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THE STUDY OF CARTAN SPACE WITH RANDERS METRIC
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Abstract. In this paper, we study the Cartan space with some (α, β) metrics,
in particular Randers metric admitting h-metrical d-connection. Further, we show
that the condition for Cartan space with Randers metric to be locally Minkowski
and Conformally flat.

2000 Mathematics Subject Classification: 53B40, 53C60

1. Introduction

In 1993, E. Cartan originally introduced a Cartan space, which is considered as a
dual of Finsler space [1]. H. Rund [4], F. Brickell [2] and others studied the relation
between these two spaces. R. Miron ([10], [11]), introduced the theory of Hamilton
space and proved that Cartan space is a particular case of Hamilton space. T.
Igrashi ([18], [19]), introduced the notion of the (α, β)-metric in Cartan space and
obtained the metric tensor and the invariants ρ and r, which characterize the special
classes of Cartan spaces with (α, β)-metric. H.G. Nagaraja [5] studied the h-metrical
d-connection on Cartan space with (α, β)-metric.

The concept of Randers metric was proposed by physicist G. Randers in 1941
from the stand point of general relativity [3]. Many Finslerian geometers have made
efforts in investigating the geometric properties of Randers metric.

M. S. Knebelman [8] initiated the conformal theory of Finsler spaces in 1929.
Several authors including S. K. Narasimhamurthy [13] discussed conformal transfor-
mations on special Finsler spaces. P. N. Pandey [9] studied the groups of conformal
transformations in conformally related Finsler spaces. M. Matsumoto [6] determined
the condition for conformally flatness of Randers metric. In this paper, we consider
particular Cartan space with (α, β)-metric, i.e., Randers metric K = α+β admitting
a h-metrical d-connection.
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2.Preliminaries

Let M be a real smooth manifold and (T ∗M,Π,M), its cotangent bundle. A
Cartan structure onM is a functionK : T ∗M → [0,∞) with the following properties:
1. K is C∞ on T ∗M/0 for 0 = {(x, 0), x ∈M},
2. K(x, λp) = λK(x, p) for all λ > 0,
3. The n× n matrix (gij) is positive definite at all points of T ∗M/0 ,
where gij(x, p) = 1

2∂
i∂jK2(x, p). We note that infact K(x, p) > 0, whenever p 6= 0.

Definition 1 The pair (M,K) = Cn is called Cartan space.

Example 1 [12] Let (γij(x)) be the matrix of the local coefficients of a Riemman-

nian metric on M and γij(x), its inverse. Then K(x, p) =
√
γij(x)pipj gives a

Cartan structure. Thus any Riemannian manifold can be regarded as a Cartan
space .

A Cartan space Cn = (M,K) is said to be with (α, β)-metric if K(x, p) is a function

of the variable α(x, p) = (aijpipj)
1
2 and β(x, p) = bi(x)pi, where aij is a Riemannian

metric and bi(x) is a vector field depending only on x. Clearly K must satisfy the
conditions imposed on the fundamental function of a Cartan space. The fundamental
tensor gij(x, p) and its reciprocal gij(x, p) of the Cartan space Cn = (M,K(α, β))
are given by the relation

gij = ρaij + ρ0b
ibj + ρ−1(b

ipj + bjpi) + ρ−2p
ipj , (1)

where ρ, ρ0, ρ−1, ρ−2 are invariants given by
ρ = 1

2α
−1Kα, ρ−1 = 1

2α
−1Kαβ, ρ−2 = 1

2α
−2(Kαα − α−1Kα), ρ0 = 1

2Kββ

and
gij = σaij + σ0bibj + σ−1(bipj + bjpi) + σ−2pipj , (2)

where σ = 1
ρ , τ = σ + σ0B

2 + ρ−1β, σ0 = ρ0
ρτ , σ−1 = ρ−1

ρτ , σ−2 = ρ−2

ρτ

and B2 = bibi.
The Cartan tensor Cijk is given by

Cijk = −1

2
[r−1b

ibjbk + {ρ−1aijbk + ρ−2a
ijpk + r−2b

ibjpk (3)

