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Abstract.In this paper we define some subclasses of convex functions
associated with some hyperbola by using a generalized Sălăgean operator and
we give some properties regarding these classes.
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1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U , A =
{f ∈ H(U) : f(0) = f ′(0)−1 = 0}, Hu(U) = {f ∈ H(U) : f is univalent in U}
and S = {f ∈ A : f is univalent in U}.

Let Dn be the Sălăgean differential operator (see [12]) defined as:

Dn : A → A , n ∈ N and D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z) , Dnf(z) = D(Dn−1f(z)).

Remark. If f ∈ S , f(z) = z +
∞∑

j=2
ajz

j, z ∈ U then Dnf(z) = z +

∞∑
j=2

jnajz
j.

We recall here the definition of the well - known class of convex functions

CV = Sc =

{
f ∈ A : Re

(
zf ′′(z)

f ′(z)
+ 1

)
> 0 , z ∈ U

}
.
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Let consider the Libera-Pascu integral operator La : A → A defined as:

f(z) = LaF (z) =
1 + a

za

z∫
0

F (t) · ta−1dt , a ∈ C , Re a ≥ 0. (1)

Generalizations of the Libera-Pascu integral operator was studied by many
mathematicians such are P.T. Mocanu in [8], E. Drăghici in [7] and D. Breaz
in [6].

Definition 1.1.Let n ∈ N and λ ≥ 0. We denote with Dn
λ the operator

defined by
Dn

λ : A → A ,

D0
λf(z) = f(z) , D1

λf(z) = (1− λ)f(z) + λzf (z) = Dλf(z) ,

Dn
λf(z) = DλD

n−1
λ f(z) .

Remark 1.2. We observe that Dn
λ is a linear operator and for f(z) =

z +
∑∞

j=2 ajz
j we have

Dn
λf(z) = z +

∞∑
j=2

(1 + (j − 1)λ)n ajz
j .

Also, it is easy to observe that if we consider λ = 1 in the above definition we
obtain the Sălăgean differential operator.

The next theorem is result of the so called ”admissible functions method”
introduced by P.T. Mocanu and S.S. Miller (see [9], [10], [11]).

Theorem 1.1. Let h convex in U and Re[βh(z) + γ] > 0, z ∈ U . If
p ∈ H(U) with p(0) = h(0) and p satisfied the Briot-Bouquet differential
subordination

p(z) +
zp′(z)

βp(z) + γ
≺ h(z), then p(z) ≺ h(z).

In [4] is introduced the following operator:
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Definition 1.2. Let β, λ ∈ R, β ≥ 0, λ ≥ 0 and f(z) = z +
∑∞

j=2 ajz
j.

We denote by Dβ
λ the linear operator defined by

Dβ
λ : A → A ,

Dβ
λf(z) = z +

∞∑
j=2

(1 + (j − 1)λ)β ajz
j .

Remark 1.3. It is easy to observe that for β = n ∈ N we obtain the
Al-Oboudi operator Dn

λ and for β = n ∈ N , λ = 1 we obtain the Sălăgean
operator Dn.

The purpose of this note is to define some subclasses of convex functions
associated with some hyperbola by using the operator Dβ

λ defined above and
to obtain some properties regarding these classes.

2. Preliminary results

Definition 2.1. [1] A function f ∈ A is said to be in the class CV H(α)
if it satisfies∣∣∣∣∣zf ′′(z)

f ′(z)
− 2α

(√
2− 1

)
+ 1

∣∣∣∣∣ < Re

{√
2

zf ′′(z)

f ′(z)

}
+ 2α

(√
2− 1

)
+
√

2 ,

for some α (α > 0) and for all z ∈ U .

Remark 2.1. Geometric interpretation: Let

Ω(α) =
{
w = u + i · v : v2 < 4αu + u2 , u > 0

}
.

Note that Ω(α) is the interior of a hyperbola in the right half-plane which is
symmetric about the real axis and has vertex at the origin. Whit this notations
we have f(z) ∈ CV H(α) if and only if zf ′′(z)

f ′(z)
+ 1 take all values in the convex

domain Ω(α) contained in the right half-plane.

