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ABSTRACT. In this article, we establish the existence results for boundary value
problems of the singular fractional differential systems. Our analysis relies on the
well known Leray-Schauder nonlinear alternative theory. An example is presented
to illustrate the main results.
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1. INTRODUCTION

Fractional differential equations have many applications in modeling of physical
and chemical processes and in engineering and have been of great interest recently.
In its turn, mathematical aspects of studies on fractional differential equations were
discussed by many authors, see the text books [1,2], the survey papers [3,4] and
papers [5-11] and the references therein.

The use of the Leray-Schauder nonlinear alternative theory in the study of the
existence of solutions to boundary value problems for fractional differential equations
with Caputo fractional derivatives has a rich and diverse history, see the paper [16]
and the survey paper [3] and the references therein.

In [17], the authors investigated the existence of positive solutions for the singular
fractional boundary value problem

Dgu(t) + f(t,u(t), Dfu(t)) =0, u(0)=u(1l) =0,

where 1 < o < 2,0 < p <a-—1, Df is the standard Riemann-Liouville fractional
derivative, f is a positive Caratheodory function and f(¢,x,y) is singular at = 0.
By means of the fixed point theorem on the cones, the existence of positive solutions
is obtained. The proofs are based on regularization and sequential techniques.

In [16], the authors studied the solvability of the following boundary value prob-

lem
Ow(t) F(t,v(t), Dg; (1))
Dy u(t) + g(t, ult), Dy u(t)) =
u(0) =0, u(l) =~u(n), v(0) =

0,t€(0,1),l<a<?2,
0,te(0,1),1<p8<2,
0, v(1)=~u(n),
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at the case where the homogeneous problem

D0+u(t) =0,te€(0,1),l <a<2,
D0+u(t) =0,t€e (0,1),1<p<2,
w(0) =0, u(l) =~u(n), v(0) =0, v(1)=~yu(n),

has nontrivial solutions (u(t),v(t)) = (c1t*~!, cat?~!). The methods used in [16] is
based upon coincidence degree theory.

In [12], the author studied the existence of solutions of the following boundary
value problems for fractional differential equations with Riemann-Liouville fractional
derivatives

D& u(t) + f(t,v(t), DPoo(t) =0, t € (0,1),1 < a < 2,
Dl u(t) + g(t,u t),Dg+u(t)) =0,te(0,1),1<8<2, (1)
u(0) =0, u(l) =0, v(0) =0, v(l)=0,

and in [13] the following boundary value problem for fractional differential equations
was studied

D&u(t) + f(t,v(t), DPo(t) =0, t € (0,1),1 < a < 2,
D u(t) + gt u(t), DL u(t)) =0, t € (0,1),1 < § < 2, (2)
u(0) =0, u(l) =~u(n), v(0) =0, v(1)=yu(n),

where 1 < o, < 2, p,g,vy>0,0<n<1l,a—q¢g>1,-—p>1 vyt <1
and yn®~1 < 1, Dy+ is the standard Riemann-Liouville fractional derivative, f, g
[0,1] x R x R — R are given continuous functions.

The main conditions imposed on f, g in [13] are as follows:

(BA1) there exists a nonnegative function a € L(0, 1) such that

|f(t7$7y)’ < a(t) + 61|1"|p1 + €2|y|p2’ €1,€2 > 0, pP1,p2 € (0’ 1)7
(BA2) there exists a nonnegative function b € L(0, 1) such that
]g(t,:c,y)] < b(t) —1—51]33\‘71 + (52‘:(/’02, 61,09 >0, 01,09 € (0, 1).

It is noted that D§, u(t) = 0 implies that u(t) = c1t® ' + ¢t~ for some c1, ¢z €
R. Hence the boundary condition %(0) = 0 implies that cz = 0. Then u(t) = ¢t
is bounded on [0, 1]. Hence the solutions obtained in [12,13] and [16] are bounded

/
solutions. If one replaces should be replaced u(0) = 0 by [Igj au(t)} , then
t_

c1 = 0. So u(t) = ct® 2. Tt is easy to that u(t) is unbounded on (O,_l] when
€(1,2).
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Motivated by this reson, in this paper, we discuss the existence of solutions to
the non-local boundary value problem of the nonlinear fractional differential system

D& u(t) + f(t,v(t), Di o(t)) =0, t € (0,1),1 < <2,
D u(t) + g(t,u(t), DL u(t)) =0, t € (0,1),1 < 8 < 2,
Zeu]’l =o,
{ 0 (t)ut:o 3)
[Igj%(t)] =0,
u(1) = ku(n),
v(1) = (),

where D, (Dg+) is the Riemann-Liouville fractional derivative of order a(f),1 <
a,3<2,1>pqg>0,a>q¢g+1land B>p+1,0<&En< 1, klER, kn® 241
and 16972 £ 1, f,g: (0,1) x R? — R are given continuous functions, f,g may be
singular at t =0 or t = 1.

