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CONTROL PROBLEM FOR EVENT-SWITCHED PROCESSES

Andrey M. Valuev

Abstract.A class of models is introduced to represent production pro-
cesses in complex industrial systems where elements of the system change
discrete characteristics of their states subsequently or cyclically; after every
such a state change, or an event (such as changes of equipment units work
modes, origination and termination of partial production processes, switches
of materials flows destination and so on) the set of relationships between pro-
duction system variables alter. Events subdivide the entire process period
into stages, or scenes; the succession of events, or a process scenario, within
a given period is fixed neither in order nor in the number and depends on
the process control. In format, the proposed model generalize the model of
catastrophe control recently put forward by V.V.Velichenko in which the scene
of the process terminates when the process state reaches its boundary.

The paper presents the results of the study of general properties of the
introduced models. The conditions of finiteness of the events number within a
given period are established as well as the conditions under which two nearby
subsequent events may be done simultaneous, or, v.v., two simultaneous events
may be separated in time. The necessary conditions of the process optimal-
ity are formulated as well, both with a given scenario and irrespective to the
scenario. A hybrid method of the process optimization is proposed that com-
bines a branch-and-bound method to seek the optimum scenario and a decom-
position method with features of feasible directions and gradient-restoration
methods for optimization within a fixed scenario.
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1. The origin of the problem and some related topics

In the USSR the study of transforming systems control was stimulated
mainly with the problems of space flight. It is well known that space flights
usually have several stages and the event of the stage end means the sepa-
ration of used parts from the spacecraft. So, three features must be taken
into account: first, the parameters of the spacecraft, such as mass, length
etc (and even motion equations) change instantaneously due to these events,
second, the instant of the transformation is not fixed and depends on the con-
trol; third, there are relationships between values of parameters before and
after the transformation. On the other hand, the number and succession of
events for a normal flight is fixed. Models of such processes were studied by
V.V.Velichenko, L.T.Ashchepkov and recently by A.S.Filatyev.

And what about an abnormal, catastrophic flight? As the recent space
shuttle flight has shown the succession of them is arbitrary, but may be pre-
dicted with the adequate model of its dynamics. So we go to the more general
model introduced by V.V.Velichenko [1, 2] as the catastrophe control problem.
In the model the succession of events is not fixed and these events are treated
as shifts between two adjacent scenes of the process; the scene is characterised
with a certain domain in the space of the system state and the set of relation-
ships between the initial and final state within the scene. The shift between the
two adjacent scenes is characterised with the relationships between the final
state within the former scene and initial state within the latter one. Unfortu-
nately, the model does not determine to which scene the process proceeds after
reaching the bounds of a definite scene, so the study in [1,2] is concentrated
on the process with a given succession of scenes, or a process scenario.

In fact, the term “catastrophe” is an attractive label only and really means
some kind of transformation of both parameters and the behaviour of the dy-
namic system. Such a kind of “catastrophes” exists in normal performance
of many complex production systems. Models of controlled discrete-time pro-
cesses with continuous variables were first put forward due to problems of
chemical industry. They happened to be adequate to the conditions of min-
eral and petroleum industry, agriculture and probably to many cases of con-
struction and use of terrestrial technological objects. To be more adequate it
is necessary to take into account not only dynamics of parameters but also
qualitative changes of the state of the production system elements and the
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environment. So the proposed approach to production planning or regulation
problems formulation explicitly takes into consideration the fact that the qual-
itative state of the production system changes after some events, so instants
of these events are treated as ends of plan period stages. To find instants of
events of a certain type corresponding relationships are introduced into the
model. For this reason the author [3, 4] put forward the general model of a
controlled process with both continuous- and discrete-valued state and control
variables in which state variables change their values after events depending
on controls. This form of models was substantiated first for surface mining but
it seems very likely to be relevant to most cases of systems usually described
with models of discrete-time processes.

The general formulation of the new models class is given in the paper.
These models give the possibility to apply exact optimization techniques for
determination of values of some parameters that earlier might be appointed
only by experts and to embrace in the sole problem statement a lot of plan
problem variants that traditionally may be regarded only separately. Such
kind of models may be treated either as deterministic or stochastic that lead to
broad possibilities of controlled processes modeling in the context of planning
as well as regulation due to various disturbances, but now we concentrate the
study on deterministic models only and present the general results pertaining
to them in a semi-formal way. The exact formulations will be issued soon in the
author’s paper in the Russian journal Doklady Akademii Nauk in the section
“Mathematics” translated into English under the title Doklady Mathematics.

