
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 32/2012
pp. 293-307

FUZZY HYPOTHESIS TESTING WITH FUZZY DATA BY USING
FUZZY P-VALUE

M. Fazlalipor Miyandoab, Korosh Arzideh and Davood Farbod

Abstract. One of the most important problems in statistical inference is test-
ing of statistical hypothesis. Usually, the underlying data and the hypotheses are
assumed to be precise. But, in many situations it is much more realistic in general to
consider fuzzy concepts. This paper is devoted to the problem of testing hypotheses
when the both hypotheses and data are fuzzy. We first extension the notion of fuzzy
p-value which is appropriates for this case and then present an approach for this
testing by comparing the obtained fuzzy p-value and fuzzy significance level, based
on a comparison of two fuzzy sets.

2000 Mathematics Subject Classification: 62F03, 62F86, 62A86.

1. Introduction

In the traditional approach for hypotheses testing, all of the concepts are assumed
to be precise and well-defined. These assumptions, sometimes, force a statistician
to make decision procedure in an unrealistic manner, because in realistic problems
we may come across fuzzy data and fuzzy hypotheses. The problem of statistical
hypotheses testing when the hypotheses and data are fuzzy has been studied by some
authors. Arnold (1996) studied on fuzzy hypotheses testing with crisp data. The
problem of testing fuzzy hypotheses when the observations are crisp were considered
by Taheri and Behboodian (1999). Torabi et al. (2006) used Neyman-Pearson
Lemma for fuzzy hypotheses testing with vague data. Casals et al. (1986) considered
the problem of testing hypotheses when the available data are fuzzy and extended
both Neyman-Pearson and Bayes theories to this framework. Casals (1993) also
studied on the same problem in the context of fuzzy decision problems. Arefi and
Taheri (2011) studied testing fuzzy hypotheses using fuzzy data based on fuzzy test
statistic.
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For the first time, Filzmoser and Viertl (2004) used fuzzy p-value in the testing
of hypotheses when the observations are fuzzy and hypotheses are crisp. Denoeux et
al. (2005) proposed the fuzzy p-value for nonparametric tests by a rank-based statis-
tic approach with fuzzy data. Parchami et al. (2010) considered p-value in testing
of fuzzy hypotheses when data are crisp. They also presented an approach for this
testing by comparing the obtained p-value and a fuzzy significance level. None of
the above authors have considered the fuzzy p-value when both the hypotheses and
data are fuzzy, by now. In this paper, we introduce the fuzzy p-value such that it is
useful for testing of hypotheses when the hypotheses and data are both fuzzy.

The remainder of this paper is organized as follows. In Section 2 we present
some preliminaries. Section 3 is concerned with classical hypotheses testing. Sec-
tion 4 gives some concepts of fuzzy hypotheses testing problems. In section 5, we
introduce the fuzzy p-value for testing of fuzzy hypotheses when data are fuzzy.
Numerical examples to show the performance of the method are also proposed. A
brief conclusion is given in Section 6.

2.Preliminaries

Let Ω be an universal set and F (Ω) = {µ| µ : Ω −→ [0, 1]}. Any µ ∈ F (Ω) is
said to be a fuzzy set on Ω. In particular, let R be the set of real numbers. For
convenient, we will use the following notations (compare to Parchami et al., 2010):

FC(R) = {µ| µ : R −→ [0, 1], µ is a continuous function},

FS(R) = {S(a, b)| a, b ∈ R, a ≤ b},

FB(R) = {B(a, b)| a, b ∈ R, a ≤ b},

FT (R) = {T (a, b, c)| a, b, c ∈ R, a ≤ b ≤ c},
where

S(a, b)(x) =



1 if x ≤ a,

(x−b)
(a−b) if a < x ≤ b,

0 if x > b,

B(a, b)(x) =



0 if x < a,

(x−a)
(b−a) if a < x ≤ b,

1 if x ≥ b.

294



M. Fazlalipor, K. Arzideh, D. Farbod - Fuzzy Hypothesis Testing with ...

and

T (a, b, c)(x) =



(x−a)
(b−a) if a < x ≤ b,

(x−c)
(b−c) if b < x ≤ c,

0 elsewhere.

T (a, a, a) denotes the indicator function of a, i.e. I{a}.

Definition 1. (Zimmermann, 1984). If µ ∈ FC(R) then,

(a) µ is called normal, if there exists x ∈ R such that µ(x) = 1;

(b) µ is called convex, if

µ(λx+ (1− λ)y) ≥ min(µ(x), µ(y)), ∀ x, y ∈ R, ∀ λ ∈ [0, 1];

(c) The support of µ is the crisp set given by Supp(µ) = {x|µ(x) > 0};

(d) The δ-cut of µ is the crisp set given by

Cδ(µ(·)) = [CLδ (µ(·)), CUδ (µ(·))] := {x|µ(x) ≥ δ}, for all δ ∈ (0, 1].

