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1. Introduction

In their original 1964 paper [5], Eells and Sampson proposed an infinite-dimensio-
nal Morse theory on the manifold of smooth maps between Riemannian manifolds.
Though their main results concern the Dirichlet energy, they also suggested other
functionals. The interest encountered by harmonic maps, and to a lesser extent by
p-harmonic maps, has overshadowed the study of other possibilities, e.g. exponential
harmonicity . While the examples mentioned so far are all of first-order functionals,
one can investigate problems involving higher-order functionals. A prime example of
these is the bienergy, not only for the role it plays in elasticity and hydrodynamics,
but also because it can be seen as the next stage of investigation, should the theory
of harmonic maps fail.

Harmonic maps f : (M, g) −→ (N,h) between manifolds are the critical points
of the energy

E (f) =
1
2

∫
M

e (f) vg, (1.1)

where vg is the volume form on (M, g) and

e (f) (x) :=
1
2
‖df (x)‖2

T ∗M⊗f−1TN

is the energy density of f at the point x ∈ M .
Critical points of the energy functional are called harmonic maps.
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The first variational formula of the energy gives the following characterization of
harmonic maps: the map f is harmonic if and only if its tension field τ (f) vanishes
identically, where the tension field is given by

τ (f) = trace∇df. (1.2)

As suggested by Eells and Sampson in [5], we can define the bienergy of a map
f by

E2 (f) =
1
2

∫
M
‖τ (f)‖2 vg, (1.3)

and say that is biharmonic if it is a critical point of the bienergy.
Jiang derived the first and the second variation formula for the bienergy in [8,9],

showing that the Euler–Lagrange equation associated to E2 is

τ2 (f) = −J f (τ (f)) = −∆τ (f)− traceRN (df, τ (f)) df (1.4)
= 0,

where J f is the Jacobi operator of f . The equation τ2 (f) = 0 is called the bihar-
monic equation. Since J f is linear, any harmonic map is biharmonic. Therefore, we
are interested in proper biharmonic maps, that is non-harmonic biharmonic maps.

In this paper, we study timelike biharmonic curves according to flat metric in
the Lorentzian Heisenberg group Heis3. We characterize timelike biharmonic curves
in terms of their curvature and torsion.

2.The Lorentzian Heisenberg Group Heis3

The Heisenberg group Heis3 is a Lie group which is diffeomorphic to R3 and the
group operation is defined as

(x, y, z) ∗ (x, y, z) = (x + x, y + y, z + z − xy + xy).

The identity of the group is (0, 0, 0) and the inverse of (x, y, z) is given by
(−x,−y,−z). The left-invariant Lorentz metric on Heis3 is

g = dx2 + (xdy + dz)2 − ((1− x) dy − dz)2.

The following set of left-invariant vector fields forms an orthonormal basis for
the corresponding Lie algebra:{

e1 =
∂

∂x
, e2 =

∂

∂y
+ (1− x)

∂

∂z
, e3 =

∂

∂y
− x

∂

∂z

}
. (2.1)
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The characterising properties of this algebra are the following commutation re-
lations:

[e2, e3] = 0, [e3, e1] = e2 − e3, [e2, e1] = e2 − e3,

with
g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1. (2.2)

Proposition 2.1. For the covariant derivatives of the Levi-Civita connection of
the left-invariant metric g, defined above the following is true:

∇ =

 0 0 0
e2 − e3 −e1 −e1

e2 − e3 −e1 −e1

 , (2.3)

where the (i, j)-element in the table above equals ∇eiej for our basis

{ek, k = 1, 2, 3} = {e1, e2, e3}.

So we obtain that

R(e1, e3) = R(e1, e2) = R(e2, e3) = 0. (2.4)

Then, the Lorentz metric g is flat.

3.Timelike Biharmonic Curves According to Flat Metric in the
Lorentzian Heisenberg Group Heis3

An arbitrary curve γ : I −→ Heis3 is spacelike, timelike or null, if all of its
velocity vectors γ′(s) are, respectively, spacelike, timelike or null, for each s ∈ I ⊂ R.
Let γ : I −→ Heis3 be a unit speed timelike curve and {T,N,B} are Frenet vector
fields, then Frenet formulas are as follows

∇TT = κ1N,

∇TN = κ1T + κ2B, (3.1)
∇TB = −κ2N,

where κ1, κ2 are curvature function and torsion function, respectively.
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With respect to the orthonormal basis {e1, e2, e3} we can write

T = T1e1 + T2e2 + T3e3,

N = N1e1 + N2e2 + N3e3,

B = T×N = B1e1 + B2e2 + B3e3.

