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OPTIMIZATION USING AN EVOLUTIONARY HYPERPLANE
GUIDED APPROACH

Corina Rotar, Dan Dumitrescu and Rodica Lung

Abstract. A new evolutionary technique for multicriteria optimization
called Target Hyperplane Evolutionary Algorithm (THEA) is proposed. The
originality of the approach consists in the fact that the fitness assignment
is realized by using a guiding hyperplane and a new non Pareto optimality
concept. THEA has been tested on consecrated benchmarks.
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1. Introduction

In the last decades, multicriterial optimization has been a fertile ground in
the field of evolutionary computation. Various evolutionary techniques have
been successfully developed and applied on complex multicriterial optimization
problems. Nevertheless, the subject is still a real challenge for the researchers
in the field of evolutionary algorithms both with regard to developing new
methods and with the analysis, comparison and evaluation of algorithms per-
formances. A new evolutionary technique for multicriterial optimization called
Target Hyperplane Evolutionary Algorithm (THEA) is proposed. THEA in-
troduces a new non Pareto fitness assignment procedure based on guiding
hyperplanes providing an intuitive form of guidance towards the desired front
for the population.

The proposed approach proves to perform well in numerical experiments
for static and dynamical multicriteria optimization problems. Two perfor-
mance metrics are used to validate the results obtained for the considered test
functions.
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2. Target Hyperplane Evolutionary Algorithm

Two well-known issues arise regarding population dynamics within evo-
lutionary algorithms: the first refers to preserving population diversity as an
important factor for the success of the search process and the second one refers
to the convergence towards the problem solutions. Moreover, for complex prob-
lems such as multicriteria optimization problems, the balance between the two
mentioned components is compulsory. Our main goal is to produce an efficient
population dynamics with respect to both diversity and convergence aspects.

Consider the following n objectives minimization problem:{
minimizeF (c) = f1(c), ..., fn(c)

c ∈ D
(1)

where:F : D → Rnand D ∈ Rm

The use of a hyperplane to guide the search in the objective space is sug-
gested. The guiding hyperplane is built such that the most individuals in the
current population are dominated by hyperplane points. Two characteristics
of the current population are used to construct the hyperplane:

• An ideal vector in the objective space that is better with regard to every
component than all individuals in the current population;

• The most important direction along which the population is spread out
in the objective space.

This hyperplane is updated every generation according to the configuration
of the current population.

Such a hyperplane would guide the population towards promising areas of
the search space. The movement of the population guided by the hyperplane
ultimately leads to convergence to the Pareto front.

The guiding hyperplane which is built for each generation is called the
target of the current generation.

Individuals in the current population are not evaluated through a perfor-
mance function in relation to the problem’s objectives but through how close
they are to the guiding hyperplane. Each generation the evolution of the cur-
rent population towards the corresponding target hyperplane is realized by
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focusing on the production of offspring closer to the target and not necessar-
ily on the convergence to the Pareto front. However, the manner of building
the target hyperplane for the current population leads to convergence to the
Pareto front without using a performance function based explicitly on the
Pareto dominance concept.

Regarding the diversity preservation, the target hyperplane can also be used
to estimate the diversity degree of the current population. Thus, projecting the
individuals of the present population on the target hyperplane could provide an
image of the population’s distribution. In order to maintain a good distribution
during the search process THEA is supplemented with a mechanism that favors
increased search in the areas poor in individuals of the search space.

Two measures are associated to each individual in the current population:
the first one refers to the distance to the target hyperplane and the second
refers to the agglomeration degree of its projection in the guiding hyperplane.
Both measures are used to set the balance between exploring and exploiting,
which is so necessary for obtaining a good population dynamics.

The mechanism of replacing parents with offspring is designed in such a
way as to accelerate population convergence, i.e. to favor the survival of the
best solutions found.

2.1. Guiding hyperplane construction

The objective function values corresponding to the current population may
be considered as a cluster A = (α1, α2, ..., αd) of n-dimensional points. This
cluster can be described by means of principal components analysis used in
classification theory.

Let m be the mean vector (the centroid) of set A. The most important
directions along which cluster A is spread out are given by the eigenvectors of
the scatter matrix S, given by

S =
d∑

i=1

(
αi −m

) (
αi −m

)T
(2)

Eigenvectors of the matrix S are called the principal directions of the
cluster A [2].

