GEOMETRIC PREQUANTIZATION OF A GENERALIZED MECHANICAL SYSTEM

DORIN WAINBERG

ABSTRACT. In this paper we try to understand some new properties of distributional symplectic geometry and generalized mechanical systems. The paper is divided up as follows. Section 1 presents some general facts on distributional symplectic geometry. In section 2 the central ideas of geometric prequantization are summarized. Section 3 contains the geometric prequantization of a generalized mechanical system.

2000 Mathematics Subject Classification: 37J05

Keywords and phrases: generalized mechanical systems, symplectic geometry.

1. DISTRIBUTIONAL SYMPLECTIC GEOMETRY

Let M be a smooth 2n-dimmensional manifold and ω a symplectic structure on M. We denote by $C^{\infty}(M)$ (resp. X'(M), resp. $\overset{p}{D'}(M)$) the space of smooth (C^{∞}) functions (resp. the spaced of generalized vector fields, resp. the space of p-De Rham currents) on M endowed with the uniform convergence topology. We remind that in local chart a generalized vector field (resp. an p-De Rham current) is a smooth vector field (resp. a smooth p-form) with distributions coefficients instead of smooth ones.

DEFINITION 1 Let (M, ω) be a symplectic manifold and $H \in D'(M)$ a given distribution on M. The generalized vector field X_H determined by

$$X_H \,\,\lrcorner\,\, \omega + dH = 0$$

is called the generalized Hamiltonian vector field with generalized energy (Hamiltonian) H.

Let $(q^1, ..., q^n, p_1, ..., p_n)$ be canonical coordinates for ω , so $\omega = \sum_{i=1}^n dp_i \wedge dq^i$. Then in these coordinates we have:

$$X_H = \sum_{i=1}^n \left(\frac{\partial H}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial H}{\partial q^i} \frac{\partial}{\partial p_i} \right)$$

The basic properties of smooth Hamiltonian vector fields as the flow theorem, Lioville theorem and the conservation of energy can be extended in a natural way to generalized Hamiltonian vector fields.

EXAMPLE. Let $(\mathbb{R}^2 = T^*\mathbb{R}, \omega = dp \wedge dq)$ be the canonical symplectic manifold, and consider the generalized vector field

$$X = p\frac{\partial}{\partial q} - \delta(q)\frac{\partial}{\partial p},$$

where $\delta(q)$ is the Dirac function. Then a straightforward calculation yields that X is a generalized vector field associated with the Hamiltonian

$$H = \frac{1}{2}p^2 + V(q),$$

where V(q) is the Heaviside function. In this case the flow of X corresponds to reflection of a wall at the origin.

DEFINITION 2 Let (M, ω) be a 2n-dimensional symplectic manifold, $f \in C^{\infty}(M)$ a smooth function on M and $T \in D'(M)$ a distribution on M. Then the Poisson bracket of f and T is the distribution $\{f, T\}$ given by

$$\{f, T\}\omega^n = ndf \wedge dT \wedge \omega^{n-1}.$$

Let $(q^1, ..., q^n, p_1, ..., p_n)$ be canonical coordinates for ω . Then in these coordinates we have

$$\{f,T\} = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q^{i}} \frac{\partial T}{\partial p_{i}} - \frac{\partial f}{\partial p_{i}} \frac{\partial T}{\partial q^{i}} \right).$$

The basic results needed to do mechanics continue to hold, e.g. $X_{\{f,T\}} = -\{X_f, X_T\}, \ d\{f, T\} = \{df, dT\}, \ \{f, T\} = -L_{X_f}T, \ \int_M \{f, T\} = 0.$

2. The Konstant geometric prequantization process

The first step in geometric quantization is the prequantization. The principal ideas of prequantization can be summarized as follows. Let (M, ω) be a symplectic manifold and (L, π, M) an C^{∞} hermitian complex line bundle over M with hermitian structure $\langle \cdot, \cdot \rangle$. We suppose that L is endowed with a connection ∇ such that $\langle \cdot, \cdot \rangle$ is preserved under parallel translation with respect to ∇ . Such connections ∇ are in 1-1 correspondence with 1-forms α on the complement L^* of the zero-section in L which are invariant under multiplication of L^* by non-zero complex numbers, whose restriction to any fibre of L^* is $i^{-1}z^{-1}dz$, and which satisfy

$$\nabla_{\xi} s = i < s^* \alpha, \xi >$$

for all vector fields $\xi \in X(M)$ and all sections $s \in \Gamma(L)$ of L. We have also:

$$i(\alpha - \bar{\alpha}) = d \log |H|^2,$$

where $|H(L)|^2 = \langle l, l \rangle$, for all $l \in L_x, x \in M$.

