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SEQUENTIAL AND MAPREDUCE-BASED ALGORITHMS FOR
CONSTRUCTING AN IN-PLACE MULTIDIMENSIONAL
QUAD-TREE INDEX FOR ANSWERING FIXED-RADIUS

NEAREST NEIGHBOR QUERIES

Mugurel Ionuţ Andreica, Nicolae Ţăpuş

Abstract. Answering fixed-radius nearest neighbor queries constitutes an
important problem in many areas, ranging from geographic systems to similarity
searching in object databases (e.g. image and video databases). The usual ap-
proach in order to efficiently answer such queries is to construct an index. In this
paper we present algorithms for constructing a multidimensional quad-tree index.
We start with well-known sequential algorithms and then adapt them to the MapRe-
duce computation model, in order to be able to handle large amounts of data. In all
the algorithms the objects are indexed in association with quad-tree cells (or nodes)
which they intersect (plus possibly a few other nearby cells). When processing a
query, multiple quad-tree cells may be searched in order to find the answer.

2010 Mathematics Subject Classification:68P05, 68P10, 68P15, 68P20, 68U35,
68W10, 68W15.

1. Introduction

The fixed-radius nearest neighbor problem is defined as follows. Given a set of
objects in a D-dimensional space, a query point P and a distance R, find the closest
object to the point P located at a distance at most equal to R. Usually, the set
of objects is fixed and it requires pre-processing in order to answer multiple queries
in an efficient manner. This problem has applications in many areas. The most
obvious one is in the domain of geographic information systems (GIS). A user may
send his coordinates to a GIS and receive back information about the closest object
of interest (e.g. address, restaurant, etc.) located at a distance at most R from him.
Another application is given by similarity search queries. There are many services
storing data objects (e.g. images, video clips) which can be described by the values
of their features. The set of features forms the feature space. A query point in this
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space specifies a value for each feature and asks for the object whose features are
most similar to those of the query point, but which is not too ”far away” from the
point.

In this paper we present algorithms for constructing a quad-tree-based index for
answering fixed-radius nearest neighbor queries. We start with well-known top-down
sequential algorithms, then we adapt them to a bottom-up approach and, finally,
we provide algorithms based on the MapReduce computation model [1], which can
handle large amounts of data. The rest of this paper is structured as follows. In
Section 2 we define the problem statement clearly. In Section 3 we discuss the
choice of our index data structure. In Section 4 we introduce the main assumptions,
prerequisites and we define the main notations used in the rest of the paper. In
Section 5 we present the sequential top-down and bottom-up indexing algorithms.
In Section 6 we present the MapReduce-based indexing algorithm, which is based
on the bottom-up sequential algorithm presented in Section 5. In Section 7 we
discuss distributed query processing based on the multidimensional quad-tree index
constructed by the presented algorithms. In Section 8 we discuss related work and
in Section 9 we conclude and present future work.

2. Problem Statement

The problem addressed in this paper is the following. We consider N objects
in a D-dimensional space. The objects can be of any type (e.g. points, segments,
polyhedra, unions of simpler objects, etc.), where both N and the total amount of
data representing the objects are very large. We also consider a distance function
over the D-dimensional space (e.g. one of the Lp norms (1 ≤ p ≤ +∞)). We are
interested in efficiently answering the following types of queries: Given a point P in
the D-dimensional space and a distance threshold R, return the object O closest to
P , located at distance at most R from P .

The distance between a point P and an object O is defined in the usual way, as
the distance between P and the closest point Q to P , such that Q ∈ O. We will
assume that a function dist(P,O) which computes the distance between a point P
and an object O is given. We assume a normal distance function, without additive
or multiplicative weights.

3. Choice of the Index Data Structure

Since the number of objects N is large, a brute force approach which, for each
query considers every object, is out of the question. Thus, we need to construct an
index over the objects as part of a preprocessing stage, which will help us efficiently
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answer queries. Many data structures have been proposed in order to solve the fixed-
radius nearest neighbor problem, like R-trees, kd-trees, (multidimensional) quad-
trees, cell-based space division methods, etc. All of the data structures construct a
subdivision of the space, consisting of multiple regions. We will classify the existing
data structures in two categories, according to the relation between their regions
and the objects:

1. the regions (cells) are chosen from a predefined set SR: we can choose any
regions from SR based on the objects’ data, but we cannot use regions outside
of SR within the data structures; examples of data structures from this cat-
egory are (multidimensional) region quad-trees and space divisions into grids
of cells of fixed sizes.