The eigenvector u corresponding to the largest eigenvalue gives the
most important direction along which the cluster is spread out.

Denote by x0 the vector of components:
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x0
i = min

{
ak

i |k ∈ {1, 2, ..., d}
}

, i ∈ {1, 2, ..., n} (3)

Figure 1: Construction of hyperplane H

Each component x0
i of vector x0 is given by the minimum value of the com-

ponents ak
i of the vectors ak ∈ A. Thus x0 represents an ‘ideal’ vector formed

with the best components from the vectors of A. The aim is to guide the
search of population A toward what could be called the most promising region
provided by it. Thus the hyperplane H orthonormal to direction u and passing
though x0 is constructed:

H : uT
(
x− x0

)
= 0 (4)

Hyperplane H characterizes the set A and it will be considered to be the
target of the current population in the objective space. Hyperplane H will be
used to evaluate individuals.

2.2. Hyperplane based fitness assignment

Each generation of the evolutionary process, the current target hyperplane
H is constructed. Current solutions are evaluated using H. Two features
characterize an individual:

• µ1- measuring the distance to the target hyperplane;
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• µ2- measuring the crowding degree its neighborhood .

Consider an individual c in the current population P (t) and α = (f1(c),
..., fn(c)).

We denote µ1 : D → R the function computing the distance between
individual c and the target hyperplane H:

µ1 (c) = d (H, α) (5)

It is essential to maintain the diversity of the cluster. The population will
explore efficiently the search space if individuals from less crowded zones will
be promoted to survive and evolve. A measure for the degree of crowdedness
of a point into its vicinity is proposed. A simple function to evaluate the
crowdedness is proposed.

We denote µ2 : D → R the function by which an individual c in the current
population can be qualified regarding the crowdedness. Let c′ be the projection
of c into the target hyperplane H. Function µ2 is given by:

µ2 (c) = min {d (c′, c′k) , ck ∈ P (t)} (6)

Thus µ2 represents the minimum of the distances between the projection
of individual c into H and all other projections from the current population.

Remark. Euclidian distance is used.

2.3.Computing next generation. Very weak optimality
concept.

THEA uses binary tournament selection and two genetic operators for vari-
ation: crossover and mutation. Offspring obtained by using crossover form an
intermediary population P1, while descendents obtained by mutation will be
included into a second intermediary population P2. Selection for recombination
relies on the closeness to the hyperplane (µ1), while the crowdedness into the
target hyperplane (µ2) gives the fitness values for the selection for mutation. A
larger population Γ is obtained, comprising all parents and descendents. The
best individuals from the united population will replace the population of par-
ents constituting the next current population. Individuals in Γ are evaluated
using a new concept of optimality described next.
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Figure 2: Solutions represented by the points A and B are weakly optimal.
Solution C does not verify the weak optimality condition

A new optimality concept called very weak optimality condition for multi-
criterial optimization problems is proposed.

Definition 1. Let us consider problem (1) and denotea and b two solu-
tions from A ⊆ D, a, b ∈ A.We say that a is weakly better than b and we write
a B b if there is at least one objective fi such that fi (a) < fi (b).

Remark. Note that a B b does not exclude the relation a C b.

Definition 2. Let a be a solution from A ⊆ D. We state that a is weakly
optimal with regard to the set A if we have:

∀b ∈ A, a B b,

which can be also written:

∀b ∈ A,∃i ∈ {1, 2, ..., n} |fi (a) < fi (b)

Figure 2 illustrates the introduced weak optimality concept. Several two
dimensional points (individuals) are considered. The weakly optimal solutions
are plotted in a box.

We denote by P1 (t) the population of descendents obtained by crossover,
and by P2 (t) the population of descendents obtained by mutation. The three
populations are combined to form a larger population Γ (t) = P (t) ∪ P1 (t) ∪
P2 (t). Each individual c from Γ (t) is evaluated using the following function
of performance:

Φ (c) = |{x ∈ Γ (t) |c B x}| , c ∈ Γ (t) (7)
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Thus the performance of an individual is given by the number of individuals
from the population Γ (t), against which it is better in at least one objective.