A pair of functions u,v : (0,1] — R is called a solution of BVP(3) if both wu, v
are continuous on (0, 1] and all equations in (3) are satisfied.

The purpose of this paper is to establish the existence results for solutions
BVP(3) by using the Leray-Schauder nonlinear alternative theory in Banach space.
An example is presented to illustrate the main results.

2. MAIN RESULTS

For the convenience of the reader, we firstly present here the necessary definitions
and fixed point theory that can be found in the literatures in [1,2] and [14].

Definition 2.1. The Riemann-Liouville fractional integral of order a@ > 0 of a
function f : (0,00) — R is given by

0 = o (€97 (o)

INa
provided that the right-hand side exists.

Definition 2.2. The Riemann-Liouville fractional derivative of order av > 0 of
a continuous function f : (0,00) — R is given by

m—+1 t s
D F(t) 1 d /0( f8) 4

I‘(n _ a) dgn+1 t— S)a—n-‘rl ’

where n — 1 < a < n, provided that the right-hand side is point-wise defined on
(0, 00).
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Definition 2.3. Let m > 0,n > 0. A function F': (0,1) x R x R — R is called
a (m,n)—Caratheodory function if F' is continuous and for each r > 0 there exists
a function ¢, € L(0,1) such that

[F((t, " 22, 7 2y) < 6p(t), e (0,1), Jal <y Jyl <

Lemma 2.1. Letn—1<a<n,ucC%0,1)NL*0,1). Then
I8, Dg u(t) = u(t) + Crt* ™ + Cot* 2+ ...+ Cpt™™ ™,
where C; € R, 1=1,2,...n.
Lemma 2.2. The relations
13+Ig+80 = Igjﬁ% D8+I(?+ =
are valid in following case

Re >0, Re(a+p) >0, pe L(0,1).

Lemma 2.3. Suppose that kn®=2 # 1 and h € L'(0,1). Then u satisfies

D%u(t) + h(t) =0,0 <t <1,

[Beum]] =o, (4)
=0
u(l) = ku(n),
if and only if ,
u(t) = / G(t, 5)h(s)ds, (5)
0
where G is defined by
B 1 Gi(t,s), 0 <t<n<l1,
Glt.s) = I(a)(1 — kno—2) { G;(t, s), n<t<l, (6)

and

21— )L — Rt 2(n—s) L = (1 =k 2)(t —5)¥ 1, 0<s < t,
Gi(t,s) =< t72(1 —s)v ' —kto2(n—s)* Lt <s<n,
21 —-s) vl n<s<i,

10
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o721 —s)v — ko 2(n—5)* L = (1 =k 2)(t —5)* 1 0<s <,
Ga(t,s) =< t*2(1—s) L — (1 =k 2)(t —s)* Ln<s<t,
2 (1—s) vt <s<1.

Proof. We may apply Lemma 2.1 to reduce BVP(4) to an equivalent integral
equation

u(t) = — /Ot Wh(s)ds + 1t oot (7)

for some ¢; € R,i =1,2. We get
t
12Ou(t)] = — / h(s)ds + erT(a).
0

From {Ig_o‘u(t)]/

=0, we get ¢; = 0. Then u(1) = ku(n) implies
t=0

T —s)*! _ " (n—s)*! a
—/0 Wh(s)ds +c=k <—/0 Wh(s)ds +can 2) :

It follows that

— 8 a—1 — s a—1
e =1 _klna_Q </01 (1 F(Oz) h(s)ds — k/g”%mm) )

Therefore, the unique solution of BVP(4) is

t — s a—1
u(t) = —/0 %h(s)ds

toz—? 1 (1 _ S)a—l n (77 . S)a—l
e kna—Z (/0 Ty &)~ k/o I(a) h(s)d8>

= o )(1—kna 2y { /0 — kn®2)(t — 5)* th(s)ds

+/ 2=2(1 — — k2 (n = )°71) h(s)ds
1
+/77ta2 —5)* h(s )ds}.

Then (5) holds and G(t, s) is defined by (6). Reciprocally, let u satisfy (5). Then

u() = ku(n),  [12-u(n)]

= 07
t=0

11



Y. Liu, X. Yang, L. Ou - Existence results for singular fractional differential...

furthermore, we have D%u(t) = —h(t). The proof is complete.

Remark 2.1. It follows from (7) and (8) that

t — 5 a—q—1
Diiu(t) = —/0 (tr(alq)h(s)ds

te=1=2  T(a—1) [1(1-s)!

1—kn*2T(a—q—1) / I'(«)

e Tasn) -
1—kn*2T(a—q—1) Jo INGY!