2. the coordinates of the regions depend on the objects’ coordinates; examples of
data structures from this category are R-trees and kd-trees.

Since we want our solution to be based on the MapReduce computation model
(for which strong infrastructure support already exists), we decided to exclude data
structures from the second category. In the MapReduce model the workers do not
interact with each other and we feel that a non-negligible amount of interaction
would be required if we tried to adapt data structures from the second category
to the MapReduce model (because of the need to cluster the objects together).
Note that this was a very early decision and, thus, the rejected alternatives were
not explored any further. It might be possible to adapt the construction of data
structures from the second category to the MapReduce computation model in an
efficient manner [17], but we do not make any such attempts in this paper.

At the same time, we do want our index data structure to adapt to the objects’
space distribution - thus, solutions based on fixed size grids have also been excluded.
We decided that a (multidimensional) quad-tree is the most appropriate solution,
because:

1. the set of potential regions is decoupled from the set of objects.

2. the regions can be chosen at different ”resolutions”, thus adapting to the space
distribution of the objects.

Another requirement was for the data structures to be built in a bottom-up
manner. Most of the data structures we mentioned have top-down construction
algorithms (based on inserting the objects iteratively), but only some of them have
bottom-up construction algorithms.

Our choice of the data structures affects the indexing algorithm to a large degree.
However, other data structures can be used instead of the (multidimensional) region
quad-tree, as long as they have similar properties.
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The considered indexing strategy was as follows: Every object is indexed only
in cells which it intersects (plus, possibly, a few other neaby cells). Then, at query
time, we will have to search multiple cells in order to find the answer (we call this
the ”in-place” indexing, ”out-of-place” searching method).

4. Main Prerequisites, Assumptions and Terms

In this section we describe the main assumptions and prerequisites which will be
considered during the indexing process and at query time. First, we will describe in
more detail what a multidimensional quad-tree is. Each node of the tree has a unique
identifier and corresponds to a finite hyper-rectangular region of the D-dimensional
space, having a pre-specified aspect ratio. To be more precise, let (ar1, . . . , arD−1)
be a set of constant positive values and let (L1, . . . , LD) be the side lengths of a
hyper-rectangle corresponding to any tree node. Then we must have Li/LD = ari

(for 1 ≤ i ≤ D−1). (ar1, . . . , arD−1) are constant parameters of the tree. The same
holds for another constant K ≥ 2, which describe how the regions corresponding to
a node’s sons are computed. Let’s consider the hyper-rectangular region Cell(Q)
corresponding to a node Q (with Q being the node’s identifier). The node has KD

children and their regions are computed as follows: For each dimension i (1 ≤ i ≤ D),
divide the side length of Cell(Q) in dimension i into K equal parts, by drawing K−1
equally-spaced hyper-planes. (K − 1) · D hyper-planes drawn this way divide the
interior of Cell(Q) into KD equal hyper-rectangles, each of them having the same
aspect ratio as Cell(Q). Each of these hyper-rectangles corresponds to a child of Q.
Note that we consider Cell(Q) to contain all the points in its interior.

Each node Q of the tree has an associated level: Level(Q). Level(root) = 1 and
Level(Q 6= root) = Level(Parent(Q)) + 1, where root is the root node of the tree
and Parent(Q) is the parent node of Q (every node except the root has a parent).
In theory, the tree can have an infinite number of nodes. Because of this, we will set
a threshold MaxLevel and we will consider that the nodes at the level MaxLevel
have no children.

Given the identifier Q of a node, the following functions must be computed
efficiently, preferably based only on Q and the constant parameters of the tree (i.e.
(ar1, . . . , arD−1) and K):

• Level(Q): returns the level of the node.

• Parent(Q): returns the identifier of the node’s parent.

• Cell(Q): returns the geometric representation of the hyper-rectangle (cell)
corresponding to the node Q.
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• Children(Q): returns a set consisting of the identifiers of the node’s children
(if any); nodes at level MaxLevel have no children and the result is not defined
for Level(Q) > MaxLevel.