2. Some examples of transformations in production systems
performance

Elements of mathematical models of event-switched processes may be illus-
trated for medium- and short-term open pit production planning problems.
For big open pits the maximum efficiency of production is achieved with the
combination of direct ore dispatch from excavators faces with blending stock-
piles formation and unloading; this technology of consumer production forma-
tion is however very difficult for planning. So the production system may be
represented as the set of primary (ore blocks) and secondary (stockpiles) reser-
voirs and material flows between them; it must be emphasized that the current
state of each reservoir is characterized not only with a continuous-valued vari-
ables (the amount and average quality of the ore) but with a discrete-valued
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variables of their qualitative state (the kind of the operation — boring, blast-
ing, excavating etc — for ore blocks, the state of loading or unloading for a
stockpile section), the latter changing their values at non-fixed instants, not
simultaneously.

The open pit production system is represented as the oriented graph in
which vertices (i ∈ I) correspond to reservoirs and arcs (j ∈ J) to material
flows, J−i , J+

i are sets of arcs terminating and originating in the vertex i,
respectively. The current state of an ore or waste block is described with a
scalar state variable xi meaning the amount of the material excavated from it.
The relationship between instantaneous values of ore quality indices and xi is
ail(xi). Current characteristic of a material flow is its intensity (cubic meters
or tons per second) qjl and values of quality indices ajl. For the set of ore flows
initiating in the i-th block the following equations take place

ẋi =
∑

j∈J+
i

qj; (1)

ajl = ail(xi). (2)

The condition of the m-th switch of the i-th block at the instant t is

xi(t) = xim; (3)

after such an event we have for its qualitative state m+1 instead of m and for
its quantitative state xi=0 instead of xi = xim.

For other reservoirs state variables are Mi(material quantity in the i-th
reservoir) and ail (the mean value of the l-th quality index). In general the
relationship between Mi, ail and the values of initiating and terminating flows
is expressed with the balance equations

Ṁi =
∑

j∈J−i

qj −
∑

j∈J+
i

qj,

(4)

d(Miail)/dt =
∑

j∈J−i

qjajl − ail

∑
j∈J+

i

qj, ajl = ail, j ∈ J+
i .

For two-sectioned stockpiles it is necessary to introduce the state variables
for both sections (Mi1, ai1l,Mi2, ai2l) where the index value 1 pertains to a
loaded section and 2 to an unloaded one:
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Ṁi1 =
∑

j∈J−i

qj,

(5)

Ṁi2 = −
∑

j∈J+
i

qj, d(Mi1ai1l)/dt =
∑

j∈I−i

qjajl, ȧi2l = 0, ajl = ai2l, j ∈ J+
i .

A stockpile switch (change of its sections roles) occurs when one the fol-
lowing conditions is valid:

Mi1(t) = Mimax, Mi2(t) = 0, (6)

and the result of the switch at the instant t is expressed with relationships:

Mir(t + 0) = Mi3−r(t), airl(t + 0) = ai3−rl(t), l = 1, . . . , Li, r = 1, 2. (7)

In fact, such a form of the model of a controlled production process may
not be limited to the realm of mining industry. It must be emphasized that
the switch condition in the form (3) pertains to any kind of works which state
may be measured quantitatively. On this way lies the generalization of models
of project management with PERT/CPM.

To incorporate the search of maintenances terms into the entire planning
problem it is necessary to express conditions on them in the proposed form.
In fact, possible terms of maintenance for the j-th machine may be expressed
related to the total net time of its operation elapsed after the termination of
the precedent maintenance (Twj); Twj must be treated as a state variable. Let
Iwj denotes the type of work (or stay) and Iwj=1 denotes operation. Difference
equations for Twj are (for the k-th stage of the process)

Twj1(k) =

{
Twj0(k) + ∆T (k), if Iwj(k) = 1,
Twj0(k), otherwise.