_ / " Kt s)h(s)ds
0

+

where
1 1 1 1 Ki(t,s), 0<t<n<l,
Kt s) = a—11—kn*2T(a—q) TN(a—qg—1) { K;(t,b‘% n<t<l, )
and
Do —g)t* 172[(1 = s)* ! —k(n—s)*7"]
Kt s) = — (1 — kn~~ 2)(04—1)F(a—q—1)(t—3)a_1, 0<s<t,
165 =1 Pla— gpe2(1 - 5 — k(- 8>t < s <,
Tla—gt* (1 -5)*1n<s<1,
Do —q)t* 1721 - ) — k(n—s)*71]
— (1 —=kn*" )(Oé—1)F(0é—q—1)(75—8)“*170<SSU,
Ks(t,s) =3 T(a—q)t*17%(1 — )a '
—(A=kn* ) (a—l(a—q-1)(t—s)*"n<s<t,
Dla— @t 9721 —s)* Lt <s<1.

Remark 2.2. It is easy to see that

t27Gu(t, )]
(1=s)*t—k(n—s)*1 — (1 —kn* )2t —5)*7 1|, 0 < s <t
(1 =s)*" " —k(n—s)*",t<s<m,
[1—s|*n<s <1,

(L4 [kl il = k21— )"

(L4 [k 1= k2 (1 — )"

12
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and

7% Gal(t, 5)|
(1= 8)*"" = k(n—s)*" (1—kn°‘ Pt —s)* 7, 0< s <1,
’(l_s)ail (l_kna 2)t2 a( a 1‘7n§3§t7
[1—sl*t<s<1,

(14 kln* "+ 1= kn* 21— 5)* 7

IN

Similarly, we can show that

2T K (¢, 5)|
Do = q)[(1 = s)* ! = k(n—5)*]
—(1 =k ) (a— D (a—q— 12Tt —s)2"L 0 < s <t
T(o—q)[(1—=8)* " —k(n—s)* 1t <s <,
Ia—q)(1—-5)*tn<s<l,

< [Dle—q) 1+ k") + 1= kn*?|(a = 1)l (a — g = 1)](1 - s)*"
and

| Kaft, )]
Tl —q)[(1 = )27 = k(n— )]
—(1 =k 2)(a— 1D (a—q— 12Tt - s) L0 < s <,
— |{ Ma-g s
—(L=kn*"?)(a = Dl — g = It —5)* " n < s <,
IMNa—q)(1-s)*Lt<s<1

[C(a— @)1+ [kln®™") + |1 = kn"?|(a = 1)l (e — g — 1)](1 - 5)* 7.

IN

Similarly to Lemma 2.3, we get the following Lemma.
Lemma 2.4. Suppose that €772 # 1 and h € L'(0,1). Then v satisfies

DBy(t) +h(t) =0,0 <t <1,

5 w]| <o, (10)
t=0
v(1) = l(§),
if and only if .
v(t) :/ H(t,s)h(s)ds, (11)
0
where G is defined by
B 1 Hi(t,s), 0<t<&<1,
) = Fgyi—ier) { Hat,s), €<t <1, ()

13
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and

tP=2(1 — s)A~1 —1tF2(¢ — )81 — (1 —1872)(t — 5)P~ 1, 0 < s < t,
H(t,s) tP72(1 — 5)f~1 —1tP2(¢ — )1t < 5 <€,
tP=2(1 —s)f 1 ¢ <s <1,

P21 — )L — (1 — 1P 2)(t —s)P L e < s < t,

9721 — s)P L — 1P 2(¢ —5)P L — (1 = 1P 2)(t — 5)P 1,0 < s <&,
Hs(t, s)
tP2(1 —s)f~ 1t <s <1,

Remark 2.3. It follows from (11) that

t(t — g)B—p—1
Db o(t) = —/0 (tI‘(ﬁ)—p)h(S)ds

2 T(B-1)  t(—s)!
1102 (B —p—1) /0
W2 T(E-1) (-9t
1-1P2T(B-p—1) /0

_ / ' Pt s)h(s)ds
0

_l’_

where
B 1 1 1 1 Fi(t,s), 0<t<¢<1,
P = 5 B 1T —p-1) 1= 1e7 2 { Falts) €<t <1, (13)
and
L(B—p)tP P21 — )Pt —1(¢ — 5)P7 1]
Filts) — —(1-1¢7" 2)(5 DT —p—1)(t -9 0<s<t,
W8] =0 g = 21— sV S ig — 5P Tt < s <,
I'p— p)t6p2(1—3)51§<3§1,
LB —p)t?P72[(1 — s)P~t = 1(¢ — 5)P71]
— (11— 2)(/3 DB —p—1)(t—9)P10<s <,
Fy(t,s) =4 T(B—p)tiP72(1—5)F~!
— (A= B-TB-p—1)(t—s)P L <s<t,
(8 —p)tPP2(1—s)P Lt <s<1.

