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1. Introduction and Definitions

Let f(z) =
∑∞

n=0 anz
n be an entire function. Then M(r, f) = max|z|=r |f(z)|

and µ(r, f) = maxn |an|rn are respectively called the maximum modulus and maxi-
mum term of f(z) on |z| = r.

Following Sato [5], we write log[0]x = x, exp[0]x = x and for positive integer
m ≥ 1, let log[m]x = log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

The numbers ρf and λf defined by

ρf = lim sup
r→∞

log[2]M(r, f)

log r

and

λf = lim inf
r→∞

log[2]M(r, f)

log r

are respectively called the order and the lower order of f(z).
A simple but useful relation between M(r, f) and µ(r, f) is the following theorem.
Theorem 1. [7] For 0 ≤ r < R,

µ(r, f) ≤M(r, f) ≤ R

R− r
µ(R, f).

Taking R = 2r, for all sufficiently large values of r,

µ(r, f) ≤M(r, f) ≤ 2µ(2r, f). (1)
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Taking two times logarithms in (1) it is easy to verify that

ρf = lim sup
r→∞

log[2] µ(r, f)

log r

and

λf = lim inf
r→∞

log[2] µ(r, f)

log r
.

According to Lahiri and Banerjee [3] if f(z) and g(z) be entire functions then the
iteration of f with respect to g is defined as follows:

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

.... .... ....

fn(z) = f(g(f........(f(z) or g(z))........)),

according as n is odd or even,

and so

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

g3(z) = g(f2(z)) = g(f(g(z)))

.... ....

gn(z) = g(fn−1(z)) = g(f(gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.
Definition 1. [6] Let g(z) be an entire function of finite lower order λg. A

function λg(r) is called a lower proximate order of g(z) relative to µ(r, g) if
(i) λg(r) is real, continuous and piecewise differentiable for all sufficiently

large values of r,
(ii) limr→∞ λg(r) = λg,

(iii) limr→∞ r log rλ
′
g(r) = 0,

and (iv) lim infr→∞
log µ(r,g)

rλg(r)
= 1.

Proposition 1. [4] For δ(> 0) the function rλg+δ−λg(r) is an increasing func-
tion of r.

In this paper we study growth properties of the maximum term of iterated entire
functions as compared to the growth of the maximum term of the related function

210



R. Dutta - Growth of iterated entire functions in terms of its maximum term

to generalisc some earlier results. Throughout the paper we denote by f(z), g(z)
etc. non-constant entire functions of order (lower order) ρf (λf ), ρg(λg) etc. We do
not explain the standard notations and definitions of the theory of entire functions
as those are available in [2], [8], [9].

2. Lemmas

The following lemmas will be needed in the sequel.
Lemma 1. [1] If f and g are any two entire functions, for all sufficiently large

values of r,

M

(
1

8
M
(r

2
, g
)
− |g(0)|, f

)
≤M(r, fog) ≤M(M(r, g), f)

Lemma 2. If λg be finite, then

lim inf
r→∞

logM(r, g)

logµ(r, g)
≤ 2λg .

The proof of the lemma is an immediate consequence of Theorem 2.16 of Lahiri
and Sharma [4] but still for the sake of completeness we give the proof in details.

Proof of Lemma 2. From Definition 1,

lim inf
r→∞

logµ(r, g)

rλg(r)
= 1.

So, for given ε(0 < ε < 1) it follows that

logµ(r, g) < (1 + ε)rλg(r) (2)

for a sequence of values of r tending to infinity.
Therefore, for a sequence of values of r tending to infinity, we get from (1)

logM(r, g) ≤ log 2µ(2r, g)

≤ log 2 + (1 + ε)(2r)λg(2r), using (2)

= log 2 + (1 + ε)
(2r)λg+δ

(2r)λg+δ−λg(2r)
,

where δ(> 0) is arbitrary.
Now by Proposition 1, it follows that for a sequence of values of r tending to

infinity

logM(r, g) < log 2 + (1 + ε)
(2r)λg+δ

rλg+δ−λg(r)

= log 2 + (1 + ε)2λg+δrλg(r).
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Again since lim infr→∞
log µ(r,g)

rλg(r)
= 1, for all sufficiently large values of r

(1− ε)rλg(r) < logµ(r, g).

Thus for a sequence of values of r tending to infinity, we have

logM(r, g) ≤ log 2 +
1 + ε

1− ε
2λg+δ logµ(r, g).

Since ε, δ > 0 be arbitrary, we have

lim inf
r→∞

logM(r, g)

logµ(r, g)
≤ 2λg .

This proves the lemma.
Lemma 3. If ρf and ρg are finite, then for any ε > 0,

log[n] µ(r, fn) ≤
{

(ρf + ε) logM(r, g) +O(1) when n is even

(ρg + ε) logM(r, f) +O(1) when n is odd

for all sufficiently large values of r.
Proof. First suppose that n is even. Then in view of (1) and by Lemma 1 it

follows that for all sufficiently large values of r,

µ(r, fn) ≤ M(r, fn)

≤ M(M(r, gn−1), f)

i.e., log µ(r, fn) ≤ logM(M(r, gn−1), f)

≤ [M(r, gn−1)]
ρf+ε.