(8)

At the moment of the next maintenance beginning the condition must be
satisfied:

Twj1(k) = ∆Tmj (9)

where ∆Tm jis an interval between maintenances for the j-th machine (mea-
sured as the net operation time).
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3. The general formulation of the problem

In the above examples the characteristic features of a event-switched pro-
cess were shown, namely two kinds of state variables, i.e. continuous-valued
and discrete-valued, the process period subdivision into stages having a con-
stant quality state and terminating with events of switching, differential (1),
(4), (5) or difference (8) equations for their dynamics within a stage alongside
with some functional relations (2), (4), (5) conditions for a definite type of
events (3), (6), (9) and equations for the system state transformation as a re-
sult of an event (7). It must be underline that such a transformation changes
the limited set of state values linked to this kind of events.

An event-switched process is an N -staged process in which instants of
stages ends are moments of the advent of one or more events (for an arbi-
trary k-th stage the set of these events is S(k) ⊆{1,. . . , L} where L denotes
the number of events types). For an arbitrary k-th stage, i.e. for the flowing
time interval [T (k), T (k+1)) vectors of qualitative state d(k) ∈ AD(AD is a
finite set) and control u(k) ∈ Rm are constant and the relationship between
the final (x1(k) ∈ Rn) and initial (x0(k) ∈ Rn) state vectors and the stage
duration t(k) has a form of difference equations

x1(k) = Y (d(k), x0(k), u(k), t(k)), (10)

where Y (d(k), x0(k), u(k), t) denotes the solution of the Cauchy problem for
the ODE system

dx(t, k)/dt = f(d(k), x(t, k), u(k)) (11)

with the initial conditions t=0, x(0, k) = x0(k). For the s-th event type there
are the sets of components of IXs, IDs of x(t, k), d(k) (the latter forming
vectors x(s)(t, k), d(s)(k), respectively), so that IXs′ ∩ IXs = IDs′ ∩ IDs = ∅ for
s′ 6= s and i(s) ∈ IXs exists for which

fi(s)(d(k), x(t, k), u(k)) ≥ fmin > 0. (12)

The conditions for the stage termination are

rY
i(s)(d

(s)(k), x1(s)(k)) ≡ x1
i(s)(k)− xs0(d

(s)(k)) = 0, s ∈ S(k), (13)

rY
i(s)(d

(s)(k), x1(s)(k)) < 0, s /∈ S(k), (14)
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resulting in no events within the stage. The values of some components of
both state vectors change as a result of the above events, so that:

di(k + 1) = Dis(d
(s)(k)), i ∈ IDs, s ∈ S(k),

(15)

di(k + 1) = di(k), i /∈ IDs, s ∈ S(k),

x0
i (k + 1) = Xis(d

(s)(k), x1 (s)(k)), i ∈ IXs, s ∈ S(k), (16)

x0
i (k + 1) = x1

i (k), i /∈ IXs, s ∈ S(k). (17)

Equations (15)–(17) may be denoted as

d(k + 1) = D(S(k), d(k)), x0(k + 1) = X(S(k), d(k), x1(k)).

The number of the process stages N is determined from the process termi-
nation condition

T (N + 1) = T (0) + T1. (18)

Constraints on the process have two types: the constraints for any stage

rU
j (d(k), u(k)) ≤ 0, j ∈ J1(d(k)), (19)

rU
j (d(k), u(k)) = 0, j ∈ J2(d(k)), (20)

and the constraints for a definite event (including terminal constraints)

rY
j (d(s)(k), x1 (s)(k)) ≤ 0, j ∈ K1(s), s ∈ S(k), (21)

rY
j (d(s)(k), x1 (s)(k)) = 0, j ∈ K2(s), s ∈ S(k). (22)

It is supposed that for any d(k) ∈ AD the set U0(d(k)) of u(k) satisfying
(19), (20) is non-empty and bounded.

The problem consists in the determination of the process scenario S=(S(1),
. . . , S(N)) and control (i.e., the succession v=(v(1),. . . ,v(N)) of vectors v(k) =
= (u(k), t(k)) with trajectories in continuous- and discrete-valued state vari-
ables d = (d(1),. . . , d(N)), x=(x0(1), x1(1),. . . , x0(N), x1(N)) corresponding
to S, v due to (10), (15)–(17) so that restrictions (13), (14), (18)–(22) are
satisfied and the target functional
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F0(x
1(N)). (23)

has the minimum value. We assume that for every d′ ∈ AD, x′∈ Rn,
u′∈ U0

∆(d′) (where the constant ∆ > 0) all the functions fi(d
′, x′, u′), rU

j (d′, u′),

rY
j (d′(s), x′(s)) are determined and continuously differentiated with respect to

x′, u′ and for all their first partial derivatives the generalized Lipschitz condition
|g(y′)-g(y)| ≤ K||y′–y||β is valid (here y=(x′, u′) and the constants K > 0,
β ∈(0, 1] do not depend on a function g(y)).