Remark 2.4. It is easy to show that

2P Hy(ts)] < A+ 1P+ 1 -1 (1 —s)" !

)

14
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270 Hy(t,s)] < (L+ P+ 1 —16P72))(1 = )P,
2B R(ts)) < [D(B—p) A+ 11E7T)

H1—172|(B - DT(B—p - 1))(1 - 5)" 1,
PRyt s)) < [D(B—p) A+ 1167

H1 =728 = DT(B —p = 11— )"
Let C(0, 1] denote the space of all continuous functions defined on (0, 1]. Let

u € C(0,1] and DJ,u € C(0,1]
there exist the limits
limg o t2~%u(t),
lim;_yg t2+q_°‘Dg+u(t)

X={u:(0,1] >R

be the Banach space endowed with the norm

|u||x = max<{ sup t>7%|u(t)|, sup t*T9~ DI u(t)| p forue X
t€(0,1] t€(0,1]

and
v ee C(0,1] and Db, v e C(0,1]
there exist the limits
lim;_, t2~Pu(t)
lim;_yg t2+p—5Dg+v(t)

be the Banach space endowed with the norm

Y=<qu:(0,1] =R

llv]|ly = max< sup t2_f8|v(t)| sup 2P~ ’BIDP v(t)| p forveY.
te(0,1] t€(0,1]

Then
X XY is a Banach space with the norm ||(u,v)|| = max{||u||x, ||v||y}

Consider the coupled system of integral equatons

u(t) = J G(t, ) (s, v(s), DL o(s))ds,
{ o(t) = Ji H(t, $)g(s, uls), Dl u(s))ds. 44

Lemma 2.5. Suppose that f is a (3, p)— Caratheodory function and g a (o, q)—
Caratheodory function. Then (u,v) € X XY is a solution of BVP(3) if and only if
(u,v) € X XY is a solution of (14).

Proof. The proof is immediate from Lemma 2.3 and 2.4. So we omit it.

15
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Let us define an operator T on X x Y as
T(u,v)(t) = (Th(t), Tou(t)), (u,v) € X XY (15)

where
1
Tyo(t) = /0 G(t,,5)f(s,v(s), D2y v(s))ds,

1
Tou(t) — /0 H(t,5)g(s u(s), DY, u(s))ds.

In view of Lemma 2.5, the fixed point of the operator T' coincides with the solu-
tion of BVP(3).

Let F; and F3 be Banach spaces. Let us recall that an operator T : E; — FEs is
called a completely continuous operator if it is continuous and maps each bounded
subsets of F into a relative compact subset in Fs.

Lemma 2.6. Let Q) C X xXY. Then  is relative compact in X XY if Q satisfies
the following conditions:

(i) € is uniformly bounded in X x Y, i.e., there exists a constant M > 0 such
that

[|(u,v)|| < M for all (u,v) € Q,

(ii) Q is an equicontinuous set, i.e., for each € > 0 there exists § > 0 such that,
forallt,7 € (0,1), [t — 7| < implies

|t2_°‘Tlv(t) — TZ_O‘Tlv(T)] <, |t2_BT2u(t) — 7'2_'8T2u(7')| < €,
and

2+ DI y(t) — 72D u(7)| <€, *TPF DB u(t) — TP DE u(r)| <.

Proof. The proof is standard and is omitted.

Lemma 2.7[14|Leray-Schauder Nonlinear Alternative. Let E be a Ba-
nach space and 0 a bounded open subset of E with 0 € Q. Suppose T : Q — E is a
completely continuous operator. Then either there exist x € OQ and \ € (01,) such
that x = \T'z or there exists x € Q such that x = Tx.

Lemma 2.8. Suppose that f is a (8, p)— Caratheodory function and g a (o, q)—

Caratheodory function. Then T is completely continuous.
Proof. We first prove that T : X XY — X XY is well defined and T is continuous.

16
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For (u,v) € X x Y, one has u € X, v € Y and

1 1
= ([ Gt 1500 Dy vlo)ds. [ H{t.9)g(s.u(s). D u(s))ds )
There exists r > 0 such that
P un)], 2 DL ()], 2P0, 2 PIDE ()] < 7.t e (0,1)

Since f is a (f,p)—Caratheodory function and g a («,q)—Caratheodory function,
we know that there exist ¢,, 1, € L'(0,1) such that

|[f(t,v(t), Dgrv(t)] < 6r(t), |g(t, u(t), Dgsu(t))] < Pr(t), t € (0,1).