• Neighbors(Q): returns a set consisting of the identifiers of the nodes Q′ such
that Level(Q′) = Level(Q) and Cell(Q′) touches Cell(Q) in at least one point.

Based on these functions, we can define the following extra functions:

• Siblings(Q): returns the set of identifiers of all the nodes Q′ such that Parent(Q′) =
Parent(Q); this function can be implemented as:

– Sibling(root) = {}
– Sibling(Q 6= root) = Children(Parent(Q)) \ {Q}

• ExtNeighbors(Q): returns the set consisting of node Q’s neighbors and sib-
lings; the function can be implemented as: ExtNeighbors(Q) = Neighbors(Q)∪
Siblings(Q).

• Descendants(Q, dlevel): returns the identifiers of all the descendants of Q
located at the level dlevel; the function can be implemented as follows:

– Descendants(Q, dlevel < Level(Q)) = {}
– Descendants(Q, dlevel = Level(Q)) = {Q}
– Descendants(Q, dlevel > Level(Q)) =
∪{Descendants(Q′, dlevel)|Q′ ∈ Children(Q)}

• Ancestor(Q, alevel): returns the ancestor of the node Q located at the level
alevel; we can implement this function as follows:

– Ancestor(Q, alevel > Level(Q)) is not defined

– Ancestor(Q,Level(Q)) = Q

– Ancestor(Q, alevel < Level(Q)) = Ancestor(Parent(Q), alevel)

• Ancestors(Q, alevel): returns the set of ancestor of the node Q located at or
below the level alevel; we can implement this function as follows:

– Ancestors(Q, alevel > Level(Q)) = {}
– Ancestors(Q,Level(Q)) = {Q}
– Ancestors(Q, alevel < Level(Q)) = {Q}∪

Ancestors(Parent(Q), alevel)
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The function Ancestors(Q, alevel) can be extended to Ancestors(S, alevel),
where S is a set of nodes. In this case, Ancestors(S, alevel) returns the union
of the sets Ancestors(Q, alevel) for Q ∈ S.

Using the Z-order (or Morton curve) [19] in order to assign identifiers to the
cells of a multidimensional quad-tree helps us to easily implement all the functions
mentioned above. For simplicity, let’s assume that, in our quad-tree, we have K =
2H . At each level, the cells of the quad-tree form a D-dimensional grid with the
same number of cells in each dimension. The cell located at position (c(1), . . . , c(D))
(c(i) ≥ 0, 1 ≤ i ≤ D) in this grid has an identifier equal to the bit interleaving of
the bit representations of c(1), . . . , c(D) (i.e. we take the first bit of each number,
in order, from 1 to D, then the second bit of each number, in the same order, and
so on), to which we add an encoding of the cell’s level in the tree. The positions of
the level L + 1 children of a cell located at position (c(1), . . . , c(D)) in the grid at
level L will be obtained by appending H bits to each number c(1), . . . , c(D), thus
obtaining 2H·D = KD new positions (from which we can compute the corresponsing
identifiers). Computing the position of a cell from its identifier is also very easy,
by reversing the encoding algorithm. If K is not a power of 2, then we will use
H = dlog2Ke. Other encoding schemes with similar properties are also possible
[19].

Figure 1 presents the positions of the children of the level 2 node (012, 112), when
D = 2 and K = 4. The identifier of the node is (01112.2), while the identifier of the
child (01012, 11012) is (011100112.3).

In our geometric interpretations, we will mainly use the following terms, with
the specified meanings:

• Object: one of the N objects from the object database

• Cell: the region associated to a node from the tree

• Polyhedron: this has the usual meaning; note that a cell is a polyhedron, as
well as the faces and borders of each cell

• Figure: a geometric shape, which may be either an object or a polyhedron

Another set of functions which we require are the following:

• Distance(F, P ): returns the distance between a D-dimensional polyhedron
P and a figure F (P may be degenerate, in the sense that it may be a D′-
dimensional polyhedron, placed in a D-dimensional space, where D′ < D;
think, for instance, of a 2D polygon placed in a 3D-space).

