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GEOMETRIC PREQUANTIZATION OF A GENERALIZED
MECHANICAL SYSTEM
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Abstract. In this paper we try to understand some new properties
of distributional symplectic geometry and generalized mechanical systems.
The paper is divided up as follows. Section 1 presents some general facts
on distributional symplectic geometry. In section 2 the central ideas of ge-
ometric prequantization are summarized. Section 3 contains the geometric
prequantization of a generalized mechanical system.
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1. Distributional symplectic geometry

Let M be a smooth 2n-dimmensional manifold and ω a symplectic struc-

ture on M . We denote by C∞(M) (resp. X ′(M), resp.
p

D′(M)) the space of
smooth (C∞) functions (resp. the spaced of generalized vector fields, resp.
the space of p-De Rham currents) on M endowed with the uniform conver-
gence topology. We remind that in local chart a generalized vector field (resp.
an p-De Rham current) is a smooth vector field (resp. a smooth p-form) with
distributions coefficients instead of smooth ones.

Definition 1 Let (M,ω) be a symplectic manifold and H ∈
p

D′(M) a
given distribution on M . The generalized vector field XH determined by

XH y ω + dH = 0

is called the generalized Hamiltonian vector field with generalized energy
(Hamiltonian) H.
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Let (q1, ..., qn, p1, ..., pn) be canonical coordinates for ω, so ω =
n∑

i=1

dpi∧dqi.

Then in these coordinates we have:

XH =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
The basic properties of smooth Hamiltonian vector fields as the flow the-

orem, Lioville theorem and the conservation of energy can be extended in a
natural way to generalized Hamiltonian vector fields.

Example. Let (R2 = T ∗R, ω = dp ∧ dq) be the canonical symplectic
manifold, and consider the generalized vector field

X = p
∂

∂q
− δ(q)

∂

∂p
,

where δ(q) is the Dirac function. Then a straightforward calculation yields
that X is a generalized vector field associated with the Hamiltonian

H =
1

2
p2 + V (q),

where V (q) is the Heaviside function. In this case the flow of X corresponds
to reflection of a wall at the origin.

Definition 2 Let (M,ω) be a 2n-dimmensional symplectic manifold,

f ∈ C∞(M) a smooth function on M and T ∈
0

D′(M) a distribution on M .
Then the Poisson bracket of f and T is the distribution {f, T} given by

{f, T}ωn = ndf ∧ dT ∧ ωn−1.

Let (q1, ..., qn, p1, ..., pn) be canonical coordinates for ω. Then in these
coordinates we have

{f, T} =
n∑

i=1

(
∂f

∂qi

∂T

∂pi

− ∂f

∂pi

∂T

∂qi

)
.

The basic results needed to do mechanics continue to hold, e.g. X{f,T} =
−{Xf , XT}, d{f, T} = {df, dT}, {f, T} = −LXf

T,
∫
M

{f, T} = 0.
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2. The Konstant geometric prequantization process

The first step in geometric quantization is the prequantization. The prin-
cipal ideas of prequantization can be summarized as follows. Let (M,ω) be
a symplectic manifold and (L, π,M) an C∞ hermitian complex line bundle
over M with hermitian structure < ·, · >. We suppose that L is endowed with
a connection ∇ such that < ·, · > is preserved under parallel translation with
respect to ∇. Such connections ∇ are in 1− 1 correspondence with 1-forms
α on the complement L∗ of the zero-section in L which are invariant under
multiplication of L∗ by non-zero complex numbers, whose restriction to any
fibre of L∗ is i−1z−1dz, and which satisfy

∇ξs = i < s∗α, ξ >,

for all vector fields ξ ∈ X(M) and all sections s ∈ Γ(L) of L. We have also:

i(α− ᾱ) = d log |H|2,
where |H(L)|2 =< l, l >, for all l ∈ Lx, x ∈M .

The curvature of ∇ is a 2-form on M and satisfies

π∗Ω = dα.

We shall make the fundamental assumption

Ω = −1

~
ω,

where ~ is a positive constant fixed throughout this chapter. This requires
that (2π~)−1ω defines an integral De Rham class on M .

Prequantization associates to each f ∈ C∞(M) a first order differential
δf on L defined by

δf = ∇ξf
− 1

i~
f.

We have

δ{f,g} = [δf , δg],

so δ : f ∈ C∞(M) −→ δf : Γ(L) −→ Γ(L) is a representation of the Lie
algebra C∞(M) by first order differential operators. δ is called the prequan-
tization map.
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It is not difficult to see that the characteristic curves of δf agree with the
integral curves of ξf and then because the behavior of a classical mechanical
system at quantic level is given by δf and at classical level by ξf , we are lead
to consider the above property as a form of Correspondence Principle for
δf . Therefore the Konstant prequantization process gives a representation of
the Lie algebra C∞(M) by first order differential operators which satisfy the
Correspondence Principle.