Hence
Tyo(t / G(t,s)f(s,v(s), Db, v(s))ds

and
Tou(t / H(t,s)g(s,u(s), Di,u(s))ds

are continuous on (0,1] and there exist the limits

t—0

1
limtzfo‘/ G(t,s)f(s,v(s), Dfv(s))ds,

0

1
im 28 q
ling 127 [ H(t,5)g(s, uls), D u(s)ds.
On the other hand, we have

1
D Thw(t) = /0F(t,s)f(s,v(s),Dg+v(s))ds,

1
Di Thu(t) = /0K(t,s)g(s,v(s),Dngv(s))ds.

It is easy to see that Dg+T 1v and Dg+T2u are continuous on (0, 1] and there exist
the limits

fim 07 [ (1, )5, (), Djv(s)ds,
0

t—0

1
lim ¢2+P=F / K(t,s)g(s,u(s), Di,u(s))ds.
0

t—0

Hence T'(u,v) € X x Y. Then T is well defined.

17
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Suppose that (uy, vy ), (uo, v0) € X xY with (uy, vn) = (uo,vo) as n — oco. Since
that f is a (8, p)—Caratheodory function and g (o, q)—Caratheodory function, we
can prove that T'(uy,v,) — T(ug,vo) as n — oo. The details are omitted.

Since that f is a (3, p)—Caratheodory function and g («, ¢)—Caratheodory func-
tion, we can prove that 7" maps bounded sets of X x Y to bounded sets. In fact,
is a bounded subset of X x Y implies that

[|(u,v)|] <r for all (u,v) € Q.
Then there exist functions ¢, € L'(0,1) and 1, € L'(0, 1) such that
£t 0(t), Db w()] = | F(t, 722 Pu(e), P22 D w(1))| < 60 (1)
and
gt u(t), Dy, u(®))] = |g(t, 2722~ u(t), 272170 DI u(t))| < i (8).

It is easy to see that

27 To(t)| < /0 " 2-0G(t, ) f(s,0(s), DY, o(s))ds
S b2 [ s
and
20| Tyu(t)] < /0 2P, $)g(s, v(s), DP, o(s))ds
S QI =R [ 9 )

Furthermore, we have

t2+q7°‘\Dg+T1v(t)\ < /1 t2HIO (£ 5) f (s, 0(s), Dg+v(5))ds
0
S U172 [ (1 9P os)ds
and
AODY Tl < | [ ERG gt 0(0), D (o)) ds
< PB-@+ 7N+ 1 =128 - 1DI(B—p—1)] x

/1(1 — )71, (s)ds.
0

18
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From above discussion, we know hat there exists a constant M > 0 such that
|| T (u,v)|| <M for all (u,v) € Q.

Then T maps bounded sets of X X Y to bounded sets.
To prove that T" maps 2 to relative compact subsets, one sees that if ¢ < n, then

|t27aTlv(t) — T27QT17)(7')|

/1 t*71G(t, s) f(s,v(s), DP v(s))ds—/1 T2G(7,8) f(s,v(s), Dyv(s))ds
0 ’ ’ or 0 ’ ’ o

< [ kR 9 = 0 U, vls), Do)l
< 1= En*? /01 ‘tZ*a(t R e 3)0“1’ or(s)ds
and if ¢ > 7, then
|t2_aT1v(t) — T2_aT1’U(7')|
/1 171Gt ) (5, 0(5), DP L v(s))ds — /1 T27G(r, 5)f (5, 0(s), Dy, v(s))ds

0 0
n
= k22— et (e = ) (s, 0(s), Dv(s))ds

IN

t
[ 2R 9 = = ) 1, ws), D) lds
n
1
< k] [ st (= 9 0 (s)d
0
Hence

1

20Ty (t)— 72 Tyo(r)| < [1—kn®2| / \ﬁ—a(t — gyl g2 s)a—l\ b (5)ds.
0

(16)

Furthermore, we have that

24P DP (t) — 12D (7]

< (1-1EPHBE-Dr(B-p-1) x
1
e =P et = )7 I (s, 0(s), Dhv(s)lds
< (1-1EPBE-Dr(B-p-1) x

1
/ ’t2+p—a(t _ gyl pea(r S)B—l‘ r(s)ds.
0

19
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Analogously, it can be proved that
[t2=PTyu(t) — 2P Thu(r)|
(17)
<1182 2R — 5P — 2 — )P (s)ds,
and
t2+p_a|Dg+u(t) - 72+p_"‘Dg+u(7)]

< 1=k Ha—-1)I(a—p—1)x
/0 1 2P = )27 — 20 (1 ) 7Y | (5, 0(s), D, u(s))|ds
1

< A=) (a-Dl(a—p-1)x

1
/ ’t2+p—0‘(t — )Tl — p2rmar s)o‘_l‘ P (8)ds.
0

It follows from Lemma 2.6 that T} is an equicontinuous set. Also it is uniformly
bounded. Thus we conclude that T" is completely continuous.