Definition 2. (Zimmermann, 1984). A non-precise number x∗ is a fuzzy subset of
R whose membership function µ(.) obeys the following conditions:

(1) ∀ δ ∈ (0, 1], the δ-cut Cδ(µ(·)) is a finite unioin of compact intervals [aδ,j , bδ,j ],
i.e.

Cδ(µ(·)) = ∪kδi=1[aδ,j , bδ,j ];

(2) C1(µ(·)) 6= φ;

A function µ(·) fulfilling conditions (1) and (2) is called characterizing function
of the non-precise number x∗.

Remark 1. (Zimmermann, 1984). Special non-precise numbers are called fuzzy
numbers. For them the δ-cuts are all non-empty compact intervals.

Definition 3. (Minimum Combination Rule: Zimmermann, 1984). Let µ1, µ2, ..., µn
be fuzzy sets on R. Then, ζ = µ1 × µ2 × ...× µn is a fuzzy set with:

ζ(x1, x2, ..., xn) = min(µ1(x1), µ2(x2), ..., µn(xn)) , for all xi ∈ R, i = 1, 2, ..., n.
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Definition 4. (Extension Principle: Zadeh, 1965). Let g : Ω −→ Y be a function.
Then g induces a function G : F (Ω) −→ F (Y ), defined by

G(µ)(y) = supy=g(x)µ(x), µ ∈ F (Ω),

where the supremum over the empty set is taken to be zero.

Now, let us consider n non-precise numbers x∗1, x
∗
2, ..., x

∗
n. In a general set-

ting, these n non-precise will have different characterizing functions denoted by
µ1(.), µ2(.)..., µn(.). By the Minimum Combination Rule, it is possible to combine
these n non-precise numbers into an n-dimensional fuzzy vector x∗ with character-
izing function as follows

ζ(x1, x2, ..., xn) = min(µ1(x1), µ2(x2), ..., µn(xn)) , for all (x1, x2, ...., xn) ∈ Rn.

We note that the function ζ : Rn −→ [0, 1] has the following properties:

(a) 0 ≤ ζ(x1, x2, ..., xn) = ζ(x) ≤ 1 for all (x1, x2, ..., xn) ∈ Rn,

(b) ∃ x0 ∈ Rn such that ζ(x0) = 1.

Let us denote the δ-cut of ζ(x∗) by Cδ(x
∗) and define

Cδ(x
∗) := {x ∈ Rn|ζ(x) ≥ δ},

then,

(c) Cδ(x
∗) is a closed compact and convex subset of Rn. Moreover, for all δ ∈

(0, 1] the δ-cuts Cδ(x
∗) are Cartesian products of the δ-cuts of the n non-precise

numbers x∗1, x
∗
2, ..., x

∗
n, i.e.

Cδ(x
∗) = Cδ(x

∗
1)× Cδ(x∗2)× ...× Cδ(x∗n), for all δ(0, 1].

If we consider a real-valued continuous function g(·, ·, ..., ·) which is applied to the
non-precise number x∗1, x

∗
2, ..., x

∗
n, then the resulting value g(x∗1, x

∗
2, ..., x

∗
n) is again a

non-precise number, denoted by y∗. Let us denote the values of the characterizing
function for y∗ by η(·). It follows from the extension principle that

η(y) =


sup{ζ(x) | g(x) = y} if g−1({y}) 6= 0,

0 if g−1({y}) = 0.
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Indeed, the function η(·) of y∗ is a characterizing function whose δ-cuts are given
by

Cδ(y
∗) = [ min

x∈Cδ(x∗)
g(x), max

x∈Cδ(x∗)
g(x)] for all δ ∈ (0, 1].

3. Classical Testing of Hypotheses Problem

Let X be a random variable where it has the probability density function (p.d.f.)
or the probability mass function (p.m.f.) fθ(x) with unknown parameter θ ∈ Θ ⊂ R.
Usually, it will be assumed that the functional form of fθ is known. A problem of
hypothesis testing may be regarded as a decision problem where decisions have to
be made about the truth of two propositions, the null hypothesis H0 : θ ∈ Θ0 ⊂ Θ
and the alternative H1 : θ ∈ ΘC

0 = Θ−Θ0. The decision is based on an observation
x = (x1, x2, ..., xn) from a random sample X = (X1, X2, ..., Xn). In usual, such a
test is dependent on values of a test statistic T = g(X) which is evaluated for the
sample, resulting in the value t = g(x). In such problems every Borel-measurable
mapping ϕ : Rn −→ [0, 1] is known as a testing function. The power function of
ϕ(X) is defined as follows

βϕ(θ) = Eθ[ϕ(X)] = Pθ{reject H0}.