+ r−3b
ipjpk + (i/j/k)}+ r−4p

ipjpk],

where r−1 = 1
2Kβββ, r−2 = 1

2α
−1Kαββ , r−3 = 1

2α
−2(Kααβ − α−1Kαβ),

r−4 = 1
2α
−3{Kααα − 3α−1Kαα + 3α−2Kα}.

and (i/j/k) represent cyclic sum in the indices i, j, k.
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Let ′ : ′ denote the covariant differentiation with respect to Christoffel symbols
γijk constructed from aij . Since aij:k = 0 and pi:k = 0, if bi:k = 0, then gij:k = 0. Using

the Christoffel symbols H i
jk = 1

2g
ir(δjgrk + δkgjr − δrgjk) constructed from gij(x, p),

we can define canonical N-connection.

Nij = Γkijpk −
1

2
Γkhrpkp

r∂̇hgij , (4)

where Γijk(p) = 1
2g
ir(∂jgrk + ∂kgjr − ∂rgjk).

We consider the canonical d-connection

DΓ = (Njk, H
i
jk, C

jk
i ). (5)

The d-connection field of type (2, 1), Cjki is given by

Cjki = −1

2
gir∂̇

rgjk = girC
rjk. (6)

We denote ′|k ′ be the h-covariant differentiation with respect to DΓ.

Definition 2 [5] A d-connection DΓ of a Cartan space Cn with (α, β)-metric is
called the h-metrical d-connection if it satisfies the conditions
(i) h-deflection Dij(= pi|j)=0,

(ii) αij|k = 0,

(iii) gij|k = 0.

3.Cartan space with Randers metric admitting h-metrical
d-connection

Let Cn = (M,K(α, β)) be an n-dimensional Cartan space with the metric K =

α+ β where α = (aijpipj)
1
2 is a Riemannian metric and β = bi(x)pi is a differential

1-form. The angular metric tensor is given by

hij = K

(
aij

α
− P iP j

α3

)
.

The fundamental tensor gij(x, p) and its reciprocal gij(x, p) of the Cartan space
Cn = (M,K(α, β)) are as follows

gij = hij + kikj , (7)

where ki = ∂̇iK = bi + P i

α .

gij =
α

α+ β

(
aij −

1

α+ 2β +B2

(
αbibj − bipj − bjpi +

β

α2
pipj

))
. (8)
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Proposition 1 [17] The Cartan spaces with Rander’s metric is C-reducible.

The Cartan tensor is given by

Cijk = hijAk + hjkAi + hkiAj , (9)

where Ai = 1
2K (bi − β

α2P
i).

Contracting gjk on both sides of the above equation, we have

Ci = gjkC
ijk = (n+ 1)Ai.

By means of (9), which implies

Cijk =
1

n+ 1
(hijCk + hjkCi + hkiCj).

Theorem 1 A Cartan space Cn with Randers metric admitting a h-metrical d-
connection is locally flat if and only if the associated Riemannian space is locally
flat.

Proof. If the connection DΓ is h-metrical, then α|h = 0, from which, we get

0 = K|h = α|h + β|h = β|h (10)

and
β|h = bi|hpi = 0, (11)

which yields bi|h = 0.

Now from aij|h = 0, we get H i
jk = γijk. Hence we have

bi:k = 0, (12)

and also the curvature tensor Di
hjk of DΓ coincides with the curvature tensor Rihjk

of Riemmanian connection RΓ = (γijk, γ
i
jkyi, 0).

If Rihjk = 0, then Di
hjk = 0.

Definition 3 [5] A Cartan space Cn is a Berwald space if and only if Cijk|h = 0.

Theorem 2 A Cartan space with Randers metric admitting h-metrical d-connection
is a Berwald space.
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Proof. The connection DΓ is h-metrical, then gij|h = 0, α|h = 0, aij|h = 0, bk|h =

0, pk|h = 0.