Lemma 2.9. Suppose that m; > 0(i =1,2,3,4) and l; > 0(i = 1,2,3,4). Then
(1) the inequality system

0 <x <mq+may + may” +may??, 0 < p1,p2 <1,
0<y<li+lbx+l327 + 42°2, 0 < 01,09 < 1

and maly < 1 imply that there exists a positive number My depending only on mq,1;
such that 0 < x < Mj and 0 <y < My;
(ii) the inequality system

0 <z < moy + m3y” + mqy”?, p1,p2 > 1,
0 <y <lox+ 1327 + 1422, 01,00 > 1

and meols < 1 imply that there exists a positive number My depending only on my,l;
such that x < My and y < M.
Proof. (i) From the inequality system, we get
0 <z < m;+ mg[ll + lgx + 13.7301 + l4x”2]
+mo[ly + lox + 32t + 14272
+my[ly + lox + l327t + 14272)P?
= my + maly + malaz + meo[lsz® + l427?]
+ma [ll + lQQS‘ + l31}01 + l4$02]p1
+my(ly + lox + 327 4 1427272,
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It follows that

l l32%t + [42°2
0<1 < m2l2+m1+m21+m2[3$ + 14272
A

+m2[ll + lox + l327t + 14x72]P
x
mally + lox + l327" + [4x72]P2
. .

Since maly < 1 and p1, p2, 01,09 € [0,1), we get easily that there exists M’ > 0 such
that z < M’.
Similarly we get that there exists M"” > 0 such that y < M”. Then there exists a
positive number M; depending only on m;,l; such that 0 <o < M; and 0 < y < Mjy;
(ii) One sees that

0 <z < mglg% + Mngxgl + 7TL2l4I02
+ms [lgx + lgxal + l4:l,‘02]p1
+my [ZQCC + l3x01 + l4$02]p2.

If £ > 0, then

I3z 1427
1 § m212+m23$ +m249:

x
+m3 [lgx + 131'01 + l4$02]p1
X
+m4 [leL‘ + lg:L'Jl + l4$02]pz
- .

Since p1, p2, 01,02 > 1 and mals < 1, we know that there exists a positive number
M’ depending only on my;,[; such that x > M’. Similarly, we can show that that
there exists a positive number M” depending only on m;,l; such that y > M".
Hence there exists a positive number Ms depending only on m;, [; such that x > M,
and y > Ms. The proof is completed.

For the forthcoming analysis, we introduce the growth conditions on f and g as

(A) there exist nonnegative functions a € L'(0,1) and ¢;(i = 1,2,3,4) defined on
(0,1) such that

[f(t,2,9)] < a(t) + e(t)|z] + e2(t) ]yl + es(t)|z]* + ea()|y[”?, 0 < p1, p2 <1,

(B) there exist nonnegative functions b € L(0,1) and §;(i = 1,2, 3,4) defined on
(0,1) such that

lg(t, 2, )] < b(t) + 61.(t)|2] + Sa(E)]y] + S5()]2]" + S4(t)|y|°2,0 < o1, 09 < 1.
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(C) there exist nonnegative functions €;(i = 1,2,3,4) defined on (0, 1) such that
(b2, 9)| < e1(B)]al + e (B)ly] + szl + Byl o1, o2 > 1,
(D) there exist nonnegative functions 0;(i = 1,2, 3,4) defined on (0, 1) such that

9t 2. 9)] < 81(8)lz] + Sa(8)]y] + S5(0)||™ + 84(D)]y]*?, 01,00 > L.

Remark. The assumptions (A), (B), (C) and (D) generalize (BA1) and (BA2)
supposed in [13].
Let us set the following notations for the convenience:

1+ |kln®t + |1 — kn*2|

M o) fo?
v Dla—g) @+ [klr*™) + 1 = kn*2|(a = (e — g - 1)
2 T(a—q)(a— Dl (a—g— 1)1 — kno2] ’
- 1+ (1681 + |1 — keP2
! LB — 2]
n, — LE=pO+ e + 116725 - OI(5 —p—1)

I'(B—p)(B—1I(B-p—1)1-1&?

Theorem 2.1. Suppose that f is a (8, p)— Caratheodory function and g (o, q)—
Caratheodory function, (A) and (B) hold. Then BVP(3) has at least one solution if

max{A1, Ao} max{Il;,IIo} X

1 1
(/ (1—5)*"1s22¢(s)ds +/ (1- s)o‘lsaq2eg(s)ds) X
0 0
1 1
(/ (1 —5)7"1sP25,(s)ds + / (1- 3)’81351”2(52(3)&9) <1
0 0
Proof. Consider the set

Q1 ={(u,v) € X XY : (u,v) = \T'(u,v) for some A € (0,1)}.