A test ϕ is said to be a test of significance level α ∈ [0, 1] if αϕ ≤ α, where

αϕ = sup
θ∈Θ0

βϕ(θ).

If the test is a non-randomized test, then the space of possible values of the test
statistic T is decomposed into a rejection region R and its complement RC , the
acceptance region. Depending on the hypotheses H0 and H1, the rejection region R
takes one of the forms:

(a) T ≤ tl, (b) T ≥ tu, (c) T∈(t1, t2),

where tl, tu or t1 and t2 are certain quantiles for the distribution of T such that
α = supθ∈Θ0

Pθ{reject H0}. In case (c), we usually obtain t1 and t2 by the equal
tails method such that α

2 = Pθ(T ≤ t1) = Pθ(T ≥ t2). The hypothesis H0 is rejected
if the value t = g(x) falls into the rejection region (Filzmoser and Viertl, 2004).

Definition 5. (Mood et al., 1977). Let {fθ|θ ∈ Θ} be a family of p.d.f.s (p.m.f.s),
θ ⊂ R. Then we say that {fθ} has a MLR in the statistic T = g(X) if for θ1 < θ2

(fθ1 and fθ2 are distinct) the ratio of
fθ2
fθ1

is a non-decreasing function of t = g(x) for

the set of values x for which at least one of the fθ1 and fθ2 is positive (see Parchami
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et al., 2010).

An alternative approach for hypotheses testing which is more practical than the
above method is the approach based on the p-value (Knight, 2000).

Definition 6. (Mood et al., 1977). Consider a family of test functions {ϕα}α∈(0,1)

where the test function ϕα has level α. Let {ϕα}α∈(0,1) be the test functions such
that φα1(x) = 1 implies ϕα2(x) = 1, for any α1 < α2, then the p-value (or observed
significance level) is defined to be p− value = inf{α|ϕα(x) = 1}.

From Definition 3, the p-value for the cases (1.a), (1.b) and (1.c) can be obtained
in the following:

(a) f(θ0) = Pθ0(T ≤ t),

(b) f(θ0) = Pθ0(T ≥ t),

(c) f(θ0) = 2 min[Pθ0(T ≤ t), Pθ0(T ≥ t)] =

{
2Pθ0(T ≥ t) if t ≥ m
2Pθ0(T ≤ t) if t ≤ m

where θ0 is the boundary of the null hypothesis and m is the median of the dis-
tribution T .

Lemma 1. (Parchami et al., 2010). Let X ∼ fθ, θ ∈ Θ, where {fθ} has a
MLR in T = g(X). Suppose that θ0 is the boundary of null hypothesis. Then for the
tests of the forms (1.a), (1.b) and (1.c) we have the following statements:

(1.a) the p-value is a strictly decreasing function of θ0;

(1.b) the p-value is a strictly increasing function of θ0;

(1.c) the p-value is a strictly increasing function of θ0 where t is bigger than the
median of the distribution of T and it is a strictly increasing function at θ0 elsewhere.

The above Lemma shows the relationship between the p-value and boundary of
the null hypothesis. For details see Parchami et al. (2010).

4. Testing Fuzzy Hypotheses with Fuzzy Data

In this Section, we define some concepts, as fuzzy sets of real numbers, for mod-
eling the extensions of simple, one sided, two sided ordinary hypotheses to the fuzzy
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ones.

Definition 7. (Taheri and Behboodian, 1999). Any hypothesis of the form (H̃ : θ
is H) is called a Fuzzy Hypothesis, where H : Θ −→ [0, 1] is a fuzzy subset of the
parameter space Θ with membership function H.

Similar to the ordinary cases we have:

Definition 8. (Taheri and Arefi, 2009). Let θ0 be a known real number, then:

(a) Any hypothesis of the form (H : θ is approximately θ0) is said to be a fuzzy
simple hypothesis;

(b) Any hypothesis of the form (H : θ is not approximately θ0) is said to be a
fuzzy two-sided hypothesis;

(c) Any hypothesis of the form (H : θ is essentially smaller than θ0) is said to be
a fuzzy left one-sided hypothesis;

(d) Any hypothesis of the form (H : θ is essentially bigger than θ0) is said to be
a fuzzy right one-sided hypothesis.

