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Abstract. Modification of truncated expansion method is used to construct
exact solutions of Eckhaus equation, nonlinear Schrödinger equation and Higgs field
equation. Modification of truncated expansion method is a powerful solution method
for obtaining exact solutions of nonlinear evolution equations.
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1. Introduction

During the past two decades, much effort has been spent on searching for exact
solutions of nonlinear equations due to their importance in understanding the non-
linear phenomena. In order to achieve this goal, various direct methods have been
proposed, such as tanh method [1,2], multiple exp-function method [3], Backlund
transformation method [4], Hirotas direct method [5,6], transformed rational func-
tion method [7], first integral method [8-12], simplest equation method [13], an
automated tanh-function method [14], Modification of truncated expansion method
[15].
In [16], Ma and Chen is used Direct search method to obtain exact solutions of the
nonlinear Schrödinger equation in the form

iΨt + Ψxx + µ|Ψ|2Ψ = 0, (1)

where µ is a real parameter and Ψ is a complex-valued function of the spatial coor-
dinate x and time t.
The Eckhaus equation is in the following form:

iΨt + Ψxx + 2(|Ψ|2)xΨ + |Ψ|4Ψ = 0, (2)

where Ψ = Ψ(x, t) is a complex-valued function of two real variables x, t. This
equation is of nonlinear Schrödinger type. The Eckhaus equation was found in
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[17] as an asymptotic multiscale reduction of certain classes of nonlinear partial
differential equations. In [18], many of the properties of the Eckhaus equation were
investigated. In [19], the Eckaus equation was (exactly) linearized by a change
(dependent) of variable.
The Higgs field equation [20]

utt − uxx − αu+ β|u|2u− 2uv = 0, (3)

vtt + vxx − β(|u|2)xx = 0,

describes a system of conserved scalar nucleons interacting with a neutral scalar
meson. Here, real constant v represents a complex scalar nucleon field and u a
real scalar meson field. Eq. (3) is the coupled nonlinear Klein-Gordon equation for
α < 0, β < 0 and the coupled Higgs field equation for α > 0, β > 0. The existence
of N -soliton solutions for Eq. (3) has been shown by Hirota’s bilinear method [21].
The aim of this paper is to find exact solutions of the Eckhaus equation, nonlinear
Schrödinger equation and Higgs field equation by using modification of truncated
expansion method [15].

2. Modification of truncated expansion method

Let us present the modification of the truncated expansion method [15]. We consider
a general nonlinear partial differential equation (PDE) in the form

F (u, ux, ut, uxx, uxt, ...) = 0. (4)

Using traveling wave u(x, t) = y(z), z = x−ct carries (4) into the following ordinary
differential equation (ODE):

G(y, yz, yzz, ...) = 0. (5)

The modification of the truncated expansion method contains the following steps
[15].
Step 1. Determination of the dominant term with highest order of singularity. To
find dominant terms we substitute

y = z−p, (6)

into all terms of Eq. (5). Then we should compare degrees of all terms of Eq. (5)
and choose two or more with the lowest degree. The maximum value of p is the pole
of Eq. (5) and we denote it as N . It should be noted that method can be applied
when N is integer. If the value N is noninteger one can transform the equation
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studied.
Step 2. We look for exact solution of Eq. (5) in the form

y =
N∑
i=0

aiQ
i(z), (7)

where Q(z) is the following function

Q(z) =
1

1 + ez
. (8)

Step 3. We can calculate necessary number of derivatives of function y. It is easy to
do using Maple or Mathematica package. Using case N = 2 we have some derivatives
of function y(z) in the form

y = a0 + a1Q+ a2Q
2,

yz = −a1Q+ (a1 − 2a2)Q
2 + 2a2Q

3, (9)

yzz = a1Q+ (4a2 − 3a1)Q
2 + (2a1 − 10a2)Q

3 + 6a2Q
4.

Step 4. We substitute expressions (7)-(9) to Eq. (5). Then we collect all terms
with the same powers of function Q(z) and equate expressions to zero. As a result
we obtain algebraic system of equations. Solving this system we get the values of
unknown parameters.

3. Nonlinear Schrödinger equation

Let us consider the Eq. (1). Substituting Ψ(x, t) = ei(αx+βt)y(z), z = k(x − 2αt)
into Eq. (1), we obtain ordinary differential equation:

−(β + α2)y + k2yzz + µy3 = 0. (10)

The pole order of Eq. (10) is N = 1. So we look for solution of Eq. (10) in the
following form

y = a0 + a1Q. (11)

Substituting (11) into Eq. (10), we obtain the system of algebraic equations in the
form

2k2a1 + µa31 = 0,

−3k2a1 + 3µa0a
2
1 = 0, (12)

k2a1 − (β + α2)a1 + 3µa20a1 = 0,
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−(β + α2)a0 + µa30 = 0.

