0.022939682
0.002737999	14:00:16 0.219644070	14:00:16 0.222382069
0.003038645	14:01:21 0.306068897	14:01:21 0.309107542
0.002910852	14:02:27 0.145992279	14:02:27 0.148903131
0.003094196	14:03:32 0.560567856	14:03:32 0.563662052
0.002947807	14:04:37 0.981052160	14:04:37 0.983999968
0.002984762	14:05:42 0.719491959	14:05:42 0.722476721
--

Table 5: Barrier time - matrix product 1600x1600/64 processes/16 computers

• Total running time with matrix dimension 160x160, 16 processes on 16
computers, one processor each:

--
0.456625462	16:25:40 0.862607002	16:25:41 0.319232464
0.382536650	16:25:41 0.320107222	16:25:41 0.702643871
0.368335485	16:25:41 0.703450918	16:25:42 0.071786404
0.367173672	16:25:42 0.072438478	16:25:42 0.439612150
0.370925665	16:25:42 0.440252066	16:25:42 0.811177731
0.379559994	16:25:42 0.811825514	16:25:43 0.191385508
0.373143196	16:25:43 0.192024231	16:25:43 0.565167427
0.383926392	16:25:43 0.565838337	16:25:43 0.949764729
0.381397247	16:25:43 0.950471163	16:25:44 0.331868410
0.372228861	16:25:44 0.332519531	16:25:44 0.704748392
0.404785872	16:25:44 0.705416918	16:25:45 0.110202789
0.378345966	16:25:45 0.110870361	16:25:45 0.489216328
--

Table 6: Total running time - matrix product 160x160/16 processes/16 com-
puters

• barrier time, from the arriving of the root process to the barrier until
the barrier is passed.

--
0.000337839	16:22:59 0.389591694	16:22:59 0.389929533
0.000429630	16:22:59 0.773173809	16:22:59 0.773603439
0.000441074	16:23:00 0.143934965	16:23:00 0.144376040

60

C. Aldea - Measuring the performance for parallel matrix multiplication ...

0.000424862	16:23:00 0.523376226	16:23:00 0.523801088
0.000426769	16:23:00 0.893172026	16:23:00 0.893598795
0.000437498	16:23:01 0.265645027	16:23:01 0.266082525
0.000442743	16:23:01 0.656387806	16:23:01 0.656830549
0.000436783	16:23:02 0.055243254	16:23:02 0.055680037
0.000392914	16:23:02 0.432395697	16:23:02 0.432788610
0.000287294	16:23:02 0.801849365	16:23:02 0.802136660
0.000430822	16:23:03 0.205770254	16:23:03 0.206201077
0.000428915	16:23:03 0.582705498	16:23:03 0.583134413
--

Table 7: Barrier time - matrix product 160x160/16 processes/16 computers

5. Conclusions

There is a large spectrum of parameters that can be observed with respect
to the performance of the parallel multiplication algorithms in particular and
of the parallel algorithms in general.

Like in theory it is obvious that more resources bring more performance in
our case. The cost is the need of a good understanding of parallelism and of
the methods to distribute the computations.

It will be always difficult to evaluate the performance. The amount of
data is very big. There are observed in the tables only number of processes,
matrix dimension, barrier time and the total running time, but are still a lot
of parameters that can be observed and introduced into an optimization if
needed.

A multi criteria optimization of the distributed computing methods and
algorithms is imposed and that implies also a lot of computations.

Also the hardware influences are notable and must be taken into consider-
ation when using a parallel or distributed medium.

References

[1] Boian F.M., Programare distribuită ı̂n Internet. Metode şi aplicaţii,
Editura Albastră, Cluj, 1998

[2] Boian F.M. şi alţii, Programare concurentă pe platforme Unix, Win-
dows, Java, Editura Albastră, Cluj, 2002

[3] Cory Quammen, Introduction to Programming Shared-Memory and
Distributed-Memory Parallel Computers, ACM Crossroads Student Magazine,
2002

61

C. Aldea - Measuring the performance for parallel matrix multiplication ...

[4] Lazăr I., Frenţiu M., Niculescu V., Programare orientată obiect ı̂n Java,
Editura Universităţii ”Petru Maior”, Târgu Mureş, 1999

[5] Mellor-Crummey, J.M. şi Scott, M., Algorithms for Scalable Synchro-
nization on Shared-Memory Multiprocessors, ACM Transactions on Computer
Systems, Feb. 1992.

[6] Thomas E. Anderson, The performance of spin lock alternatives for
shared-money multiprocessors, IEEE Transaction on Parallel and Distributed
Systems, 1990.

[7] W. Gropp, E. Lusk, N. Doss şi A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard”, Parallel Com-
puting, vol. 22, nr. 6, pg. 789–828, sep. 1996

[8] W. Gropp, Ewing Lusk, PVM and MPI are completely diffrent, Science
Division, Argonne National Laboratory, sep. 1998

[9] William D. Gropp şi Ewing Lusk, User’s Guide for mpich, a Portable
Implementation of MPI, ANL-96/6, Mathematics and Computer Science Di-
vision, Argonne National Laboratory, 1996

[10] http://www.mcs.anl.gov/mpi/mpich2 - Implementarea MPICH2 pen-
tru MPI

Aldea Constantin Lucian
Department of Computer Science
Faculty of Mathematics and Computer Science
University Transilvania Braşov
Address Iuliu Maniu 50, Braşov, 500091, Braşov, România
email:costel.aldea@gmail.com

62

