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THE EXPONENTIAL MAP AND THE EUCLIDEAN ISOMETRIES

Ramona-Andreea Rohan

Abstract. In the first section the basic properties of the exponential map of a
Lie group are reviewed. The second section contains the Tarence Tao proof to the
property that every compact connected Lie group is exponential. A direct specific
proof to this property in the case of the special orthogonal group SO(n), n = 2 and
n = 3 is also presented. In the last section this property is used to describe the
Euclidean isometries of the space Rn, when n = 2 and n = 3.
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The exponential map of a Lie group

Let G be a Lie group with its Lie algebra g. It is well known that the exponential
map exp : g → G is defined by exp(X) = γX(1), where X ∈ g and γX is the one-
parameter subgroup of G induced by X. Recall the following properties of the
exponential map:

1) For any t ∈ R and for any X ∈ g we have γX(t) = exp(tX);
2) For any s, t ∈ R and for any X ∈ g, we have exp(sX) exp(tX) = exp(s+ t)X;
3) For any t ∈ R and for any X ∈ g, we have exp(−tX) = (exp tX)−1;
4) exp : g → G is a smooth mapping, it is a local diffeomorphism at 0 ∈ g and

exp(0) = e, where e is the unity element of the group G;
5) The image exp(g) of the exponential map generates the connected component

Ge of the unity e ∈ G;
6) If f : G1 → G2 if a morphism of Lie groups and f∗ : g1 → g2 is the induced

morphism of Lie algebras by f , then f ◦ exp1 = exp2 ◦f∗.
As we can note from the previous property 5), the following two problems are of

special importance:
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Problem 1. Find conditions on the group G such that the exponential map is
surjective.

Problem 2. Determine the image E(G) of the exponential map.
J. Dixmier has proposed first time the Problem 2 for resoluble Lie groups. Con-

cerning Problem 1, only in few special situations we have G = E(G), i.e. the
surjectivity of the exponential map. A Lie group satisfying this property is called
exponential. A monograph devoted to the study of such Lie groups is [7].

2.Every compact connected Lie group is exponential

The standard proof of this property ([1], [3]) is to use the Cartan conjugacy, then
the surjectivity of the exponential map for a torus and the fact that every element
of the compact connected Lie group is obtained in a maximal torus.

We shall present the recent Tarence Tao [6] idea to prove the stated general prop-
erty by connecting on a Lie group the Riemannian exponential map of a manifold
with the Lie exponential map. Let G be a compact connected Lie group endowed
with a bi-invariant Riemannian metric. Because G is connected and compact, it is
complete, hence we can apply the Hopf-Rinow theorem to conclude that any two
points are connected by at least one geodesic. That is the Riemannian exponential
map expR : g→ G, is surjective. But, on the other hand, one can check that the Lie
exponential map exp : g → G and the Riemannian exponential map expR : g → G,
agree. This property can be seen by observing that the group structure naturally
defines a connection on the tangent bundle which is both torsion-free and it preserves
the bi-invariant metric, hence it must agree with the Levi-Civita metric

It is well-known that the Lie algebra so(n) of the special orthogonal group SO(n)
consists in all skew-symmetric matrices inMn(R), and the Lie bracket is the standard
commutator of matrices defined by [A,B] = AB −BA.

The exponential map exp : so (n)→ SO(n) is defined by

exp(X) =
∞∑
k=0

1

k!
Xk.

According to the well-known Hamilton-Cayley theorem, it follows that every power
Xk, k ≥ n, is a linear combination of X0, X1, · · · , Xn−1, hence we can write

exp(X) =
n−1∑
k=0

ak(X)Xk,

where the real coefficients a0(X), · · · , an−1(X) depend only on the matrix X. From
this formula, it follows that exp(X) is a polynomial of X. The problem to find
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a resonable formula for exp(X) is reduced to the determination of the coefficients
a0(X), · · · , an−1(X). We will call this general question, the Rodrigues problem. The
general problem involving power series of matrices is stated and studied in the paper
[2].

When n = 2, a skew-symmetric matrix B ∈ so(2) can be written as B = θJ ,
where

J =

(
0 −1
1 0

)
and from the Hamilton-Cayley relation J2 = −I2 and the series expansion of sin θ
and cos θ it is easy to show that:

eB = eθJ = (cos θ)I2 + (sin θ)J = (cos θ)I2 +
sin θ

θ
B. (1)

When n = 3, a real skew-symmetric matrix B ∈ so(3) is of the form:

B =

 0 −c b
c 0 −a
−b a 0


and letting θ =

√
a2 + b2 + c2 = 1

2 ||B|| with ||B|| the Frobenius norm of matrices,
we have the well-known formula due to Rodrigues:

eB = I3 +
sin θ

θ
B +

1− cos θ

θ2
B2 (2)

with eB = I3 when B = 0.
It turns out that it is more convenient to normalize B, that is, to write B = θB1

(where B1 = B/θ, assuming that θ 6= 0), in which case the formula becomes:

eθB1 = I3 + (sin θ)B1 + (1− cos θ)B2
1 (3)

Clearly the special orthogonal group SO(n) is compact and connected. Now, we
present a direct specific proof for the property that SO(n) is exponential, in the
cases n = 2 and n = 3.