Note that every fuzzy hypothesis (H̃ : θ is H) such as H ∈ FS(R) or H ∈ FB(R)
is an one-sided fuzzy hypothesis. Similarly, if H ∈ FT (R) is a simple fuzzy hypoth-
esis then the hypothesis in the form H∈FT (R) is a two-sided fuzzy hypothesis.

Definition 9. (Parchami et al., 2010). The boundary of the fuzzy hypothesis
H̃ is a fuzzy subset of Θ with membership function Hb. It can be one of the follow-
ing forms

(a) Hb(θ) =

{
H(θ) for θ ≤ θ1

0 for θ > θ1

(b) Hb(θ) =

{
H(θ) for θ ≥ θ1

0 for θ < θ1

(c) Hb(θ) = H(θ).

Example 1. Let θ be the parameter of a binomial distribution. Then the hypothesis
H̃ : θ = B(0, 0.3, 0.7) ∈ FB(R) which is an one-sided fuzzy hypothesis with increas-
ing membership function. According to the Definition 6, Hb = T (0.3, 0.7, 0.7) ∈
FT (R) is the boundary of the fuzzy hypothesis H̃.

Definition 10. (Parchami et al., 2010). Let X ∼ fθ, θ ∈ Θ, where {fθ} has a
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MLR in T (x). For testing a fuzzy hypotheses problem with the null fuzzy hypothe-
sis boundary H0b, by extension principle we define P ∈ F ([0, 1]) as follows

P(p) = G(H0b)(p), p ∈ [0, 1],

where g is the function g : Θ −→ [0, 1] given as in the cases (a)-(c) in (1). The fuzzy
set P is called the fuzzy p-valued for the related fuzzy hypotheses testing problem
and is denoted by p̃-value.

5. Fuzzy P-value

Let x∗1, x
∗
2, ..., x

∗
n be fuzzy data which are to be used for a statistical test about

fuzzy hypothesis H0. According to Sections 2 and 4, the value t∗ = g(x∗1, x
∗
2, ..., x

∗
n)

of a continuous test statistic and H0b (the boundary of H0) becomes fuzzy. We
denote the characterizing function of t∗ by η(·) and the characterizing function of
H0b by λ(·). Notice that, all of the δ-cuts of η(·) and λ(·) are closed intervals as the
forms ηδ[t1(δ), t2(δ)] and λδ[θ1(δ), θ2(δ)] for all δ ∈ (0, 1].

It should be mentioned that, in Denoeux et al. (2005) and Filzmoser and Viertl
(2004), the fuzziness of the p-value is a consequence of the fuzziness of the data,
and also in Parchami et al. (2010), the fuzziness of the p-value is a consequence
of the fuzziness of the hypotheses. In this paper we show that the fuzziness of the
p-value is a consequence of the fuzziness of both data and hypotheses. Comparing
to Parchami et al. (2010), let us propose the following Theorem.

Theorem 1. Let X ∼ fθ, θ ∈ Θ, where {fθ} has a MLR at T (x). In a fuzzy
hypotheses testing, for any critical region of the forms (a)-(c) indicated in (1), and
P given in Definition 10, the δ-cuts Pδ of P are as follows:

a) Pδ = [Pθ2(δ)(T ≤ t1(δ)), Pθ1(δ)(T ≤ t2(δ))],

b) Pδ = [Pθ1(δ)(T ≥ t2(δ)), Pθ2(δ)(T ≥ t1(δ))],

c) Pδ =


[2Pθ1(δ)(T ≥ t2(δ)), 2Pθ2(δ)(T ≥ t1(δ))] if m ≥ wr,

2Pθ2(δ)(T ≤ t1(δ)), 2Pθ1(δ)(T ≤ t2(δ)) if m ≤ wl,

where wl = inf{w : w ∈ Supp(w)} and wr = sup{w : w ∈ Supp(w)} in which
the fuzzy set w (with characterizing function w(w) = H0b(θ) where w is the median
of the distribution T (x) under θ) is called the median of the distribution for the test
statistic under the fuzzy null boundary H0b(θ).
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Proof. Let M be boundary membership function obtained from combining η(·)
and λ(·). From the extension principle, in the cases (1.a), (1.b) and also (1.c) where
m > wr or m < wl, we have

P(p) = sup
p=gof(θ,t)

M0,b(θ, t).

In case (1.a), if we define

g(x) = x and f(ti, θj) = P (T ≤ ti|θj)|, i 6= j, i = 1, 2, j = 1, 2,

then due to Lemma 1, the functions f and g are one to one functions. Therefore,

P(p) = M0,b(f
−1og−1(p)), p ∈ [0, 1].