Solving these algebraic equations by either Maple or Mathematica, we get

a0 = ±k
√
−2µ

2µ
, a1 = ± 2k√

−2µ
, β = −k

2

2
− α2, (13)

where α, k are arbitrary constants.
Using the conditions (13) in (11), we obtain

y(z) = ±k
2

√
− 2

µ
(1− 2Q(z)). (14)

Combining (14) with (8), we obtain the exact solution to Eq. (10) and the exact
solution to nonlinear Schrödinger equation can be written as

Ψ(x, t) = ±k
2

√
− 2

µ
ei(αx−( k

2

2
+α2)t) tanh(

k

2
(x− 2αt)). (15)

4. Eckaus equation

In this section we study the Eckaus equation [18]. We may choose the following
traveling wave transformation:

Ψ(x, t) = ei(αx+βt)u(z), (16)

where z = k(x − 2αt), k, α and β are constants to be determined later. Eq. (2)
becomes

k2uzz − (β + α2)u+ 4kuzu
2 + u5 = 0. (17)

The pole order of Eq. (17) is N = 1
2 . To obtain an analytic solution, N should be

an integer. This requires the use of the transformation

u = v
1
2 (18)

that transforms (17) to

2k2vvzz + 8kv2vz − k2(vz)2 − 4(β + α2)v2 + 4v4 = 0. (19)

The pole order of Eq. (19) is N = 1. So we look for solution of Eq. (19) in the
following form

v = a0 + a1Q. (20)

We substitute Eq. (20) into Eq. (19) and collect all terms with the same power in
Qi (i = 0, 1, 2, ...). Equating each coefficient of the polynomial to zero yields a set of
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simultaneous algebraic equations omitted here for the sake of brevity. Solving these
algebraic equations by either Maple or Mathematica, we obtian

Case A.

a0 = 0, a1 = −k
2
, β =

k2

4
− α2, (21)

where k, α are arbitrary constants.
In this case the exact solution takes the following form:

Ψ(x, t) = i

√
k

2
ei(αx+( k

2−4α2

4
)t)(

1

1 + ek(x−2αt)
)
1
2 . (22)

Case B.

a0 =
k

2
, a1 = −k

2
, β =

k2

4
− α2, (23)

where k, α are arbitrary constants.
In this case the exact solution takes the following form:

Ψ(x, t) =

√
k

2
ei(αx+( k

2−4α2

4
)t)(

1

2
− 1

2
tanh(

k

2
(x− 2αt)))

1
2 . (24)

5. Coupled Higgs field equation

To find exact solutions of coupled Higgs field equation (3), first we make the trans-
formation

u(x, t) = eiθy(z), v(x, t) = h(z), (25)

where θ = kx+ ωt, z = x+ ct, we have a relation k = ωc and reduce system (3) to
the following system of ordinary differential equations

(ω2(c2 − 1)− α)y + (c2 − 1)yzz + βy3 − 2yh = 0, (26)

(c2 + 1)hzz − β(y2)zz = 0.

y(z) = z−p1 and h(z) = z−p2 into all terms of Eq. (26). Then we should compare
degrees of all terms of Eq. (26) and choose two or more with the lowest degree we
have

y(z) = a0 + a1Q(z), h(z) = b0 + b1Q(z) + b2Q
2(z). (27)
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Substituting (27) into Eq. (26) and taking into account relations (9) we obtain the
system of algebraic equations in the form

2(c2 − 1)a1 + βa31 − 2a1b2 = 0,

−3(c2 − 1)a1 + 3βa0a
2
1 − 2a0b2 − 2a1b1 = 0,

(c2 − 1)a1 + 3βa20a1 + (ω2(c2 − 1)− α)a1 − 2a0b1 − 2a1b0 = 0,

(ω2(c2 − 1)− α)a0 + βa30 − 2a0b0 = 0, (28)

−6βa21 + 6(c2 + 1)b2 = 0,

(c2 + 1)(2b1 − 10b2) + 10βa21 − 4βa0a1 = 0,

(c2 + 1)(4b2 − 3b1)− 4βa21 + 6βa0a1 = 0,

(c2 + 1)b1 − 2βa0a1 = 0.

From (28) we have following values of coefficients a0, a1, b0, b1, b2

a0 = ± c2 + 1√
−2β(c2 + 1)

, a1 = ±
√
−2β(c2 + 1)

β
, b0 =

1

2
ω2(c2 − 1)− α

2
− 1

4
(c2 + 1),

(29)
b1 = 2, b2 = −2.
Using values of parameters (29) we have

y(z) = ±
√
−1 + c2

2β
(1− 2Q(z)), (30)

h(z) =
1

2
ω2(c2 − 1)− α

2
− 1

4
(c2 + 1) + 2Q(z)− 2Q2(z).