• Cover(F, clevel): returns the set of all the node identifiers Q such that Level(Q) =
clevel and the figure F intersects Cell(Q).
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Figure 1: Positions of the children of the level 2 node (012, 112). We consider D = 2
and K = 4.

The Cover(F, clevel) function can be implemented easily for connected figures
F . One possible implementation is the following. First, we find a point P ∈ F and
compute the identifier Q such that Level(Q) = clevel and P ∈ Cell(Q) (i.e. we
find the cell at level clevel containing the point P ). This can be easily achieved,
by computing the position of this cell in the level clevel grid of cells (we only need
to divide the coordinates of P to the side lengths of the level clevel cells in each
dimension). Then, we will perform a breadth-first search traversal starting from
that cell. We will visit all the level clevel cells starting from Cell(Q) which are
intersected by the figure F (once a cell is visited, we add it to a queue; when we
extract a cell from the queue, we visit all of its non-visited neighbors intersected by
the figure F ). If F is disconnected, we can still use the same algorithm, as long as
we know the coordinates of a point P from each connected component.

Note that, since the Distance function does not include additive distance weights,
we have the equivalence between:

• object O intersects Cell(Q) and

• Distance(O,Cell(Q)) = 0

However, in the algorithms presented in the rest of this paper, we will not nec-
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Figure 2: Inflated covering example.

essarily assume the previous equivalence and we will consider that the intersection
between an object and a cell is computed geometrically.

Based on the Distance function above we can compute the distance between the
cells of two nodes A and B of the tree: Distance(Cell(A), Cell(B)), which is 0 if one
of the cells is included in the other (i.e. if one of the two nodes is an ancestor of the
other one). We will also make use of two other functions, which can be implemented
easily:

• Diameter(F ) which returns the diameter of the figure F , i.e. the largest
distance between any pair of points belonging to F .

• Border(Q): returns a geometric representation of the hyper-rectangle Cell(Q),
but without the points in its interior (i.e. containing only the borders of
Cell(Q)).

Using the functions defined above, we can define a new function: Inflate(F,
ilevel, radius) which returns a set of identifiers of all the nodes at level ilevel whose
cells are at distance at most radius from the geometric figure F . We will refer to
the set of cells of the identifiers from this set as a ”covering”. See Fig. 2 for an
example, where the covered figure (object) F consists of two line segments in 2D.
See also Fig. 3 for an example with two objects.

Actually, we will define a more general function, ExtInflate(F, ilevel, radius,
fraction). This function can be implemented as in Algorithm 1. Then, we can
define Inflate(F, ilevel, radius) = ExtInflate(F, ilevel, radius, 0). The fraction
parameter can be used in order to also include in the covering a cell Cell(Q) if it is
adjacent to a same-level cell Cell(Q′) intersecting the figure F and the distance be-
tween the figure F and Cell(Q) does not exceed fraction·Diameter(Cell(Q′)) (note

138
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Figure 3: Inflated covering example with two objects.

that since all the cells at the same level are identical, we have Diameter(Cell(Q)) =
Diameter(Cell(Q′)). The radius parameter can be used, for instance, as a tolerance
level. Even if the intersection function decides that a figure F does not intersect a
cell Cell(Q), but it is, however, very close to it, we may decide to include Cell(Q)
in the covering. The fraction parameter may be used to insert in the covering cells
which are ”proportionally” close to the figure (where the proportion depends on the
cell’s size, i.e. its diameter). Normally, fraction would be set to a value very close
to 0 (or even 0).

The final assumption is that each of the N objects O has a unique identifier
id(O). This way, we will differentiate between the whole object O (which contains
the object’s geometry and, possibly, other information) and its identifier.

All the functions defined in this section will be used in the following sections,
both at indexing and at query time.

The index consists of a sub-tree T of the complete multidimensional quad-tree.
During the indexing process, each leaf Q of T will have assigned a list Lobj(Q) of
objects which are indexed in association with Q. At the end of the indexing process,
we will compute a list Lid(Q) for each leaf Q, where Lid(Q) = {id(O)|O ∈ Lobj(Q)}.
During our indexing process, we will also use a parameter MinLevel, meaning that
we don’t want to have leaves at a smaller level than MinLevel. Because of this, we
will define the operation SplitAtLevel(Q, slevel), which replaces a leaf Q in T such
that Level(Q) < slevel by its descendants at the level slevel (see Algorithm 2).