One can obtain the δ-cut of P in the following

Pδ = {p ∈ [0, 1] : P(p) ≥ δ}

= {p ∈ [0, 1] : f−1og−1(p) ∈ [(t1(δ), θ2(δ)), (t2(δ), θ1(δ))]}.

So, for all δ ∈ [0, 1], we have

Pδ = {p ∈ [0, 1] : p ∈ [gof(t1(δ), θ2(δ)), gof(t2(δ), θ1(δ))]},

Pδ = [P (T ≤ t1(δ)|θ2(δ)), P (T ≤ t2(δ)|θ1(δ))]

Also, in case (1.b) if we define

f(ti, θj) = P (T ≥ ti|θj), i 6= j, i = 1, 2, j = 1, 2,

and in case (1.c) we define

f(ti, θj) =


2P (T > ti | θj) i 6= j, i = 1, 2, j = 1, 2 if m ≥ wr

2P (T < ti | θj) i 6= j, i = 1, 2, j = 1, 2 if m ≤ wl

the proof is complete in similar way.
The Theorem 1 is proved.

Example 2. A petroleum company believes that produce petrol with octane about
87 and variance δ = 4. To examine this claim, a random sample of 25 from this
company is selected. It is observed that octane is approximately 90. Whether the
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claim can be accepted in the level 0.95 confidence?

Solution. Let us consider hypotheses as follows:

H̃0 : µ is approximately 87

H̃1 : µ is approximately bigger than 87

which have membership function H̃0 and H̃1. Assuming

B(86, 88) ∈ FB(R), T (85, 87, 89) ∈ FT (R),

and also membership function ”approximately 90” T (88, 90, 92) ∈ FT (R).

According to the case (b) from Theorem 1 we have the following:

P̃δ = [

∫ ∞
t2(δ)−θ1(δ)

2√
25

(2π)−
1
2 exp(−z

2

2
)dz,

∫ ∞
t1(δ)−θ2(δ)

2√
25

(2π)−
1
2 exp(−z

2

2
)dz].

Let H0b = T (85, 87, 89) be boundary point. Therefore,

θ1(δ) = 85 + 2δ, θ2(δ) = 89− 2δ, for all δ ∈ (0, 1],

t1(δ) = 88 + 2δ, t2(δ) = 92− 2δ, for all δ ∈ (0, 1],

Figure 1: Membership functions H0 and H1
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Figure 2: Membership functions of H0 and approximately 90

Figure 3: Membership functions fuzzy p-value

As we see from Figure 3, 0 < p − value < 0.98. So, according to the fact that
significance level (α) with respect to p-value in what situation is, H̃0 is rejected or
accepted.

Example 3. A manufacturer of prefabricated parts claims that products resis-
tance is normal for which standard deviation of products resistance is 20 kg/cm2.
A random sample of 25 from these products selected and the average results were
approximately 330. We are going to test these hypotheses about this company:

H̃0 : µ nearly 350,

H̃1 : µ beyond 350.
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Solution. Let T (345, 350, 355) ∈ FT (R) and H̃1 = 1− H̃0 be membership functions
for H̃0 and H̃1, respectively. Let also T (320, 330, 340) ∈ FT (R) be ”approximately
330” membership function (Figure 5). So, due to the case (c) from Theorem 1, since
m ≥ wr, (m = 350, wr = 340), hence δ-cuts of the Fuzzy p-value can be defined in
the following:

P̃δ = [2

∫ ∞
t2(δ)−θ1(δ)

2√
25

(2π)−
1
2 exp(−z

2

2
)dz, 2

∫ ∞
t1(δ)−θ2(δ)

2√
25

(2π)−
1
2 exp(−z

2

2
)dz].

In addition, supposing H0b = T (345, 350, 355) is boundary point for H̃0. Therefore,

θ1(δ) = 345 + 5δ, θ2(δ) = 355− 5δ, for all δ ∈ (0, 1],

t1(δ) = (10)δ + 320, t2(δ) = (−10)δ + 340, for all δ ∈ (0, 1],

Figure 4: Membership functions H0 and H1
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Figure 5: Membership functions H0 and approximately 330

Figure 6: Membership function fuzzy p-value

As we see from Figure 6, p− value < 0.5. So, the hypothesis H̃0 is rejected.

6. Conclusion

The proposed method in this paper includes all cases, for instance the classical
case. In this paper, if the data or hypotheses or both are simple, then it is enough to
be placed just numbers in which the previous contents will be performed. Also, we
have given numerical examples to show the performance of the proposed method.
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