4. Finiteness of the number of switches

For the class of models introduced here boundedness of the set of trajecto-
ries and the question finiteness of the number of switches are closely interre-
lated. Even the functional space for trajectories of the system where finiteness
of the number of switches is not guaranteed is a very unusual mathematical
object. Fortunately, real production systems with their limited resources can-
not display unlimited values of their state variables (if they are reasonably
determined), as well as there are non-negative limits for least time intervals
between changes of a definite control variable. In this section the conditions
are established for the model that guarantee both properties.

First of all, the amount of any particular work has obviously lower non-
negative limit. So we formulate

Condition 1. There are the constants KX1, KX2 > 0 so that for an arbitrary
s=1,. . . , L the inequalities are satisfied

KX2 ≤ xs0(Dis(d
(s)(k))−Xi(s) s(d

(s)(k), x1 (s)(k)),

|Xis(d
(s)(k), x1 (s)(k))| ≤ KX1, i ∈ IXs,

that expresses both the existence of the lower non-negative bound for the
amount of arbitrary work and the fact that values of state variables after
transformation are bounded. If we can state that values of state variables are
bounded ever, then fi(s)(d(k), x(t, k), u(k)) would be bounded with a certain
KX3 as well, and the least time interval between switches of the s-th type
would be not less than KX2/KX3. But for an arbitrary ODE system (13),
even for linear one right side of the equations is not bounded despite the fact
that u(k) belongs to the bounded set U0(d(k)).
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The above assumptions for the properties of functions determining a model
may guarantee only that the Cauchy problem has a bounded solution only on
a small time interval initiating in T (k). Due to (12) for the Chebyshev vector
norm the equation takes place:

d ‖x(t, k)‖∞ /dt =

= max{fi(d(k), x(t, k), u(k)) · sgnxi(t, k)| i ∈ Arg max |xi(t, k)|} ≡

≡ f∞(d(k), x(t, k), u(k)).

Condition 2. There are the constant T1max > T1 and the function f∞max(y) ≥
≥ 0, so that for an arbitrary d′ ∈ AD, x′ ∈ Rn, u′ ∈ U0(d

′) the inequality
f∞(d′, x′, u′) ≤ f∞max(‖x′‖∞) is valid and the solution of the Cauchy problem
for the equation

ẏ = f∞max(y)

with the initial conditions t=0, y(0)=y0 ∈[0, ∞] exists and is unique on the
time interval [0, T1max].

One can note that an arbitrary linear ODE system of the form

dx(t, k)/dt = B(d(k))xi(t, k) + C(d(k))u(k)

satisfies condition 2. In fact, the vector C(d(k))u(k) is bounded for an arbitrary
d′ ∈ AD and u′∈ U0(d′) and so (taking into account finiteness of the set AD)
for all pairs d(k), u(k). We have

|dx i(t, k)/dt | = |Bi(d(k)) x(t, k) + Ci(d(k)) u(k)| ≤
≤ ||Bi(d(k))||∞||x(t, k)||∞ + ||Ci(d(k))||1||u(k)||∞ ≤

≤ bi||x(t, k)||∞ + ci, i =1,. . . ,n;

d||x (t, k)/dt ||∞ ≤ ||b||∞||x(t, k)||∞ + ||c||∞ = Kb||x(t, k)||∞ + Kc,

and the scalar linear ODE ẏ = Kby + Kc satisfies the condition 2.
The combination of conditions 1 and 2 guarantee the desired finiteness of

the number of switches.
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5.Changes in a succession of events

The further study assumes some degree of the model regularity. Given a
certain scenario of N -staged process we have dependencies between the vector v
and the residuals in constraints (13), (14), (18)–(22). All these constraints may
be represented as Fj(v, S); to be more exact, all the residuals for constraints
related to stages 1,. . . , k, depend on v(1:k) ≡ (v(1),. . . ,v(k)). Let V (S) be the
set of all controls v determining a feasible process with a scenario S. For any
v ∈ V (S) satisfaction of constraints (14) results from satisfaction of (13) and
(12), so residuals of almost active constraints (14) as functions of v are not
independent of residuals of other active and almost active constraints. So let
J1(k, S) and J2(k, S) be the set of constraints (19), (21) and (13), (18), (20),
(22), respectively and let J1ε(k, v, S)={j ∈ J1(k, S) | Fj(v) ≥ −ε} for ε > 0,