We will denote by ChildrenT (Q) the set of identifiers of the nodes of T which
are also children of Q. ChildrenT (Q) is a subset of Children(Q).
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We will associate to each object O a non-negative weight W (O). We provide
guidelines as to how this weight should be chosen. The weight should be proportional
to:

• the size of the object (i.e. the storage space it takes) and/or

• the duration of computing the distance from a query point to the object

For each leaf Q of the tree, we will maintain a value WL(Q) representing the
aggregate weight of the objects associated to Q. We will use an aggregation function
aggf (e.g. aggf = addition). We will use an indexing weight threshold IWT in
order to decide when we need to split a leaf. If the aggregate weight of the objects
associated to a leaf Q exceeds IWT and Level(Q) < MaxLevel, then we will need
to split the leaf.

Algorithm 1 ExtInflate(F, ilevel, radius, fraction)
SCover = Cover(F, ilevel)
Queue Qu {Add all the nodes from SCover into the queue Qu}
for C ∈ SCover do

Qu.enqueue(C)
end for
SNeighbors = {}
while not Qu.isEmpty() do

C = Qu.dequeue()
if C ∈ SCover then

threshold = max{radius, fraction ·Diameter(Cell(C))}
else

threshold = radius
end if
for C ′ ∈ Neighbors(C) do

if (C ′ /∈ SNeighbors) and
(C ′ /∈ SCover) and
(Distance(F,Cell(C ′)) ≤ threshold) then

SNeighbors← SNeighbors ∪ {C ′}
Qu.enqueue(C ′)

end if
end for

end while
return SCover ∪ SNeighbors
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Algorithm 2 SplitAtLevel(Q, slevel)
for Q′ ∈ Descendants(Q, slevel) do

Lid(Q′) = Lid(Q) {Optionally, if needed, we may also set Lobj(Q′) = Lobj(Q)}
Add Q′ as leaf in T

end for
Lobj(Q) = {}
Lid(Q) = {} {Q is now no longer a leaf in T}

5. Sequential ”In-Place” Indexing and ”Out-of-Place” Searching

Every object O is indexed only in a set of cells which it intersects (plus, possibly,
a few other nearby cells). We present both the top-down and the bottom-up methods
of implementing this approach.

5.1. The Top-Down Method

5.1.1. Constructing the Index

We start with a sub-tree T consisting only of the root node and we insert the
objects one at a time, in an arbitrary order. Algorithm 3 describes a recursive
insertion procedure. The initial call is InsertTopDown(root,O, radius, fraction),
where O is the current object and radius and fraction have the same meaning as
in Algorithm 1.

5.1.2. Answering a Query

A query specifies a point P and a distance threshold R. We define Algorithm
6, in which P is an arbitrary polyhedron and R is a threshold (note that a point is
a particular case of polyhedron). The algorithm must be called for the root of the
tree and returns a list of object identifiers from the leaves whose cells are located at
distance at most R from P . Thus, the list of identifiers will contain the identifiers of
all the objects located at distance at most R from the query point P , plus, possibly, a
few others. The closest object with the identifier in this list will be the final answer.

5.2. The Bottom-Up Method

The bottom-up method constructs the tree starting from the leaves. The objects
are still considered sequentially, one at a time. We will store the identifiers of the
leaf nodes of T into a hash table, because we need to be able to efficiently test if
a given node is a leaf of T or not. We denote the set of leaves of T by LeavesT .
Initially, only the root is a leaf.
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Algorithm 3 InsertTopDown(Q,O,Dmax, Frac)
if Q is a leaf in T then