So, log[2] µ(r, fn) ≤ (ρf + ε) logM(r, g(fn−2))

≤ (ρf + ε)[M(r, fn−2)]
ρg+ε.

i.e., log[3] µ(r, fn) ≤ (ρg + ε) logM(r, fn−2) +O(1).

.... .... .... ....

.... .... .... ....

Therefore log[n] µ(r, fn) ≤ (ρf + ε) logM(r, g) +O(1).

Similarly if n is odd then for all sufficiently large values of r

log[n] µ(r, fn) ≤ (ρg + ε) logM(r, f) +O(1).

This proves the lemma.
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Lemma 4. If λf , λg are non-zero finite, then

log[n] µ(r, fn) >

{
(λf − ε) logM(r, g) +O(1) when n is even
(λg − ε) logM(r, f) +O(1) when n is odd.

Proof. First suppose that n is even. Let ε(> 0) be such that ε < min{λf ,
λg}. Now we have from {[7], p-113} for all sufficiently large values of r,

µ(r, fog) > e[M(r,g)]
λf−ε

.

So, logµ(r, fog) > [M(r, g)]λf−ε. (3)

Now

logµ(r, fn) = log µ(r, f(gn−1))

> [M(r, gn−1)]
λf−ε using (3)

≥ [µ(r, gn−1)]
λf−ε from (1).

log[2] µ(r, fn) > (λf − ε) logµ(r, g(fn−2))

> (λf − ε)[M(r, fn−2)]
λg−ε using (3).

log[3] µ(r, fn) > (λg − ε) log[µ(r, fn−2)] +O(1)

> (λg − ε)[M(r, gn−3)]
λf−ε +O(1).

Taking repeated logarithms

log[n−1]µ(r, fn) ≥ (λg − ε)[M(r, g)]λf−ε +O(1).

log[n] µ(r, fn) ≥ (λf − ε) logM(r, g) +O(1).

Similarly,

log[n] µ(r, fn) ≥ (λg − ε) logM(r, f) +O(1) when n is odd.

This proves the lemma.

3. Theorems

Theorem 2. If ρf and ρg are finite, then

lim inf
r→∞

log[n] µ(r, fn)

logµ(r, g)
≤ ρf2λg

when n is even.
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Proof. We have from Lemma 3 for all sufficiently large values of r,

log[n] µ(r, fn) ≤ (ρf + ε) logM(r, g) +O(1).

lim inf
r→∞

log[n] µ(r, fn)

logµ(r, g)
≤ (ρf + ε) lim inf

r→∞

logM(r, g)

logµ(r, g)
.

Since ε > 0 is arbitrary, we get from Lemma 2,

lim inf
r→∞

log[n] µ(r, fn)

logµ(r, g)
≤ ρf2λg .

This proves the theorem.
Theorem 3. Under the assumptions of Theorem 2 if n is odd then

lim inf
r→∞

log[n] µ(r, fn)

logµ(r, f)
≤ ρg2λf .

Theorem 4. Let f(z) and g(z) be entire functions of finite order with ρg < λf
and n is even then

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, f)
= 0.

Proof. When n is even then we have from Lemma 3 for all sufficiently large
values of r,

log[n] µ(r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

≤ (ρf + ε)rρg+ε+O(1). (4)

Also from definition of lower order we have for r ≥ r0,

logµ(r, f) ≥ rλf−ε. (5)

So from (4) and (5) we get for r ≥ r0,

log[n] µ(r, fn)

logµ(r, f)
≤

(ρf + ε)rρg+ε+O(1)

rλf−ε
.

Since λf > ρg, we can choose ε > 0 such that λf − ε > ρg + ε then

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, f)
= 0.

This proves the theorem.
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Note 1. If we take ρg < ρf in Theorem 4, the result is still valid.
Theorem 5. Let f(z) and g(z) be entire functions of finite order with ρf < λg

and n is odd then

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, g)
= 0.

Theorem 6. Let f(z) and g(z) be entire functions of finite order with λg > ρf
and n is even then

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, f)
=∞.

Proof. When n is even then from Lemma 4 we have for all sufficiently large
values of r and 0 < ε < min{λf ,λg},

log[n] µ(r, fn) > (λf−ε) logM(r, g) +O(1)

≥ (λf−ε)rλg−ε +O(1). (6)

Also for all sufficiently large values of r,

logµ(r, f) ≤ rρf+ε. (7)

Therefore from (6) and (7) we get for r ≥ r0,

log[n] µ(r, fn)

logµ(r, f)
≥

(λf − ε)rλg−ε+O(1)

rρf+ε
.

Since λg > ρf , we can choose ε > 0 such that λg − ε > ρf + ε,

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, f)
=∞.

This proves the theorem.
Theorem 7. Let f(z) and g(z) be entire functions of finite order with λf > ρg

and n is odd then

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, g)
=∞.