Theorem 3.1. If γ : I −→ Heis3 is a unit speed timelike biharmonic curve
according to flat metric, then

κ1 = constant 6= 0,

κ2
1 − κ2

2 = 0, (3.2)
κ2 = constant.

Proof. Using Equation (3.1), we have

τ2(γ) = ∇3
TT− κ1R(T,N)T

= (3κ′1κ1)T + (κ′′1 + κ3
1 − κ1κ

2
2)N + (2κ2κ

′
1 + κ1κ

′
2)B− κ1R(T,N)T.

On the other hand, from Equation (2.4) we get

(3κ′1κ1)T + (κ′′1 + κ3
1 − κ1κ

2
2)N + (2κ2κ

′
1 + κ1κ

′
2)B =0. (3.3)

Since κ1 6= 0 by the assumption that is non-geodesic

κ1 = constant 6= 0,

κ2
1 − κ2

2 = 0, (3.4)
κ′2 = 0.

This completes the proof.

Corollary 3.2. If γ : I −→ Heis3 is a unit speed timelike biharmonic curve,
then γ is a helix.

Theorem 3.3. Let γ : I −→ Heis3 is a unit speed timelike biharmonic curve

230



T. Korpinar, E. Turhan and I.H. Jebril - Timelike biharmonic curves according...

according to flat metric. Then the parametric equations of γ are

x (s) = sinhϕs + `1,

y (s) =
1
κ1

cosh2 ϕ[cosh[
κ1s

coshϕ
+ `] + sinh[

κ1s

coshϕ
+ `]] + `2,

z (s) = −(−1 + `1 + sinhϕs) cosh ϕ

κ1
cosh[

κ1s

coshϕ
+ `] (3.5)

+
cosh2 ϕ sinhϕ

κ2
1

[sinh[
κ1s

coshϕ
+ `] + cosh[

κ1s

coshϕ
+ `]]

−coshϕ (sinhϕs + `1)
κ1

sinh[
κ1s

coshϕ
+ `]] + `3,

where `, `1, `2, `3 are constants of integration.

Proof. Since γ is timelike biharmonic, γ is a timelike helix. So, without loss of
generality, we take the axis of γ is parallel to the spacelike vector e1. Then,

g (T, e1) = T1 = sinh ϕ, (3.6)

where ϕ is constant angle.
The tangent vector can be written in the following form

T = T1e1 + T2e2 + T3e3. (3.7)

On the other hand, the tangent vector T is a unit timelike vector, we get

T2 = coshϕ sinhΩ, (3.8)
T3 = coshϕ coshΩ,

where Ω is an arbitrary function of s.
So, substituting the components T1, T2 and T3 in the Equation (3.18), we have

the following equation

T = sinh ϕe1 + coshϕ sinhΩe2 + coshϕ coshΩe3. (3.9)

Using above equation and Frenet equations, we obtain

Ω =
κ1s

coshϕ
+ `, (3.10)

where ` is a constant of integration.
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Thus Equation (3.9) and Equation (3.10), imply

T = sinhϕe1 + coshϕ sinh[
κ1s

coshϕ
+ `]e2 (3.11)

+ cosh ϕ cosh[
κ1s

coshϕ
+ `]e3.

Using Equation (2.1) in Equation (3.11), we obtain

T = (sinhϕ, coshϕ sinh[
κ1s

coshϕ
+ `] + coshϕ cosh[

κ1s

coshϕ
+ `], (3.12)

(1− x) cosh ϕ sinh[
κ1s

coshϕ
+ `]− x coshϕ cosh[

κ1s

coshϕ
+ `]).

Also, from above Equation (3.11), we get

T = (sinhϕ, coshϕ sinh[
κ1s

coshϕ
+ `] + coshϕ cosh[

κ1s

coshϕ
+ `], (3.13)

(1− (sinhϕs + `1)) cosh ϕ sinh[
κ1s

coshϕ
+ `]− (sinhϕs + `1) cosh ϕ cosh[

κ1s

coshϕ
+ `]).

Now Equation (3.13) becomes

dx

ds
= sinhϕ,

dy

ds
= coshϕ sinh[

κ1s

coshϕ
+ `] + coshϕ cosh[

κ1s

coshϕ
+ `],

dz

ds
= (1− (sinhϕs + `1)) cosh ϕ sinh[

κ1s

coshϕ
+ `]

− (sinhϕs + `1) cosh ϕ cosh[
κ1s

coshϕ
+ `].

If we take integrate above system we have Equation (3.5). The proof is com-
pleted.
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