The best individuals from Γ (t) regarding the performance measure replace
the current population P (t),resulting the next generation P (t + 1).

Target Hyperplane Evolutionary Algorithm (THEA) is described in the
following.

Target Hyperplane Evolutionary Algorithm

1. Randomly generate initial population P (0), t=0.
2. Compute the target hyperplane H for the current population P(t).
3. Establish the population P ′(t)representing the projections of solutions

from P (t) onto the target hyperplane H.
4. Evaluate the population P (t) regarding the target H.
5. P1(t) := Crossover(P (t))
6. P2(t) := Mutation(P (t))
7. Construct population Γ (t) = P (t) ∪ P1 (t) ∪ P2 (t).
8. Evaluate the population Γ (t) by using the proposed performance func-

tion Φ.
9. Replace the current population P (t) with the best distinct individuals

of the population Γ (t); t := t+1.
10. If stopping condition is true then stop, else go to step 2.

In order to confer THEA a better generality a different mutation mech-
anism is proposed. The mutation operator may act in two ways: uniform
mutation of a single gene or uniform mutation of all genes, depending on a
randomly generated parameter that decides which type of mutation will be
applied further.

3. Numerical experiments

Some results obtained using THEA are presented. The well-known test
suite of bi-criterial functions ZDT1-ZDT3, ZDT6 [4] is used in order to inves-
tigate the performance of the proposed algorithm.

The considered test functions share a particular feature: the set of decision
variables is given a structure through which two subsets are defined. Thus each
variable is written X = (X1, X2), where X1 = x1 and X2 = (x2, x3, ..., xm) .
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We shall treat the two subsets differently when applying variation opera-
tors. Thus the probability of selecting a gene also depends on the subset that
includes it. More specific X1 will be given a higher probability for mutation.

The change in the genetic mutation operator positively affects the conver-
gence of the population, drastically reducing the number of generations needed
for the population to locate the Pareto front. For example: considering the
test function ZDT6, defined for 100 decision variables, giving a probability of
0.1 to the first variable to be altered, as compared to 0.001, - the probabil-
ity conferred by the standard option of the mutation - the convergence time
improves sensibly. In order to avoid loading the algorithm with additional
parameters, we chose random generation for each application of the mutation
operator, of a probability that the selected gene corresponds to a variable
from the first or second subset of decision variables. Figures 3-6 illustrate the
results obtained by THEA against those provided by two other evolutionary
techniques for multiobjective optimization: SPEA [3] and NSGA [5]. The fol-
lowing evaluation metrics were used: Coverage metric [7] and Spacing metric
[8]. Solutions plotted in the figures 2-4 are obtained after a single run of the
considered algorithms. The main parameters are:

THEA’s main parameters SPEA, NSGA’s main parameters
Population size = 80 Population size = 100

Maximum number of generation =100 Maximum number of generation =250

Problem ZDT1 presents a convex Pareto front:

f1 (x) = x1

g (x2, ..., xm) = 1 + 9 ·
n∑

i=2

xi

m−1

h (f1, g) = 1−
√

f1

g

f2 (x) = g (x2, ..., xm) · h (f2 (x) , g (x2, ..., xm))

where m=30 and xi ∈ [0, 1] , x = (x1, ..., xm)
The true Pareto front is formed with g (x) = 1
Problem ZDT2 presents a concave Pareto front:
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Figure 3: Solutions obtained by THEA, SPEA and NSGA for problem ZDT1.

f1 (x) = x1

g (x2, ..., xm) = 1 + 9 ·
n∑

i=2

xi

m−1

h (f1, g) = 1−
(

f1

g

)2

f2 (x) = g (x2, ..., xm) · h (f2 (x) , g (x2, ..., xm))

where m=30 and xi ∈ [0, 1] , x = (x1, ..., xm)
The true Pareto front is formed with g (x) = 1

Figure 4: Solutions obtained by THEA, SPEA and NSGA for the test problem
ZDT2. Entire final population of the THEA algorithm is close to the true
Pareto front.