If n = 2 then, according to the formula (1), the equation exp(B) = R, where
R ∈ SO(2),

R =

(
r11 r12
r21 r22

)
,

is equivalent to

(cos θ)I2 +
sin θ

θ
B = R.
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Considering the trace in both sides of this equality we get 2 cos θ = tr(R), hence we
can find θ satisfying this relation since clearly we have −2 ≤ tr(R) ≤ 2.

It follows that

R =

(
cos θ − sin θ
sin θ cos θ

)
∈ SO(2),

and then we are done.
Also, when n = 3, given R ∈ SO(3), we can find cos θ because tr(R) = 1+2 cos θ

and we can find B1 by observing that:

1

2
(R−R>) = (sin θ)B1.

Actually, the above formula cannot be used when θ = 0 or θ = π, as sin θ = 0 in
these cases. When θ = 0, we have R = I3 and B1 = 0, and when θ = π, we need to
find B1 such that:

B2
1 =

1

2
(R− I3).

As B1 is a skew-symmetric 3× 3 matrix, this amounts to solving some simple equa-
tions with three unknowns. Again, the problem is completely solved.

A general proof of the surjectivity of exp : so (n) → SO(n), when n ≥ 4, is
presented in details in [5].

3.The Euclidean isometries preserving the orientation

Consider the Euclidean space Rn with the well-known Euclidean norm ‖·‖. An
isometry of Rn is a map f : Rn → Rn, preserving the distances, that is for every
x, y ∈ Rn the following relation holds

‖f(x)− f(y)‖ = ‖x− y‖ . (4)

According to the Ulam theorem, every isometry of Rn with f(0) = 0, is a linear map
of the form f(x) = Rx, with R ∈ O(n), the orthogonal group. If detR = 1, that is
R ∈ SO(n), then the isometry f preserves the orientation. Otherwise, we say that
f reverses the orientation. The problem to describe geometrically the Euclidean
isometries is reduced in this way to the interpretation of the matrices in O(n) or
SO(n).

Using the surjectivity of the exponential map, exp : so (n) → SO(n), we can
describe the isometries of Rn preserving the orientation.

When n = 2, from the previous alternative proof, we have R ∈ SO(2) if and only
if R is a rotation matrix, i.e.

R =

(
cos θ − sin θ
sin θ cos θ

)
,
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where the rotation angle θ is defined by the equation 2 cos θ = tr(R).
When n = 3, then R ∈ SO(3) if and only if

R = I3 +
sin θ

θ
B +

1− cos θ

θ2
B2, (5)

where the angle θ is defined by the equation 1 + 2 cos θ = tr(R), that is θ =

arccos tr(R)−1
2 , if θ 6= 0. Hence, when θ 6= π, B is the skew-symmetric matrix

uniquely defined by the equation

B =
θ

2 sin θ
(R−R>).

If θ = 0, then R = I3, and the isometry f is the identity map of R3. If θ = π, then
we can find the matrix B1 as in the discussion in the previous section.

Assuming that

B =

 0 −c b
c 0 −a
−b a 0

 ,

then formula (5) expresses a rotation in R3 of axis defined by the vector −→v (a, b, c)
and angle θ.

If the isometry of R3 reverses the orientation, then detR = −1. Because
det(−R) = (−1)3 detR = (−1)(−1) = 1, it follows that the isometry g of R3,
defined by g(x) = (−R)x, preserves the orientation. In this case we obtain the
representation formula

R = −I3 −
sin θ

θ
B − 1− cos θ

θ2
B2,

with the same geometric interpretation. In this way all isometries of the space R3

are completely described.
Remark No 1. In the paper [4] the following description of the matrices

R ∈ SO(n) for n ≥ 4 is given : If {eiθ1 , e−iθ1 , · · · , eiθp , e−iθp} is the set of dis-
tinct eigenvalues of R different from 1, where 2p ≤ n and 0 < θi ≤ π, then there
are p skew-symmetric matrices B1, · · · , Bp such that BiBj = BjBi = On, i 6= j,
B3
i = −Bi, for all i, j with 1 ≤ i, j ≤ p , and

R = In +
n∑
i=1

[(sin θi)Bi + (1− cos θi)B
2
i ].

This result gives an implicit description of the Euclidean isometries of the space Rn
when n ≥ 4, in terms of 2p parameters θ1, · · · , θp, B1, · · · , Bp.
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