We first prove that ©; is bounded. For (u,v) € Q1, we see that (u,v) = AT (u,v).
Then v = AXT1v and v = AXThu.
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We obtain by Remark 2.1 and (A) that

IN

IN

IN

IN

[Ty (t)]

1
/0 G(t,,s)f(s,v(s), Dhsv(s))ds
1
A [ (=9 75, 0(6), Dhv(s)ds
1 1
Al/o (1—s)o‘*1a(s)ds+A1/0 (1—5)*ter(s)|v(s)|ds

1 1
+A1/0 (1—s)aﬂ@(s)mgw(s)\ds+A1/0 (1 = )% Leg(s)[v(s) | ds

t27a

san [ (=9 ) D w(s) s

A < /0 "1 = 5)2Ta(s)ds + /0 "1 = 50 ey ()57 252 () ds
4 /0 {1 = 52 ey (5)5079-26249-0 DY (s)|ds

+ /0 "1 = 5)0 Leg(5)5@ D01 520001 (571 ds

+ [ ) ea(s) oD O D o) )

A /01(1 — ) La(s)ds

1
+A / (1—5)2"1s22¢(s)ds sup t2~|u(t)]
0

te(0,1]

1
+/ (1—5)* 1" 9 2ey(s)ds sup t*T9 Db, v(t)]
0 te(0,1]

1 P
—I—/ (1 —s)2 1sl@2P1ey(s)ds ( sup t2_°‘|v(t)\>
0

te(0,1]

1 P2
—i—/ (1 — s)271sP2(0=0=2 e (5)ds < sup t2+qa|Dg+v(t)|> ]
0 te(0,1]
1

Al/ (1—s)*"La(s)ds
0
1
e [ / (1 — 5)°~ 1522, (s)s][o]y
0
1
+/ (1 — )% 152026, (5)ds|[v]|y
0
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1
[ (1= sy (s
0
1

+/ (1—s)a—lsp2<a—q—2>e4(s)ds||vy|§,2]
0

and
|2+ DI Tyo(t)|
= oo / K (t,,5)f (s, v(s), Dy v(s))ds
< o [ (1= (s 000), Do)l
< AQ/OI(1—3)O‘1a(s)ds
+As Mﬂ — )" 1" ey (s)ds| o[y
- /01<1 — 5)* 1" ey (s)ds| vy
N /01(1 — 5)* Dy (s)ds o]
b [t e ]
Thus
ITiollx = max{ti%%tQ_a'Tl““)" Sy P Tt )'}

IN

max{Ar, Ao} [/1(1 9o la(s)ds

1
+</ (1— 1572 ds+/ j 1sa_q_262(s)ds> olly
0

+/ (1 — 5)° 150201 ¢y (5)ds|[0]| 22
v / yo 1sp2(°‘_q_2)e4(s)ds\v\\lp/2}.
Since ||UHX = )\HTlvHX < ||T11)HX, we get

1
lullx < max{Ar,As} UO (1= $)* la(s)ds
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1
+</ (1—s)" lga=2¢ ds+/ )T 1Saq262(8)d8) o]y
0

1
+ [ =9t e s)as] ol
0
1
+/ (1 —S)a18p2(aq2)64(s)d3]|v\|§,2}.
0
Similarly, it can be shown that

[ Toully = max?{ sup >P|Tru(t)], sup t2+7=8|DF, Tro(t)|
t€(0,1] t€(0,1]

IN

masc{TT;, Tl )} { / "1 sy tb(s)ds
+(/01(1 5)7 17251 (s) ds+/ 5)7 17T 20y(s )ds> llullx

+ [ 9P sl

+/ 5)P1 572(B—p— 2)54( )ds||u|’g(2}

Then ||v|ly = A||Toully < ||Tou|ly implies that
1
olly < max(TTuTa} | [ (15 h(s)ds
0
+</ (1—5)7"1s7261(s) ds+/ (1— )71 P26y (s )ds)||u||X

+ [0 =97 sl

+ =m0 syl

From Lemma 2.9(i) and above discussions, we see that there exists positive number
M > 0 such that

lullx < My, [Jolly < M.
Hence ||(u,v)|| < M; for all (u,v) € Q.
Choose Q2 = {(u,v) € X x Y :||(u,v)|| < My + 1}. It is easy to find that
(u,v) # AT (u,v) for all (u,v) € 9Q and X € (0,1).