Definition 2.2. [2] Let f ∈ A and α > 0. We say that the function f is
in the class CV Hn(α), n ∈ N , if∣∣∣∣∣Dn+2f(z)

Dn+1f(z)
− 2α

(√
2− 1

)∣∣∣∣∣ < Re

{√
2

Dn+2f(z)

Dn+1f(z)

}
+ 2α

(√
2− 1

)
, z ∈ U .
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Remark 2.2. Geometric interpretation: If we denote with pα the an-
alytic and univalent functions with the properties pα(0) = 1, p′α(0) > 0
and pα(U) = Ω(α) (see Remark 2.1), then f ∈ CV Hn(α) if and only if
Dn+2f(z)
Dn+1f(z)

≺ pα(z), where the symbol ≺ denotes the subordination in U . We have

pα(z) = (1 + 2α)
√

1+bz
1−z

− 2α , b = b(α) = 1+4α−4α2

(1+2α)2
and the branch of the square

root
√

w is chosen so that Im
√

w ≥ 0 . If we consider pα(z) = 1 + C1z + . . . ,
we have C1 = 1+4α

1+2α
.

Theorem 2.1. [2] If F (z) ∈ CV Hn(α), α > 0, n ∈ N , and f(z) =
LaF (z), where La is the integral operator defined by (1), then f(z) ∈ CV Hn(α),
α > 0, n ∈ N .

Theorem 2.2. [2] Let n ∈ N and α > 0. If f ∈ CV Hn+1(α) then
f ∈ CV Hn(α) .

3. Main results

Definition 3.1. Let β ≥ 0, λ ≥ 0, α > 0 and pα(z) = (1 + 2α)
√

1+bz
1−z

− 2α ,

where b = b(α) = 1+4α−4α2

(1+2α)2
and the branch of the square root

√
w is chosen so

that Im
√

w ≥ 0 . We say that a function f(z) ∈ S is in the class CV Hβ,λ(α)
if

Dβ+2
λ f(z)

Dβ+1
λ f(z)

≺ pα(z) , z ∈ U .

Remark 3.1. Geometric interpretation: f(z) ∈ CV Hβ,λ(α) if and only if
Dβ+2

λ
f(z)

Dβ+1
λ

f(z)
take all values in the domain Ω(α) which is the interior of a hyperbola

in the right half-plane which is symmetric about the real axis and has vertex at
the origin (see Remark 2.1 and Remark 2.2).

Remark 3.2. We observe that this class generalize the class CV Hn(α)
studied in [2] and the class CV H(α) studied in [1].

Theorem 3.1. Let β ≥ 0, α > 0 and λ > 0 . We have

CV Hβ+1,λ(α) ⊂ CV Hβ,λ(α) .
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Proof. Let f(z) ∈ CV Hβ+1,λ(α).
With notation

p(z) =
Dβ+2

λ f(z)

Dβ+1
λ f(z)

, p(0) = 1 ,

we obtain

Dβ+3
λ f(z)

Dβ+2
λ f(z)

=
Dβ+3

λ f(z)

Dβ+1
λ f(z)

· Dβ+1
λ f(z)

Dβ+2
λ f(z)

=
1

p(z)
· Dβ+3

λ f(z)

Dβ+1
λ f(z)

(2)

Also, we have

Dβ+3
λ f(z)

Dβ+1
λ f(z)

=

z +
∞∑

j=2
(1 + (j − 1)λ)β+3 ajz

j

z +
∞∑

j=2
(1 + (j − 1)λ)β+1 ajzj

and

zp′(z) =
z
(
Dβ+2

λ f(z)
)′

Dβ+1
λ f(z)

− Dβ+2
λ f(z)

Dβ+1
λ f(z)

·
z
(
Dβ+1

λ f(z)
)′

Dβ+1
λ f(z)

=

=

z

(
1 +

∞∑
j=2

(1 + (j − 1)λ)β+2 jajz
j−1

)
Dβ+1

λ f(z)
−

−p(z) ·
z

(
1 +

∞∑
j=2

(1 + (j − 1)λ)β+1 jajz
j−1

)
Dβ+1

λ f(z)

or

zp′(z) =

z +
∞∑

j=2
j (1 + (j − 1)λ)β+2 ajz

j

Dβ+1
λ f(z)

− p(z) ·
z +

∞∑
j=2

j (1 + (j − 1)λ)β+1 ajz
j

Dβ+1
λ f(z)

.

