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Abstract. To define the relationship between the response – a random or
dependent variable y and a predetermined or independent variable x, a straight
line or concave respectively convex functions affected by random errors must
be used.

A locally weighted low-degree polynomial regression i.e. linear is fit to
several subsets of data using linear least square fitting and a first-degree poly-
nomial or the exponential curve.

PDC RVM Nova software provides a toolbox to load the dataset, to filter
the data and to estimate the parameters of each subset.

1. Introduction

The problem of fitting experimental data by a linear combination of expo-
nential is very common in technical and biological researches.

The corresponding regression model reflecting the effect of random errors
on this fitting is non-linear with respect to its parameters:

yi = α +
k∑

j=1

βjρ
i
j + ei, i = 1, ..., n (1)

where k is the number of exponentials; n is the number of observations; here
ρj = exp(−λi), α and βj are constants and ei are random errors with zero
mean and variance ρ2.

The itterative methods of curve-fitting for data to n sum of exponentials
require initial estimates of the parameters involving linearized by expanding
in a Taylor series.
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2. Model assumptions

The model (1) may be written more generally as:

y = α + βg(x) + e (2)

i.e. yj = α + βg(xj) + ej. where g(x) represents either a concave or convex
continous function.

The null hypothesis may be:

H0 : g(x) = x (3)

under various assumption concerning the probability distribution of the e’s.
The random errors ej are independently and symmetrically, but not necessarly
identically, distributed around 0 with continous distribution function:

Fj(z) = P{ej < z}
Fj(0) =

1

2
, j = 1, ..., n

For example, in normal regression analysis, the problem is to test for lin-
earity against specific alternatives (i.e. concave or convex) if the errors are
i.i.d. (independently and identically distributed) with unknown variance ρ2 or
if they have a covariance structure known except for a scale factor.

However with a sufficient number or replicated points, an independent es-
timate of or of the scale factor is available and then it is possible to test for
linearity against the mentioned alternatives.

3. Test statistics

Let the pairs {yj, xj}, j = 1, ..., n be ordered so that x1 < x2 < ... < xn and
define three disjoint intervals T1, T2, and T3 on the x-axis such that containing
the first n1 observed the x’s lie in T1 , the next n2 ordered the x’s lie in T2 and
the remaining n3 = n− n1 − n2, ordered the x’s lie in T3 .

Let us define the statistics:

hijk = h(ei, ej, ek) = 1, if(yj − yi)/(xj − xi) > (yk − yi)/(xk − xi)

hijk = h(ei, ej, ek) = −1, if(yj − yi)/(xj − xi) < (yk − yi)/(xk − xi) (4)
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hijk = h(ei, ej, ek) = 0, otherwise

The proposed statistics are:

Hn = (n1n2n3)
−1

∑
hijk (5)

all n1n2n3 sets of pairs.
The decision: the regression is concave if Hn > 0 respectively convex if

Hn < 0.
The estimators r∗i of ρi are the roots of the kth degree polynomial:

r∗k − |A∗
1|

|A∗|
r∗k − ...− |A∗

k|
|A∗|

= 0 (6)

with coefficients the difference of successive pairs of the experimental data yi

, i = 1, . . . , n:

Y ′
h = Y2h − Y2h−1, h = 1, 2, ..., 2k (7)

where

Y2h =
n+h−2k∑

i=m+1+h−k

yi; Y2h−1 =
m+h−k−1∑

i=h

yi, n = 2m (8)

respectively,

Y2h =
n+h−2k∑

i=m+1+h−k

yi; Y2h−1 =
m+h−k∑

i=h

yi, n = 2m + 1 (9)

Remark. For the small size of experimental data or the value of σ2 too
large, the lineary interpolated values, is introduced between each successive

pair points: (t∗i , y
∗
i ),with t∗i = x∗

i , where y∗i =
yi + yi+1

2
respectively t∗i =

ti + ti+1

2

4. Iterative method

Iterative method using initial estimates involving l.s. process after lin-
earization by expanding in a Taylor series. ([5]).
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A method for obtaining initial estimates of the parameters in (2) is applied
using a least square (l.s.) “peeling-off” technique. ( [3] )

By the l.s. method the estimates of ak and bk can be obtained by fitting a
straight line to the last three data points. Then :

yresidual = y − ake
−bkt (10)

By taking the next three points for yresidual against t(= x) and fitting a
straight line to them by l.s. method , the new yresidual is obtained corresponding
to the determined ak−1 and bk−1, etc.

New
yresidual = yresidual − ak−1e

−bk−1t (11)

The remaining data points are used to calculate a1 and b1.
The ordinary l.s (OLS) estimator respectively the weighted l.s. (WLS)

estimator of β – the vector of regression parameters are given in the literature:
( [6], [7] ).