The curvature of ∇ is a 2-form on M and satisfies

$$\pi^*\Omega = d\alpha.$$

We shall make the fundamental assumption

$$\Omega = -\frac{1}{\hbar}\omega,$$

where \hbar is a positive constant fixed throughout this chapter. This requires that $(2\pi\hbar)^{-1}\omega$ defines an integral De Rham class on M.

Prequantization associates to each $f \in C^{\infty}(M)$ a first order differential δ_f on L defined by

$$\delta_f = \nabla_{\xi_f} - \frac{1}{i\hbar} f.$$

We have

$$\delta_{\{f,g\}} = [\delta_f, \delta_g],$$

so $\delta : f \in C^{\infty}(M) \longrightarrow \delta_f : \Gamma(L) \longrightarrow \Gamma(L)$ is a representation of the Lie algebra $C^{\infty}(M)$ by first order differential operators. δ is called the prequantization map.

It is not difficult to see that the characteristic curves of δ_f agree with the integral curves of ξ_f and then because the behavior of a classical mechanical system at quantic level is given by δ_f and at classical level by ξ_f , we are lead to consider the above property as a form of Correspondence Principle for δ_f . Therefore the Konstant prequantization process gives a representation of the Lie algebra $C^{\infty}(M)$ by first order differential operators which satisfy the Correspondence Principle.

EXAMPLE. Let Q be a configuration space of a classical mechanical system and let M be the cotangent bundle T^*Q with its canonical symplectic structure. Since $\omega = d\theta$, it follows that M is a quantizable manifold and the line bundle (L, π, M) is simply the trivial bundle, $L = M \times \mathbb{C}$. The hermitian structure on L is given by

$$<(x,c_1),(x,c_2)>=c_1\bar{c}_2$$

and if we identify the smooth sections of L with the smooth complex valued functions on M , the connection ∇ is defined globally by

$$\nabla_{\xi} f = \xi(f) - \frac{i}{\hbar} (\xi \,\lrcorner\, \theta) f,$$

and then the prequantization map δ is given by

$$\delta_f = \xi_f - \frac{i}{\hbar} (\xi \,\lrcorner\, \theta) - \frac{1}{i\hbar} f,$$

for each $f \in C^{\infty}(M)$.

Let (q^a) be a local coordinate system on Q and let (q^a, p_a) be the corresponding canonical coordinate system on M. Then it is easy to see that the coordinate functions become the differential operators

$$\left\{ \begin{array}{l} \delta_{p_a} = \frac{\partial}{\partial q^a} \\ \delta_{q^a} = \frac{\partial}{\partial p_a} - \frac{1}{i\hbar} q^a \end{array} \right.$$

3. Prequantization of a generalized mechanical system

Let Q be a smooth n-dimensional manifold and $M = T^*Q$ its cotangent bundle with the canonical symplectic structure, $\omega = d\theta$.

DEFINITION 3 [1] A generalized mechanical system is an ensamble (M, ω, H) , where $H \in D'(M)$ is a distribution on M. H is called the generalized Hamiltonian of the system.

EXAMPLES. 1. Let $(\mathbb{R}^4, \omega = dp_1 \wedge dq^1 + dp_2 \wedge dq^2)$ be the classical symplectic manifold and let H be a Dirac function spread along the q^2 -axis. Roughly $H(q^1, q^2) = \delta(q^1)$. Then $(\mathbb{R}^4, \omega, H)$ is a generalized mechanical system, the generalized Hamiltonian vector field corresponding to H is

$$X_H = -\frac{\partial \delta(q^1)}{\partial q^1} \frac{\partial}{\partial p_1}.$$

and the corresponding motion in configuration space is just the free motion of particles reflecting (elastically) from a wall along the q^2 axis.

2. For the same symplectic manifold let H be the Heaviside function in q^1 -variable

$$H(q^1, q^2) = V(q^1, q^2) = \begin{cases} 0 & \text{iff } q^1 < 0\\ 1 & \text{iff } q^1 \ge 0 \end{cases}.$$

Then $(\mathbb{R}^4, \omega, H)$ is a generalized mechanical system, the generalized Hamiltonian vector field corresponding to H is

$$X_H = -\delta(q^1)\frac{\partial}{\partial p_1}.$$

and the corresponding motion is configuration space is the refraction of particles according to Snell's law as they cross the interface along the q^2 -axis.

Now, the problem is to define the prequantization of a generalized mechanical system, or equivalent to obtain the prequantizing operator δ_H when H is a distribution on M.