(3)
We have

z +
∞∑

j=2

j (1 + (j − 1)λ)β+2 ajz
j = z +

∞∑
j=2

((j − 1) + 1) (1 + (j − 1)λ)β+2 ajz
j =
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= z +
∞∑

j=2

(1 + (j − 1)λ)β+2 ajz
j +

∞∑
j=2

(j − 1) (1 + (j − 1)λ)β+2 ajz
j =

= z + Dβ+2
λ f(z)− z +

∞∑
j=2

(j − 1) (1 + (j − 1)λ)β+2 ajz
j =

= Dβ+2
λ f(z) +

1

λ

∞∑
j=2

((j − 1)λ) (1 + (j − 1)λ)β+2 ajz
j =

= Dβ+2
λ f(z) +

1

λ

∞∑
j=2

(1 + (j − 1)λ− 1) (1 + (j − 1)λ)β+2 ajz
j =

= Dβ+2
λ f(z)− 1

λ

∞∑
j=2

(1 + (j − 1)λ)β+2 ajz
j +

1

λ

∞∑
j=2

(1 + (j − 1)λ)β+3 ajz
j =

= Dβ+2
λ f(z)− 1

λ

(
Dβ+2

λ f(z)− z
)

+
1

λ

(
Dβ+3

λ f(z)− z
)

=

= Dβ+2
λ f(z)− 1

λ
Dβ+2

λ f(z) +
z

λ
+

1

λ
Dβ+3

λ f(z)− z

λ
=

=
λ− 1

λ
Dβ+2

λ f(z) +
1

λ
Dβ+3

λ f(z) =

=
1

λ

(
(λ− 1)Dβ+2

λ f(z) + Dβ+3
λ f(z)

)
.

Similarly we have

z +
∞∑

j=2

j (1 + (j − 1)λ)β+1 ajz
j =

1

λ

(
(λ− 1)Dβ+1

λ f(z) + Dβ+2
λ f(z)

)
.

From (3) we obtain

zp′(z) =
1

λ

(
(λ− 1)Dβ+2

λ f(z) + Dβ+3
λ f(z)

Dβ+1
λ f(z)

− p(z)
(λ− 1)Dβ+1

λ f(z) + Dβ+2
λ f(z)

Dβ+1
λ f(z)

)
=

=
1

λ

(
(λ− 1)p(z) +

Dβ+3
λ f(z)

Dβ+1
λ f(z)

− p(z) ((λ− 1) + p(z))

)
=

=
1

λ

(
Dβ+3

λ f(z)

Dβ+1
λ f(z)

− p(z)2

)
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Thus

λzp′(z) =
Dβ+3

λ f(z)

Dβ+1
λ f(z)

− p(z)2

or
Dβ+3

λ f(z)

Dβ+1
λ f(z)

= p(z)2 + λzp′(z) .

From (2) we obtain

Dβ+3
λ f(z)

Dβ+2
λ f(z)

=
1

p(z)

(
p(z)2 + λzp′(z)

)
= p(z) + λ

zp′(z)

p(z)
,

where λ > 0.
From f(z) ∈ CV Hβ+2,λ(α) we have

p(z) + λ
zp′(z)

p(z)
≺ pα(z) ,

with p(0) = pα(0) = 1, α > 0, β ≥ 0, λ > 0, and Re pα(z) > 0 from here
construction. In this conditions from Theorem 1.1, we obtain

p(z) ≺ pα(z)

or
Dβ+2

λ f(z)

Dβ+1
λ f(z)

≺ pα(z) .

This means f(z) ∈ CV Hβ,λ(α) .