AddObjectToLeaf(Q,O,Dmax, Frac)
else

InsertedChildrenSet = {}
for Q′ ∈ Children(Q) do

if (Distance(O,Cell(Q′) ≤ Dmax) or
(O intersects Cell(Q′)) then

if Q′ /∈ ChildrenT (Q) then
Add Q′ as a child of Q in T

end if
InsertedChildrenSet← InsertedChildrenSet ∪ {Q′}
InsertTopDown(Q′, O,Dmax, Frac)

end if
end for
for Q′ ∈ ChildrenT (Q) do

if O intersects Cell(Q′) then
for Q′′ ∈ Neighbors(Q′) do

if (Q′′ ∈ Children(Q)) and
(Q′′ /∈ InsertedChildrenSet) and
(Distance(O,Cell(Q′′)) ≤ Frac·
Diameter(Cell(Q′))) then

if Q′′ /∈ ChildrenT (Q) then
Add Q′′ as a child of Q in T

end if
InsertedChildrenSet← InsertedChildrenSet ∪ {Q′′}
InsertTopDown(Q′′, O,Dmax, Frac)

end if
end for

end if
end for

end if

Algorithm 4 AddObjectToLeaf(Q,O,Dmax, Frac)
Add O to Lobj(Q)
WL(Q)← aggf(WL(Q),W (O))
if WL(Q) > IWT and Level(Q) < MaxLevel then

SplitLeaf(Q,Dmax, Frac)
end if
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Algorithm 5 SplitLeaf(Q,Dmax, Frac)
if Level(Q) = MaxLevel then

return
end if
for Q′ ∈ Children(Q) do

Lobj(Q′) = {}
WL(Q′) = 0 (we denote by 0 the neutral element for the aggregation function)
for O ∈ Lobj(Q) do

if (O intersectes Cell(Q′)) or (Distance(O,Cell(Q′)) ≤ Dmax) or
(Distance(O,Cell(Q′)) ≤ Frac · Diameter(Cell(Q′)) and Q′ has a same-
level neighbor Q′′ such that O intersects Cell(Q′′)) then

Lobj(Q′)← Lobj(Q′) ∪ {O}
WL(Q′)← aggf(WL(Q′),W (O))

end if
end for
if |Lobj(Q′)| > 0 then

Add Q′ as a child of Q in T
if WL(Q′) > IWT then

SplitLeaf(Q′, Dmax, Frac)
end if

end if
end for{Altenatively, we could first compute EI(O) = ExtInflate(O,Level(Q)+
1, Dmax, Frac) for each object O and only add O to the lists Lobj(Q′) of those
nodes Q′ ∈ (EI(O) ∩ Children(Q))}
Clear Lobj(Q)

Algorithm 6 TopDownQuery(Q,P,R)
if Q is a leaf then

return Lid(Q)
else

result = {}
for Q′ ∈ ChildrenT (Q) do

if P is located inside Cell(Q′) or Distance(Cell(Q′), P ) ≤ R then
result← result ∪ TopDownQuery(Q′, P, R)

end if
end for
return result

end if
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Algorithm 7 BottomUpQuery(T, P,R)
SC = Ancestors(Inflate(P,R, MaxLevel), MinLevel)
result = {}
for Q ∈ SC do

if Q is a leaf in T then
result← result ∪ Lid(Q)

end if
end for
return result

Figure 4: Example of ancestors of an inflated covering.

5.2.1. Constructing the Index

For each object O we first compute the set ExtInflate(O,MaxLevel, radius,
fraction). Then, for each of the nodes Q ∈ (Ancestors(ExtInflate(O, MaxLevel,
radius, fraction),MinLevel)∩ LeavesT ), we call the function AddObjectToLeaf(Q,
O, radius, fraction). Basically, this part is implemented by computing the men-
tioned set first (see Fig. 4) and then, for each node Q in the set, look it up in the
hash table in order to check if it is also a leaf of T .

5.2.2. Answering a Query

A query specifies a point P and the distance threshold R. Then, similarly to
the previous case, we compute the list of object identifiers, this time by calling
BottomUpQuery(root, P,R). Then, as before, the closest object whose identifier is
in this list is returned as the final answer.
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6. ”In-Place” Indexing using MapReduce

The MapReduce computation model is based on the existence of two functions,
Map and Reduce, which are used for processing input data. Let’s assume that the
input data consists of M records. The Map function is called independently for
processing each record (the record to be processed will be its argument), possibly
on separate machines. Each Map function may emit zero, one or more (key, value)
pairs. After the Map stage is over (i.e. all the Map functions finished their exe-
cution), all the emitted (key, value) pairs are sorted and grouped according to the
key (the shuffle stage). Basically, the Shuffle stage computes for each emitted key
Key the list of all its values Lvalues(Key) (multiple equal values are preserved in
the list). Then, for each pair (Key,Lvalues(Key)), the Reduce function is called
(the two input arguments to the Reduce function are the key and its list of val-
ues). Each Reduce function call may emit zero, one or more output values (they
can be anything, not necessarily values from the lists of values associated to the
keys). The output values of all the Reduce function calls constitute the output of
the MapReduce operation.