Jε(k, v, S) = J1ε(k, v, S) ∪ J2(k, S),
J1ε(1:k, v, S) = J1ε(1, v, S)∪. . .∪J1ε(k, v, S),

J2(1:k, S) = J2(1, S)∪. . .∪J2(k, S), Jε(1:k, v, S) =
Jε(1, v, S)∪. . .∪Jε(k, v, S).

The regularity condition is that 1) for any v ∈ V (S) and k=1,. . . , N
gradients of Fj(v(1:k), S), j ∈ Jε(1:k, v, S), are linearly independent and
2) for d′ ∈ AD, u′∈ U0(d′) vectors rU

ju(d
′, u′), j ∈ J1 0(d

′, u′) ∪ J2(d
′), are

linearly independent.
Let us slacken the condition (14) admitting controls, which satisfy

rY
i(s)(d

(s)(k), x1(s)(k)) ≤ 0, s /∈ S(k),

and denote V *(S) the corresponding set of feasible controls. It is established
that if the regularity condition is valid for V (S) it is valid for V *(S). Moreover,
one may assert that there exists the constant δ so that for all v ∈ V *(S) and
k=1,. . . , N dim(Jδ(1:k, v, S))≤dim(v(1:k)).

Two aims concern the question of changes in a succession of events: first,
to make simultaneous two events separated with a short time interval, second,
to separate two simultaneous events with a short time interval. For changing
the order of two events separated with a short time interval it is sufficient to
reach first aim, then the second one. Both aims may be represented with a set
of equations (13), (18), (20), (22) and a subset of inequalities (19), (21) trans-
formed into equations. Let a number of a stage separating two events is kINS.
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To reach the both aim we seek for a slightly altered control vA resolving the
proper set of equations with respect to vA(1),. . . ,vA(kINS-1),vA(kINS+1),. . . ,
vA(N); we suppose for the first aim that tA(kINS)=0 and for second aim that
tA(kINS) > 0 and u(kINS) ∈ U0(d(kINS)) are given. Under such a regular-
ity condition both sets of equations have their only solutions if the value of
tA(kINS) is sufficiently small. It is proved too that the constant Kv exists, so
that ||vA(k)− v(k)|| ≤ KvtA(kINS).

6. Necessary optimality conditions and numerical solution of
the optimization problem

The problem of optimization of v ∈ V *(S) with a given scenario is a partic-
ular form of the well-known optimization problem for discrete-time processes
with mixed constraints and a fixed scenario. So the principal formulations of
necessary optimality conditions of the first type may be found in [5, 6], or,
more close to problem (10)–(23), in [2]. Specific form of necessary optimality
conditions occurs when for a certain k dim(S(k)) > 1 and so events from S(k)
may be separated with a short stage.

Given a certain subdivision S(k) into two sets, SA(k) and SA(k+1), one
can found that the increment of the value of the target functional (12) may be
assessed as

F0(vA)− F0(v) =

= (qA, f(dA(k + 1), x0(k + 1), u(k + 1))tA(k + 1) + o(tA(k + 1)). (24)

¿From the formula (24) one can come to the conclusion that if the pair
(v, S) gives the optimum, then for all the adjacent scenarios for all the
uINS ∈ U0(dA(k+1)) the condition must be satisfied that

(qA, f(dA(k + 1), x0(k + 1), uINS) ≥ 0. (25)

For numerical solution of optimization problems for event-switched pro-
cesses the two-level method is constructed in which the choice of the opti-
mum scenarios fulfilled by the branch-and-bound scheme [7], and the optimum
within a fixed scenario is calculated with the decomposition method similar
to the method proposed in [8]. In solving the auxiliary optimization problem
to test satisfaction of conditions (25) a perspective adjacent scenario is being
found. The decomposition technique enables the simple procedure of restric-
tions restoration when a new vertex is generated due to such a scenario that
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differs from the parent vertex scenario in the order of two subsequent adjacent
events.
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