Theorem 3.2. Let β ≥ 0, α > 0 and λ ≥ 1 . If F (z) ∈ CV Hβ,λ(α) then
f(z) = LaF (z) ∈ CV Hβ,λ(α), where La is the Libera-Pascu integral operator
defined by (1).
Proof. From (1) we have

(1 + a)F (z) = af(z) + zf ′(z)

and, by using the linear operator Dβ+2
λ , we obtain

(1 + a)Dβ+2
λ F (z) = aDβ+2

λ f(z) + Dβ+2
λ

z +
∞∑

j=2

jajz
j

 =
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= aDβ+2
λ f(z) + z +

∞∑
j=2

(1 + (j − 1)λ)β+2 jajz
j

We have (see the proof of the above theorem)

z +
∞∑

j=2

j (1 + (j − 1)λ)β+2 ajz
j =

1

λ

(
(λ− 1)Dβ+2

λ f(z) + Dβ+3
λ f(z)

)

Thus

(1 + a)Dβ+2
λ F (z) = aDβ+2

λ f(z) +
1

λ

(
(λ− 1)Dβ+2

λ f(z) + Dβ+3
λ f(z)

)
=

=

(
a +

λ− 1

λ

)
Dβ+2

λ f(z) +
1

λ
Dβ+3

λ f(z)

or
λ(1 + a)Dβ+2

λ F (z) = ((a + 1)λ− 1) Dβ+2
λ f(z) + Dβ+3

λ f(z) .

Similarly, we obtain

λ(1 + a)Dβ+1
λ F (z) = ((a + 1)λ− 1) Dβ+1

λ f(z) + Dβ+2
λ f(z) .

Then

Dβ+2
λ F (z)

Dβ+1
λ F (z)

=

Dβ+3
λ

f(z)

Dβ+2
λ

f(z)
· Dβ+2

λ
f(z)

Dβ+1
λ

f(z)
+ ((a + 1)λ− 1) · Dβ+2

λ
f(z)

Dβ+1
λ

f(z)

Dβ+2
λ

f(z)

Dβ+1
λ

f(z)
+ ((a + 1)λ− 1)

.

With notation
Dβ+2

λ f(z)

Dβ+1
λ f(z)

= p(z) , p(0) = 1 ,

we obtain

Dβ+2
λ F (z)

Dβ+1
λ F (z)

=

Dβ+3
λ

f(z)

Dβ+2
λ

f(z)
· p(z) + ((a + 1)λ− 1) · p(z)

p(z) + ((a + 1)λ− 1)
(4)

We have (see the proof of the above theorem)

λzp′(z) =
Dβ+3

λ f(z)

Dβ+2
λ f(z)

· Dβ+2
λ f(z)

Dβ+1
λ f(z)

− p(z)2 =
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=
Dβ+3

λ f(z)

Dβ+2
λ f(z)

· p(z)− p(z)2 .

Thus
Dβ+3

λ f(z)

Dβ+2
λ f(z)

=
1

p(z)
·
(
p(z)2 + λzp′(z)

)
.

Then,from (4), we obtain

Dβ+2
λ F (z)

Dβ+1
λ F (z)

=
p(z)2 + λzp′(z) + ((a + 1)λ− 1) p(z)

p(z) + ((a + 1)λ− 1)
=

= p(z) + λ
zp′(z)

p(z) + ((a + 1)λ− 1)
,

where a ∈ C, Re a ≥ 0, β ≥ 0, and λ ≥ 1 .
From F (z) ∈ CV Hβ,λ(α) we have

p(z) +
zp′(z)

1
λ

(p(z) + ((a + 1)λ− 1))
≺ pα(z) ,

where a ∈ C, Re a ≥ 0, α > 0, β ≥ 0, λ ≥ 1, and from her construction, we
have Re pα(z) > 0. In this conditions we have from Theorem 1.1 we obtain

p(z) ≺ pα(z)

or
Dβ+2

λ f(z)

Dβ+1
λ f(z)

≺ pα(z) .

This means f(z) = LaF (z) ∈ CV Hβ,λ(α) .

Remark 2.3. If we consider β = n ∈ N in the previously results we obtain
the Theorem 3.1 and Theorem 3.2 from [3].
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