For beginning to observe that the connection map ∇ can be extended to generalized vector fields as follows:

PROPOSITION 1 The map

$$\nabla: X(M) \times C^{\infty}_{\mathbb{C}}(M) \longrightarrow C^{\infty}_{\mathbb{C}}(M)$$

has a unique continuous extension

$$\overline{\nabla}: X'(M) \times C^{\infty}_{\mathbb{C}}(M) \longrightarrow \overset{0}{D'}(M).$$

In fact

$$\bar{\nabla}_X(f) \stackrel{def}{=} X(f) - \frac{i}{\hbar} (\xi \sqcup \theta) f.$$

Moreover we have:

i) $\overline{\nabla}_{X+Y}(f) = \overline{\nabla}_X(f) + \overline{\nabla}_Y(f),$ ii) $\overline{\nabla}_{fX}(g) = f \cdot \overline{\nabla}_X(g),$ iii) $\overline{\nabla}_X(f,g) = f \cdot \overline{\nabla}_X(g) + g \cdot \overline{\nabla}_X(f),$ for each $X, Y \in X'(M), f, g \in C^{\infty}_{\mathbb{C}}(M).$

REMARK. The proof can be obtained directly using the definition of $\overline{\nabla}$.

In similar way we get:

PROPOSITION 2 The Konstant geometric prequantization map δ has a unique continous extension

$$\bar{\delta}: T \in \overset{0}{D'}(M) \longrightarrow \bar{\delta}_T: C^{\infty}_C(M) \longrightarrow \overset{0}{D'}(M).$$

In fact

$$\bar{\delta}_T \stackrel{def}{=} \bar{\nabla}_{X_T} - \frac{1}{i\hbar}T.$$

Moreover $\overline{\delta}$ is \mathbb{R} -linear.

DEFINITION 4 The map $\overline{\delta}$ is called the generalized prequantization map.

EXAMPLE. Let $(\mathbb{R}^4, \omega = dp_1 \wedge dq^1 + dp_2 \wedge dq^2)$ be the classical symplectic manifold. Then a straightforward calculation shows that for $\delta(q^1)$ and $V(q^1)$ we have:

$$\bar{\delta}_{\delta(q^1)} = \frac{\partial \delta(q^1)}{\partial q^1} \frac{\partial}{\partial p_1} + \frac{1}{i\hbar} \delta(q^1).$$

and also

$$\delta_{V(q^1,q^2)} = -\delta(q^1)\frac{\partial}{\partial p_1} + \frac{1}{i\hbar}V(q^1,q^2).$$

Using the Parker's [2] technique we can also prove:

PROPOSITION 3 The generalized characteristic curves of $\bar{\delta}_T$ agree with the generalized integral curves of X_T .

This property of $\bar{\delta}_T$ will be taken to be the assertion that $\bar{\delta}_T$ satisfies the Correspondence Principle for prequantization of a generalized mechanical system.

It is known that for a classical mechanical system the all representations of the Lie algebra $C^{\infty}(M)$ by first order differential operators with smooth coefficients which satisfy the Correspondence Principle are of the type

$$\nabla_{X_f} + m_f,$$

where $f \in C^{\infty}(M)$ and $m_f : C^{\infty}(M) \longrightarrow C^{\infty}(M)$ is a C-linear map such that:

$$m_f\{\varphi,\psi\} = \{m_f\varphi,\psi\} - \{\varphi,m_f\psi\},\$$

for each $\varphi, \psi \in C^{\infty}(M)$.

Therefore we are lead to consider the space Diff'(L) of first order differential operators with distributions coefficients of the type

$$\overline{\nabla}_{X_T} + m_T$$

where $m_T: C_C^{\infty}(M) \longrightarrow \overset{0}{D'}(M)$ is a \mathbb{C} -linear map such that

$$m_T\{\varphi,\psi\} = \{m_T\varphi,\psi\} - \{\varphi,m_T\psi\},\$$

for all $\varphi, \psi \in C^{\infty}_{C}(M)$.

References

[1] J. E. Marsden, *Generalized Hamiltonian mechanics*, Arch. Rational Mech. Anal., 28, pp 323-361, 1968.

[2] Phillip E. Parker, *Distributional geometry*, Journal of Mathematical Physics, Volume 20, pp. 1423-1426, 1979.

[3] M. Puta, Hamiltonian Mechanical Systems and Geometric Quantinization, Kluwer, 1993.

[4] M. Puta, *Poisson integrators*, Analele Universitatii Timisoara, 1993, 267-272

[5] C. J. Isham, Some Quantum Field Theory Aspects of the Superspace Quantization of General Relativity, Proc. of the Royal Soc. of London., Mathematical and Physical Sciences, No. 1665, pp. 209-232, 1976

[6] L.Hormander, *Linear partial differential operators*, Springer-Verlag, 1964

[7] H. Lewy, An example of an smooth linear partial equation without solution, An. Math. (2) 66, 1957

Author:

Dorin Wainberg Department of Mathematics "1 Decembrie 1918" University of Alba Iulia, str. N. Iorga, No. 11-13, 510009, Alba, Romania, e-mail: dwainberg@uab.ro