In this section we describe a chain of 3 MapReduce phases which can construct
the ”in-place” multidimensional quad-tree index.

6.1. Generation of candidate cells

The input to this MapReduce phase is the set of objects and the output is a
set of candidate cells (or nodes). The Map function is presented in Algorithm 8
and the Reduce function is presented in Algorithm 9. The MaxLevel, MinLevel,
radius and fraction parameters must be known by the Mappers and Reducers,
when they are needed (they can be either constant values or given as side inputs,
where needed).

Algorithm 8 IPI −GenCandCells−Map(O)
for Q ∈ Ancestors(ExtInflate(O,MaxLevel, radius, fraction), MinLevel) do

Emit(key = Q, value = W (O))
end for

6.2. Filtering candidate cells

In this sub-section we introduce a generic MapReduce phase for filtering cells.
The side parameter of the Map function is the boolean value ShouldOutputCell,
which will take different values, depending on the set of cells being filtered. Algo-
rithm 10 presents the Map function of this phase and Algorithm 11 presents the
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Algorithm 9 IPI −GenCandCells−Reduce(Q,Lvalues)
AggWeight = 0
for value ∈ Lvalues do

AggWeight← aggf(AggWeight, value)
end for
if AggWeight ≤ IWT or Level(Q) == MaxLevel then

Emit(Q)
end if

Reduce function. The input to the Map function is a candidate cell and the output
of the Reduce function is the set of candidate cells which were kept (the others were
filtered out). The side parameter ShouldOutputCell is set to true in this case. The
main rule used for filtering the candidate cells is also depicted in Fig. 5.

Algorithm 10 FilterCandCells−Map(Q)
if ShouldOutputCell then

Emit (key = Q, value = CandidateCell)
end if
for Q′ ∈ Children(Q) do

Emit(key = Q′, value = NonCandidateCell)
end for

Algorithm 11 FilterCandCells−Reduce(Q,Lvalues)
if Lvalues contains only one value V and V = CandidateCell then

Emit(Q)
end if

6.3. Computing the lists of object ids for the cells

The input to the Mappers of this phase is the set of N objects and the set of
filtered candidate cells. Basically, we perform a MapReduce join between two inputs:

• the set of N objects

• the set of filtered candidate cells

There are many ways of performing the join. The ”standard” MapReduce way
would be to use two Map functions, one for each input, and let the Reducer perform
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Figure 5: The main rule used for filtering candidate cells.

Algorithm 12 IPI − ComputeListObjIds− 1−Map(O)
for Q ∈ (Ancestors(ExtInflate(O,MaxLevel, radius, fraction), MinLevel) do

Emit(key = Q, value = (ObjectCell, id(O)))
end for

Algorithm 13 IPI − ComputeListObjIds− 2−Map(Q)
Emit(key = Q, value = (SelectedCell,−))

Algorithm 14 IPI − ComputeListObjIds− 1−Reduce(Q,Lvalues)
if Lvalues contains at least one pair (ObjectCell, ∗) and one pair
(SelectedCell,−) then

Lid(Q) = {id(O)|(ObjectCell, id(O)) ∈ Lvalues}
Emit((Q,Lid(Q)))

end if
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M. I. Andreica and N. Ţăpuş - Sequential and MapReduce-based algorithms for...

the actual join. Algorithms 12, 13 and 14 present the two Map functions and the
Reduce function of a standard join for this phase.