Theorem 8. Let f(z) and g(z) be transcendental entire functions of non zero
finite order then

lim sup
r→∞

log[n] µ(r, fn)

log[2]µ(r, f)
=∞ = lim sup

r→∞

log[n] µ(r, fn)

log[2]µ(r, g)
.
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Proof. First we consider n is even then from (6) we have for sufficiently large
values of r,

log[n] µ(r, fn) > (λf−ε)rλg−ε +O(1) (8)

where 0 < ε < min{λf ,λg} and from (7)

log[2] µ(r, f) ≤ (ρf + ε) log r. (9)

So from (8) and (9) we get,

log[n] µ(r, fn)

log[2]µ(r, f)
≥

(λf−ε)rλg−ε +O(1)

(ρf + ε) log r
.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)

log[2]µ(r, f)
=∞.

Also when n is odd then from Lemma 4 we have for sufficiently large values of r and
0 < ε < min{λf ,λg},

log[n] µ(r, fn) > (λg−ε) logµ(r, f) +O(1)

≥ (λg−ε)rλf−ε +O(1). (10)

So from (9) and (10) we get,

log[n] µ(r, fn)

log[2]µ(r, f)
≥ (λg−ε)rλf−ε +O(1)

(ρf + ε) log r
.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)

log[2]µ(r, f)
=∞.

Similarly we have

lim sup
r→∞

log[n] µ(r, fn)

log[2]µ(r, g)
=∞.

This proves the theorem.
Note 2. If we take one more logarithm of the numerator then the expression

in Theorem 8 is finite. Thus we shall prove this theorem.
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Theorem 9. Let f(z) and g(z) be transcendental entire functions of finite order
then

(i) lim sup
r→∞

log[n+1] µ(r, fn)

log[2]µ(r, g)
≤

ρg
λg
, when n is even and λg > 0,

(ii) lim sup
r→∞

log[n+1] µ(r, fn)

log[2]µ(r, f)
≤

ρf
λf
, when n is odd and λf > 0.

Proof. First we consider n is even then from Lemma 3 we have for sufficiently
large values of r,

log[n+1] µ(r, fn) ≤ log[2]M(r, g) +O(1)

≤ (ρg + ε) log r +O(1). (11)

Also we have for r ≥ r0 and 0 < ε < λg,

log[2] µ(r, f) ≥ (λg − ε) log r. (12)

Therefore from (11) and (12) we get for r ≥ r0 and 0 < ε < λg,

log[n] µ(r, fn)

logµ(r, f)
≤

(ρg + ε) log r+O(1)

(λg − ε) log r
.

Since ε > 0 is arbitrary,

lim sup
r→∞

log[n] µ(r, fn)

logµ(r, f)
≤
ρg
λg
.

Similarly for odd n we get second part of the theorem.
This proves the theorem.

Theorem 10. If f, g and h are three non constant entire functions of finite
order and ρf < λh, then

lim
r→∞

log[n−2] µ(r, fn)

log[n−2] µ(r, hn)
= 0

for n is even and hn(z) = h(g(h........(h( g(z))........)).
Proof. When n is even then from Lemma 3 we have for all large values of r,

log[n] µ(r, fn) ≤ (ρf + 2ε) logM(r, g)

≤ log[M(r, g)]ρf+2ε.
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Therefore
log[n−2] µ(r, fn) ≤ e[M(r,g)]

ρf+2ε
. (13)

Also from Lemma 4 we have for sufficiently large values of r and 0 < ε < 1
4(λh−ρf ),

log[n−2] µ(r, hn) > e[M(r,g)]λh−2ε

. (14)

So from (13) and (14) we obtain,

log[n−2] µ(r, fn)

log[n−2] µ(r, hn)
≤ e[M(r,g)]

ρf+2ε

e[M(r,g)]λh−2ε

≤ 1

e[M(r,g)]λh−2ε−[M(r,g)]
ρf+2ε .

Since 0 < ε < 1
4(λh − ρf ) is arbitrary and g is non constant,

lim
r→∞

log[n−2] µ(r, fn)

log[n−2] µ(r, hn)
= 0.

This proves the theorem.
Theorem 11. If f, g and h are three entire functions with non zero lower order

and finite order also ρh < λg then

lim
r→∞

log[n] µ(r, fn)

log[n] µ(r, f ′n)
=∞

for n is even and f
′
n(z) = f(h(f........(f(h(z))........)).

Proof. When n is even then from Lemma 3 we have for r > r0,

log[n] µ(r, f
′
n) ≤(ρf + ε)rρh+ε. (15)

Hence from (6) and (15) we have for sufficiently large values of r and 0 < ε <
min{λf ,λh},

log[n] µ(r, fn)

log[n] µ(r, f ′n)
≥

(λf−ε)rλg−ε +O(1)

(ρf + ε)rρh+ε +O(1)
.

Since ρh < λg, we can choose ε > 0 such that ρh + ε < λg − ε,

lim
r→∞

log[n] µ(r, fn)

log[n] µ(r, f ′n)
=∞

This proves the theorem.
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