Example. Let Q be a configuration space of a classical mechanical sys-
tem and let M be the cotangent bundle T ∗Q with its canonical symplectic
structure. Since ω = dθ, it follows that M is a quantizable manifold and the
line bundle (L, π,M) is simply the trivial bundle, L = M×C. The hermitian
structure on L is given by

< (x, c1), (x, c2) >= c1c̄2

and if we identify the smooth sections of L with the smooth complex valued
functions on M , the connection ∇ is defined globally by

∇ξf = ξ(f)− i

~
(ξ y θ)f,

and then the prequantization map δ is given by

δf = ξf −
i

~
(ξ y θ)− 1

i~
f,

for each f ∈ C∞(M).
Let (qa) be a local coordinate system on Q and let (qa, pa) be the corre-

sponding canonical coordinate system on M . Then it is easy to see that the
coordinate functions become the differential operators


δpa =

∂

∂qa

δqa =
∂

∂pa

− 1

i~
qa

.
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3. Prequantization of a generalized mechanical system

Let Q be a smooth n-dimensional manifold and M = T ∗Q its cotangent
bundle with the canonical symplectic structure, ω = dθ.

Definition 3 [1] A generalized mechanical system is an ensamble (M,ω,H),

where H ∈
0

D′(M) is a distribution on M . H is called the generalized Hamil-
tonian of the system.

Examples. 1. Let (R4, ω = dp1 ∧ dq1 + dp2 ∧ dq2) be the classical
symplectic manifold and let H be a Dirac function spread along the q2-axis.
Roughly H(q1, q2) = δ(q1). Then (R4, ω,H) is a generalized mechanical
system, the generalized Hamiltonian vector field corresponding to H is

XH = −∂δ(q
1)

∂q1

∂

∂p1

.

and the corresponding motion in configuration space is just the free motion
of particles reflecting (elastically) from a wall along the q2 axis.

2. For the same symplectic manifold let H be the Heaviside function in
q1-variable

H(q1, q2) = V (q1, q2) =

{
0 iff q1 < 0
1 iff q1 ≥ 0

.

Then (R4, ω,H) is a generalized mechanical system, the generalized Hamil-
tonian vector field corresponding to H is

XH = −δ(q1)
∂

∂p1

.

and the corresponding motion is configuration space is the refraction of par-
ticles according to Snell’s law as they cross the interface along the q2-axis.

Now, the problem is to define the prequantization of a generalized me-
chanical system, or equivalent to obtain the prequantizing operator δH when
H is a distribution on M .
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For beginning to observe that the connection map ∇ can be extended to
generalized vector fields as follows:

Proposition 1 The map

∇ : X(M)× C∞
C (M) −→ C∞

C (M)

has a unique continuous extension

∇̄ : X ′(M)× C∞
C (M) −→

0

D′(M).

In fact

∇̄X(f)
def
= X(f)− i

~
(ξ y θ)f .

Moreover we have:
i) ∇̄X+Y (f) = ∇̄X(f) + ∇̄Y (f),
ii) ∇̄fX(g) = f · ∇̄X(g),
iii) ∇̄X(f, g) = f · ∇̄X(g) + g · ∇̄X(f),

for each X, Y ∈ X ′(M), f, g ∈ C∞
C (M).

Remark.The proof can be obtained directly using the definition of ∇̄.

In similar way we get:

Proposition 2 The Konstant geometric prequantization map δ has a
unique continous extension

δ̄ : T ∈
0

D′(M) −→ δ̄T : C∞
C (M) −→

0

D′(M).

In fact

δ̄T
def
= ∇̄XT

− 1

i~
T .

Moreover δ̄ is R-linear.
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Definition 4 The map δ̄ is called the generalized prequantization map.

Example. Let (R4, ω = dp1∧dq1 +dp2∧dq2) be the classical symplectic
manifold. Then a straightforward calculation shows that for δ(q1) and V (q1)
we have:

δ̄δ(q1) =
∂δ(q1)

∂q1

∂

∂p1

+
1

i~
δ(q1).

and also

δV (q1,q2) = −δ(q1)
∂

∂p1

+
1

i~
V (q1, q2).

Using the Parker’s [2] technique we can also prove:

Proposition 3 The generalized characteristic curves of δ̄T agree with
the generalized integral curves of XT .

This property of δ̄T will be taken to be the assertion that δ̄T satisfies the
Correspondence Principle for prequantization of a generalized mechanical
system.

It is known that for a classical mechanical system the all representations
of the Lie algebra C∞(M) by first order differential operators with smooth
coefficients which satisfy the Correspondence Principle are of the type

∇Xf
+mf ,

where f ∈ C∞(M) and mf : C∞(M) −→ C∞(M) is a C-linear map such
that:

mf{ϕ, ψ} = {mfϕ, ψ} − {ϕ,mfψ},

for each ϕ, ψ ∈ C∞(M).
Therefore we are lead to consider the space Diff ′(L) of first order differ-

ential operators with distributions coefficients of the type

∇̄XT
+mT ,

where mT : C∞
C (M) −→

0

D′(M) is a C-linear map such that

mT{ϕ, ψ} = {mTϕ, ψ} − {ϕ,mTψ},

for all ϕ, ψ ∈ C∞
C (M).
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