Combining (30) with (8), we obtain the exact solution to Eq. (26) and the exact
solution to coupled Higgs field equation can be written as

u(x, t) = ±
√
−1 + c2

2β
ei(ωcx+ωt)(1− 2

1 + ez
), (31)

v(x, t) =
1

2
ω2(c2 − 1)− α

2
− 1

4
(c2 + 1) + 2(

1

1 + ez
− 1

(1 + ez)2
),

where z = x+ ct.

114



M. Mirzazadeh, S. Khaleghizadeh - Modification of truncated expansion method...

References

[1] W.X. Ma, Travelling wave solutions to a seventh order generalized KdV equa-
tion, Phys. Lett. A. 180 (1993) 221-224.

[2] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J.
Phys. 60 (7) (1992) 650-654.

[3] W.X. Ma, T.W. Huang, Y. Zhang, A multiple exp-function method for non-
linear differential equations and its application, Phys. Scr. 82 (2010) 065003.

[4] M.R. Miura, Backlund Transformation, Springer-Verlag, Berlin, 1978.
[5] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple col-

lision of solitons, Phys. Rev. Lett. 27 (1971) 1192-1194.
[6] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press,

2004.
[7] W.X. Ma, J.H. Lee, A transformed rational function method and exact solu-

tions to the (3 + 1)-dimensional Jimbo-Miwa equation, Chaos Solitons Fractals. 42
(2009) 1356-1363.

[8] Z. Feng, The first integral method to study the Burgers-Korteweg-de Vries
equation, J. Phys. A. 35(2) (2002) 343-349.

[9] Z. Feng, X.H. Wang, The first integral method to the two-dimensional Burgers-
KdV equation, Phys. Lett. A. 308 (2003) 173-178.

[10] Z. Feng, R. Knobel, Traveling waves to a Burgers-Korteweg-de Vries-type
equation with higher-order nonlinearities, J. Math. Anal. Appl. 328 (2007) 1435-
1450.

[11] Z. Feng, On explicit exact solutions to the compound Burgers-Korteweg-de
Vries equation, Phys. Lett. A. 293 (2002) 57-66.

[12] Z. Feng, G. Chen, Solitary wave solutions of the compound Burgers-Korteweg-
de Vries equation, Physica A. 352 (2005) 419-435.

[13] N.A. Kudryashov, Simpliest equation method to look for exact solutions of
nonlinear differential equations, Chaos Soliton. Fract. 24 (2005) 1217-1231.

[14] E.J. Parkes, B.R. Duffy, An automated tanh-function method for finding
solitary wave solutions to nonlinear evolution equations, Comput. Phys. Commun.
98 (1996) 288-300.

[15] P.N. Ryabov, Exact solutions of the Kudryashov-Sinelshchikov equation,
Appl. Math. Comput. 217 (2010) 3585-3590.

[16] W.X. Ma, M. Chen, Direct search for exact solutions to the nonlinear
Schrodinger equation, Appl. Math. Comput. 215 (2009) 2835-2842.

[17] F. Calogero, W. Eckhaus, Nonlinear evolution equations, rescalings, model
PDES and their integrability: I. Inv. Probl. 3 (1987) 229-262.

115



M. Mirzazadeh, S. Khaleghizadeh - Modification of truncated expansion method...

[18] F. Calogero, S.D. Lillo, The Eckhause PDE iΨt+Ψxx+2(|Ψ|2)xΨ+ |Ψ|4Ψ =
0. Inv. Probl. 3 (1987) 633-681.

[19] F. Calogero, The evolution partial differential equation ut = uxxx+3(uxxu
2+

3u2xu) + 3uxu
4. J. Math. Phys. 28 (1987) 538-555.

[20] M. Tajiri, On N-soliton solutions of coupled Higgs field equations, J. Phys.
Soc. Japan. 52 (1983) 2277.

[21] X.B. Hu, B.L. Guo, H.W. Tam, Homoclinic orbits for the coupled Schrodinger-
Boussinesq equation and coupled Higgs equation, J. Phys. Soc. Japan. 72 (2003)
189-190.

Mohammad Mirzazadeh
Department of Mathematics
University of Guilan, P.O.Box 1914, Rasht, Iran
email:mirzazadehs2@guilan.ac.ir

Somiyeh Khaleghizadeh
Department of Mathematics
University of Payam Noor, Rasht 41938-1957, Iran
email:skhaleghizadeh@yahoo.com

116