Then Lemma 2.7 implies that there is at least one (u,v) € Q such that (u,v) =
T(u,v). Hence (u,v) is a solution of BVP(3). The proof is completed.
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Theorem 2.2. Suppose that f is a (5, p)— Caratheodory function and g a (o, q)—
Caratheodory function, (C) and (D) hold. Then BVP(3) has at least one solution if

max{Al, A2} max{Hl, Hg} X

(/01(1 5)* 1527 2¢ ds+/ )T lsa_q_262(s)ds) X

( /01(1—3)5185251(5)613+ /0 (1 &P LsP255(5) dS) .

Proof. Consider the set
O ={(u,v) € X XY : (u,v) = AT (u,v) for some X € (0,1)}.

We first prove that €5 is bounded. For (u,v) € £, we see that (u,v) = A\T'(u,v).
Similarly to the proof of Theorem 2.1, we get

|lul|x < max{A1, Az} x

K/l(l— 5)° 15972 ds+/ yo= 18°‘q262(s)d5> olly

+/ yo= 1g(a— 2)p163( )dSHUle—i-/ (1—s)* Lgp2(a—g— 2)64( Ydsl||v||¥
and
[|lv]ly < max{IIy, Iy} X
1
([ sp=r=2apas + [ 1= 97172550505 ullx
0

1
4 [P O dsliul + [ (1 557D )l
0

Since p1, p2 > 1, from Lemma 2.9(ii), we know that there exists a constant My > 0
such that ||u||x < My and ||v||y > Ms. Hence ||(u,v)|| > Ma for all (u,v) € ;.
Choose ) = {(u,v) eX XY :||(u,v)|] < %Mg} It is easy to find that

(u,v) # AT (u,v) for all (u,v) € 9Q and X € (0,1).

Then Lemma 2.7 implies that there is at least one (u,v) € € such that (u,v) =
T'(u,v). Hence (u,v) is a solution of BVP(3). The proof is completed.

Corollary 2.1. Suppose that
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(A1) there exist nonnegative functions a € L*(0,1) and €;(i = 1,2) such that
(., p)] < alt) + ezl + e(®)]y,0 < prop2 < 1,
(B1) there exist nonnegative functions b € L*(0,1) and &;(i = 1,2) such that

lg(t, @, y)| < b(t) + 1) |2|7* + 02(8)[y|?,0 < 01,00 < 1.

Then BVP(3) has at least one solution.
Proof. 1t follows from Theorem 2.1 and the proof is omitted.

Corollary 2.2. Suppose that

(C1) there exist nonnegative functions €;(i = 1,2) such that

]f(t,x,y)] < El(t)’x‘pl + 62(t)|y‘p271017p2 > 17

(D1) there exist nonnegative function 6;(i = 1,2) such that

|9(t, 2, y)| < 01(8) ]| + 02(0)[y|7*, 01, 00 > 1.

Then BVP(3) has at least one solution.
Proof. Tt follows from Theorem 2.2 and the proof is omitted.

3. AN EXAMPLE

In this section, we give an example to illustrate Theorem 2.1.

Example 3.1. Consider the three-point boundary value problem of the form

ey

u(1) =0,
(1) =0,
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where p;,0; € (0,1)(i = 1,2) and a1, az are constants different from 0.
Corresponding to BVP(1), we have a = %,/6’ = %, p=q= %, pL=p2 =01 =
o0 =0,k==1=0and

9 4
f(t,x,y):a1+)\t_%x+)\ty+ (t_3> (wé—i-y%),
and

_1 2 6 1 1
g(t,x,y) = ag + pt™ 4z + pty + t—5 (;pz +y2>'

It is easy to see that
f (t,t§—2x,t§—flo—2y) - f (t,t_%m,t_lloy)

T 3 2\ r_s 1 _7 1
= a1+ At 10x+/\t10y+ t—g {t woxr2 +t 20y2},

3.9 3 1 _4 _3 2 2\ _
g(t,tZ x,t27 10 y) az + pt dx + ptsy + tfg [t
5710 2> 10

By computation, we know that

So fis a (7 L ) —Caratheodory function and g (3 L ) —Caratheodory function.

A = LEIRT A =Rt 2
b (o)l —kno=2  T(3/2)
A, = Dlo—@U+ ko) + 11— k" (e — Dl (a—g 1)
P(a—q)(a—1(a—q—1)[1 - ko2
9
~ 50(17/5)
o oo LHHE e ke o
L(B)[1 — 1&72] I'(3/2)’
m — L-p0+ 7Y + 1 1P 2B - )T (B—p—1)
LB —p)(B—-1L(B—p—1)]1 - 1772
7
T AT(13/10)

Then Theorem 2.1 implies that BVP(18) has at least one solution if

[F(Z;Q)]Z (/\/01(1 - s)%s*%ds + )x/ol(l - s)ésgds> X
<,u/01(1 - s)%s_%ods —i—u/ol(l — s)gségd3> <1
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