β̂OLS = (X′X)−1X′y (12)

respectively

β̂WLS = (X′WX)−1X′Wy (13)

with W = block diag (w1In1 , ..., w1Ink
)

wi = u−1
i = (

1

ni

ni∑
j=1

ê2
ij)

−1 (14)

the weights
It is the t× t identity matrix.
For nonlinear least squares fitting to a number of unknown parameters,

linear least squares fitting may be applied iteratively to a linearized form of
the function until convergence is achieved. However, it is often also possible
to linearize a nonlinear function at the outset and still use linear methods for
determining fit parameters without resorting to iterative procedures. This ap-
proach does commonly violate the implicit assumption that the distribution
of errors is normal, but often still gives acceptable results using normal equa-
tions, a pseudoinverse, etc. Depending on the type of fit and initial parameters
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chosen, the nonlinear fit may have good or poor convergence properties. If un-
certainties (in the most general case, error ellipses) are given for the points,
points can be weighted differently in order to give the high-quality points more
weight.

Vertical least squares fitting proceeds by finding the sum of the squares of
the vertical deviations R2 of a set of n data points

R2 ≡
∑

[yi − f(xi, a1, ..., an)]2 (15)

from a function f . Note that this procedure does not minimize the actual
deviations from the line (which would be measured perpendicular to the given
function). In addition, although the unsquared sum of distances might seem
a more appropriate quantity to minimize, use of the absolute value results in
discontinuous derivatives which cannot be treated analytically. The square
deviations from each point are therefore summed, and the resulting residual
is then minimized to find the best fit line. This procedure results in outlying
points being given disproportionately large weighting.

The condition for R2 to be a minimum is that

∂(R2)

∂ai

= 0 (16)

for i = 1, ..., n.

5. Software description

Transformer is one of the most important and costly apparatus in power
system. The reliable and efficient fault-free operation of the high-voltage
transformer has a decisive role in the availability of electricity supply. The
transformer oil/paper insulation gets degraded under a combination of ther-
mal, electrical, chemical, mechanical, and environmental stresses during its
operation. In recent years, there has been growing interest in the condition
assesment of transformer insulation.

To estimate the status of transformer insulation it has been elaborated
a modern diagnose method based on measuring and processing of polarisa-
tion/depolarisation currents which characterise the transformer.

The polarisation/depolarisation currents is affected by noise so it must be
processed. After this, it must be transformed into a computed function of this

type : Ipol(t) = I0 +
∑5

i=1 Ipi ∗ e
−t
Tpi .
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The processing of the currents it is made in 2 stages. First the signal is
filtered, eliminating the noise partially or even totally and then to the next
stage, where the signal is parameterized.

The 4 methods of signal filtering are: Moving Average, Lowess, Loess and
Savitzky-Golay. These methods are also used in Curve Fitting Tool software
included in MATLAB suite.

Figure 1: Moving average with span=51

Figure 2: Lowess robust with span = 100
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Figure 3: Loess robust with span = 50

Figure 4: Savitzky-Golay span=51, degree=3, weighted and robust
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After the signal is filtered, it must be parameterized by transforming it
into a computed function using a mathematical procedure for finding the best-
fitting curve to a given set of points by minimizing the sum of the squares of
the offsets (”the residuals”) of the points from the curve.

Figure 5: Processing window

6. Experimental data

Measured polarisation current:
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Figure 6: Computed vs measured current(signal)

The parameters of computed function Ipol(t) = I0 +
∑5

i=1 Ipi ∗ e
−t
Tpi where

I0 is the stable value of measured current.

are given in ([10]).

References

[1] Agha,M.[1971].A direct method for fitting linear combinations of expo-
nentials.Biometrics 27(2),399-413

292



E. Ursianu, R. Ursianu, V. Ursianu - An iterative nonlinear regression for ...

[2] Della Corte,M.,Buricchi,L.,and Romano,S.[1974].On the fitting of linear
combinations of exponentials.Biometrics 30,367-369

[3] Foss,S.D.[1969].A method for obtaining initial estimates of the parame-
ters in exponential curve fitting.Biometrics 25(3),580-584

[4] Iosifescu,M.et al.[1985].Mica enciclopedie de statistica.Ed.st.encicl.,Bucuresti
[5] Postelnicu,T.,Ursianu,Emiliana.[1980].Application of nonlinear estima-

tion in the exploration of dose-response relationship.Biom.J.,22(5),425-431
[6] Scheffe’,H.[1959].The Analysis of Variance.J.Wiley,New Jork
[7] Shao,Jun;Rao,J.N.K.[1993].Jacknife inferencefor heteroscedastic linear

regression models.Canadian J.of Statistics.21(4),377-395
[8] Thornby,J.I.[1972].A robust test for linear regression.Biometrics 28(2),533-

543
[9] Vaduva,I.[1970].Analiza dispersionala.Ed.tehnica,Bucuresti
[10] Ursianu,V.[2005]. A modern diagnosising method based on measur-

ing and processing of polarization/depolarization currents.UPB-Nova Indus-
trial S.A.

Emiliana Ursianu – ISMMA - Romanian Academy
Radu Ursianu – UPB - Politehnical University of Bucharest
Victor Ursianu – Nova Industrial SA

293