Problem ZDT3 has a discontinuous Pareto front.
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f1 (x) = x1

g (x2, ..., xm) = 1 + 9 ·
n∑

i=2

xi

m−1

h (f1, g) = 1−
√

f1

g
− f1

g
· sin (10πf1)

f2 (x) = g (x2, ..., xm) · h (f2 (x) , g (x2, ..., xm))

where m=30 and xi ∈ [0, 1] , x = (x1, ..., xm)
The true Pareto front is formed with g (x) = 1.

Figure 5: Solutions obtained by THEA, SPEA and NSGA for the test function
ZDT3

The values for the considered metrics are summarized next.

Coverage Zdt1 Zdt2 Zdt3 Coverage Zdt1 Zdt2 Zdt3
C(Spea,THEA) 0 0 0 C(Nsga,THEA) 0 0 0
C(THEA,Spea) 1 1 0.85 C(THEA,Nsga) 1 1 1

Table 1. Coverage metric - Comparison’s results between THEA and other
popular algorithms: SPEA and NSGA on the test function considered

Spacing Zdt1 Zdt2 Zdt3
THEA 0,0163 0,0106 0,0098

Table 2. Spacing Metric for THEA algoritm. The sets of solutions plotted in
Figures 2-4 are considered
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Regarding the more recent and improved SPEA2 and NSGA2 [1], [6] a series
of numeric experiments were made. We present next the results obtained for
the ZDT6 test problem. For an objective view concerning the performances of
the algorithms the following remarks are made:

- The algorithms NSGA2 and SPEA2 use a population size of 100 in-
dividuals. The maximum number of evaluations allowed is 100000.

- THEA uses a base population of 100 individuals for 100 generations.
- For each algorithm, solutions found in 30 runs were unified and Pareto

dominated solutions were removed.
Figure 5 illustrates the Pareto nondominated solutions found by THEA, SPEA2
and NSGA2 after 30 runs. Without any further numerical comparison, it is
obvious that THEA outperforms the other algorithms for the considered test
function. THEA’s number of fitness evaluation is smaller then 100000 evalua-
tions. Even if the base population size is 100 individuals, a larger population
of descendents and parents is evaluated regarding the very weak Pareto opti-
mality concept, therefore the fitness evaluation number if larger than 100x100,
but still less than 100.000 which is the maximum number of fitness evaluation
allowed for the other two algorithms. Maximum number of fitness evaluations
for a single run of the algorithm THEA is 30.000.

Problem ZDT6:

f1 (x) = 1− exp (−4x1) sin6 (6πx1)

g (x2, ..., xm) = 1 + 9 ·
n∑

i=2

xi

m−1

h (f1, g) = 1−
(

f1

g

)2

f2 (x) = g (x2, ..., xm) · h (f2 (x) , g (x2, ..., xm))

where m=100 and xi ∈ [0, 1] , x = (x1, ..., xm)
The true Pareto front is formed with g (x) = 1.

4. Conclusions

A new approach for evolutionary optimization called Target Hyperplane
Evolutionary Algorithm (THEA) is proposed. THEA is based on creating an
ideal target hyperplane that guides the search toward the Pareto front without
using the traditional Pareto dominance concept.
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Figure 6: ZDT6. THEA versus SPEA2 and NSGA2 - solutions found by each
algorithm in 30 runs. Only Pareto nondominated solutions are plotted

As far as the main features of a good approximation of the Pareto front are
concerned, i.e. diversity and convergence, two evaluation functions are used to
facilitate the evaluation of each solution regarding the closeness to the current
target hyperplane and regarding the crowdedness of the solutions’ projections
into the hyperplane. The target hyperplane guides the search gradually until
the Pareto front is found.

Experimental results show that the approach performs well in various static
optimization problems. The target hyperplane, which guides the current pop-
ulation toward the Pareto front together with the new concept of optimality,
form an efficient procedure for solving the multicriterial optimization problem.

The proposed algorithm performs better than well-known algorithms for
the selected set of test problems. It outperforms SPEA and NSGA for the
test suite ZDT1-ZDT3, ZDT6 regarding the closeness to the Pareto front.
Generally, SPEA algorithm provides a better-distributed set of solutions.

THEA algorithm also outperforms improved algorithms SPEA2 and NSGA2
for problem ZDT6. Consequently, we can assert that THEA is efficient for
solving multicriterial optimization problems.
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