When the set of filtered cells is not too large, it may be more efficient for each
Mapper to read the whole set of filtered cells in memory and then simply output
only those pairs for which the key exists in the set of filtered cells. Let’s assume that
each Mapper read the set of filtered cells into a variable CC. Algorithms 15 and 16
present the Map and Reduce functions for this case. The inputs for the Mappers
are the N objects - each Map function call processes a different object. Note that
care must be taken when implementing this approach. If the set of filtered cells is
read by each Map function call, then this would be very inefficient. Instead, each
Mapper process or thread should read the set of filtered cells in memory. Each
Mapper will be used for processing multiple Map function calls - thus, the set of
filtered cells will not be read at each Map function call, but rather only once for
each Mapper process/thread (since it is most common for each Mapper to run on a
separate machine, this means that the set of cells will be read once for each machine
used during the Map stage).

Algorithm 15 IPI − ComputeListObjIds−Map(O)
for Q ∈ (Ancestors(ExtInflate(O,MaxLevel, radius, fraction), MinLevel) ∩
CC) do

Emit(key = Q, value = id(O))
end for

Algorithm 16 IPI − ComputeListObjIds−Reduce(Q,Lids)
Lid(Q) = {id(O)|id(O) ∈ Lids}
Emit((Q,Lid(Q)))

7. Distributed Query Processing

When multiple machines are available for answering a query, we can distribute
the index over these machines. From the point of view of a leaf node Q, we may
choose to store its list Lid(Q) on a single machine, or have it distributed over the
whole range of available machines.

When a query is performed, we first compute the set of cells SC which may have
the answer to the query. Then, this set is sent to each machine, which, in turn,
returns a set of candidate object ids for the query (if it stores part of Lid(Q) for
some Q ∈ SC) or doesn’t return anything. After computing the union of the sets of
object ids returned by each machine, each object is retrieved independently and we
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compute the distance from the query point to it. The objects may also be distributed
over the same set of machines (or over another set of machines). Unlike the lists of
object ids, an object is fully stored on a single machine (it wouldn’t make sense to
split an object over multiple machines). A good idea might be to store an object O
together with an inverted index IID(O), consisting of the set of nodes Q for which
id(O) ∈ Lid(Q), on the same machine. An inverted index can be computed easily
[1] from the lists Lid(∗) (considering every list to be a document and every object
id from the list as a token). This distributed query processing model is similar to
the query processing model used by Google [20].

8. Related Work

The fixed-radius nearest neighbor problem has been addressed before in several
research papers (e.g. [2-5]) and many data structures for solving this problem or
related problems have been proposed: R-trees [6, 16], kd-trees [7], quad-trees [8],
fixed-size cell subdivisions [9, 12] and many others [11]. Most of the proposed solu-
tions assume that the index can be constructed in main memory or, at least, can be
stored on the disk of a single machine. Thus, the proposed algorithms are sequential
in nature (see, for instance, [10]).

More recently, parallel and distributed algorithms for constructing indices over
geometrical data have been proposed. In [13], some parts of the construction of a hi-
erarchical index are parallelized using the MapReduce computation model, but other
parts were still implemented in a sequential manner. In [14], a distributed algorithm
for constructing octrees (3D quad-trees) was presented. In [15], a MapReduce-based
framework which can be used for constructing classification and regression trees in
parallel has been proposed. Other attempts for processing spatial data using the
MapReduce model for constructing an R-tree index have been made in [17]. A
generic MapReduce framework for tree data structures has been proposed in [18].

9. Conclusions and Future Work

In this paper we presented several methods for constructing an in-place multi-
dimensional quad-tree index over a set of (arbitrary) geometric objects, which can
speed up the computation of answers for fixed-radius nearest neighbors queries. We
started by presenting the top-down and bottom-up sequential implementations and
then adapted the bottom-up indexing algorithm to the MapReduce computation
model. As future work, we intend to implement the presented MapReduce-based al-
gorithm using the Hadoop framework [21] and assess its performance experimentally.
Moreover, we want to explore other types of nearest-neighbor problems and develop
new MapReduce-based indexing algorithms for these problems. An ”out-of-place”
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M. I. Andreica and N. Ţăpuş - Sequential and MapReduce-based algorithms for...

indexing method (in which objects may also be indexed outside of the cells they
intersect) would be particularly interesting, especially if it could be coupled with an
”in-place” searching method. We note also that there may also be other intermediate
levels between ”in-place” indexing plus ”out-of-place” searching and ”out-of-place”
indexing plus ”in-place” searching, which might be interesting to explore in order
to better understand the trade-offs they may provide.
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