Hence, from (7), (8) and (9), we have

Cijk|h = 0. (13)

It is well known that [15] a locally Minkowski space is a Berwald space in which
the curvature tensor vanishes. Hence, from the above theorem we have

Theorem 3 A Cartan space with Randers metric K = α+β admitting h-metrical d-
connection is locally Minkowski if and only if associated Riemannian space is locally
flat.

4.Conformal change of a Cartan space with Randers metric

Let Cn = (M,K) be an n-dimensional Cartan space with Randers metricK(α, β) =
α + β. By conformal change σ : K → K̄ : K̄(ᾱ, β̄) = eσK(α, β), we have another
Cartan space C̄n = (M, K̄), where ᾱ = eσα and β̄ = eσβ.

Under Conformal change and putting α = (aij(x)pipj)
1
2 and β = bi(x)pi, we

have the following quantities [12] :

āij = e2σaij , b̄i = eσbi, ḡij = e2σgij , ḡij = e−2σgij , h̄
ij = e2σhij , C̄ijk = e2σCijk, C̄i = Ci.

By the Proposition 1, we state that

Theorem 4 Under conformal transformation C-reducible property preserves in Car-
tan space with Randers metric.

Theorem 5 In a Cartan space with Randers metric, there exist conformally invari-
ant symmetric linear connection Di

jk.

Proof. The Christoffel symbols γ̄ijk constructed from āij are written as

γ̄ijk = γijk +Bi
jk, (14)

where Bi
jk = δijσk + δikσj − σiajk and σi = aijσj .

Taking covariant derivative of b̄i with respect to γ̄ijk, we get

b̄i:k = eσ(bi:k + 2σkb
i + brσrδ

i
k − σibrark). (15)

Transvecting above by b̄k and putting

M i =
1

B2
{bkbi:k −

br:rb
i

n+ 4
}, (16)
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we have
σi = M̄ i −M i, (17)

from which, we get σi = M̄i −Mi. Using (14) and putting

Di
hj = γihj + δihMj + δijMh −M iahj ,

we have
D̄i
hj = Di

hj . (18)

Di
hj is a symmetric conformally invariant linear connection on M .

Theorem 6 In a Cartan space Cn with Randers metric admits h-metrical d-connection
M i = 0 and there exist a conformally invariant symetric linear connection Di

jk such

that Di
jk = γijk and its curvature tensor Di

hjk = Rihjk.

Proof. we denote by Di
hjk the curvature tensor Di

jk, we have from (18)

D̄i
hjk = Di

hjk. (19)

Since bi:k = 0, we have M i = 0. Hence Di
jk = γijk and Di

hjk = Rihjk.

Theorem 7 The Cartan space Cn with Randers metric is conformally flat if and
only if the conditions Di

hjk = 0, (20) and (21) are satisfied.

Proof. The Cartan space C̄n with Randers metric K̄ is locally Minkowski, then
we have R̄ihjk = 0 and b̄j:k = 0.

From the Theorm (6), we have M̄ i = 0 and D̄i
hjk = R̄ihjk. Thus (17) yields

σi = M i, the covariant vector field M i is locally gradient

M i
:k = Mk

:i (20)

and we have from (15)

bi:k = 2Mkb
i + brMrδ

i
k −M ibrark. (21)

Conversely, suppose that Cn has the gradient vector M i = σi satisfying (15). If
we consider the conformal Cartan space C̄n, then from (17), we get M̄ i = 0, which
yields D̄i

jk = γ̄ijk and D̄i
hjk = R̄ihjk.

Hence, R̄ihjk = 0 follows from (18). Using the condition (21), we have from (15)

that b̄j:k = 0.
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Theorem 8 A Cartan space Cn = (M,K) with K = α + β admitting h-metrical
d-connection is conformally flat if and only if associated Riemannian space is locally
flat.

Proof. The associate Riemannian space (M,α) is locally flat (Rihjk = 0), then

from (19) and Theorem (5), we have D̄i
hjk = 0, that is, the space Cn is conformally

flat.
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